466 J.G. Ryall and G.S. Lynch
Engelhardt, S., Hein, L., Wiesmann, F., Lohse, M. J. (1999). Progressive hypertrophy and heart
failure in b
1
-adrenergic receptor transgenic mice. Proceedings of the National Academy of
Sciences of the United States of America, 96, 7059–7064.
Esler, M., Kaye, D., Thompson, J., Jennings, G., Cox, H., Turner, A., Lambert, G., Seals, D.
(1995). Effects of aging on epinephrine secretion and regional release of epinephrine from the
human heart. The Journal of Clinical Endocrinology and Metabolism, 80, 435–442.
Filipek, S., Krzysko, K. A., Fotiadis, D., Liang, Y., Saperstein, D. A., Engel, A., Palczewski, K.
(2004). A concept for G protein activation by G protein-coupled receptor dimers: the transdu-
cin/rhodopsin interface. Photochemical & Photobiological Sciences, 3, 628–638.
Ford, C. E., Skiba, N. P., Bae, H., Daaka, Y., Reuveny, E., Shekter, L. R., Rosal, R., Weng, G.,
Yang, C. S., Iyengar, R., Miller, R. J., Jan, L. Y., Lefkowitz, R. J., Hamm, H. E. (1998).
Molecular basis for interactions of G protein bg subunits with effectors. Science, 280,
1271–1274.
Fowler, E. G., Graves, M. C., Wetzel, G. T., Spencer, M. J. (2004). Pilot trial of albuterol in
Duchenne and Becker muscular dystrophy. Neurology, 62, 1006–1008.
Fredriksson, R., Lagerström, M. C., Lundin, L. G., Schiöth, H. B. (2003). The G-protein-coupled
receptors in the human genome form five main families. Phylogenetic analysis, paralogon
groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272.
Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., Kobilka, B. K. (1987).
Cloning of the cDNA for the human b
1
-adrenergic receptor. Proceedings of the National
Academy of Sciences of the United States of America, 84, 7920–7924.
Furuyama, T., Yamashita, H., Kitayama, K., Higami, Y., Shimokawa, I., Mori, N. (2002). Effects
of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1,
and AFX) in the rat skeletal muscles. Microscopy Research and Technique, 59, 331–334.
Garami, A., Zwartkruis, F. J., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., Kozma, S. C.,
Hafen, E., Bos, J. L., Thomas, G. (2003). Insulin activation of Rheb, a mediator of mTOR/
S6K/4E-BP signaling, is inhibited by TSC1 and 2. Molecular Cell, 11, 1457–1466.
Gilman, A. G. (1995). Nobel Lecture. G proteins and regulation of adenylyl cyclase. Bioscience
Reports, 15, 65–97.
Glass, D. J. (2003). Signalling pathways that mediate skeletal muscle hypertrophy and atrophy.
Nature Cell Biology, 5, 87–90.
Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The International
Journal of Biochemistry & Cell Biology, 37, 1974–1984.
Goodman, R. H. & Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development.
Genes & Development, 14, 1553–1577.
Gregorevic, P., Ryall, J. G., Plant, D. R., Sillence, M. N., Lynch, G. S. (2005). Chronic b- agonist
administration affects cardiac function of adult but not old rats, independent of b-adrenoceptor
density. American Journal of Physiology. Heart and Circulatory Physiology, 289,
H344–H349.
Grifone. R., Laclef, C., Spitz, F., Lopez, S., Demignon, J., Guidotti, J. E., Kawakami, K., Xu, P. X.,
Kelly, R., Petrof, B. J., Daegelen, D., Concordet, J. P., Maire, P. (2004). Six1 and Eya1 expres-
sion can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch pheno-
type. Molecular Cell Biology, 24, 6253–6267.
Hagiwara, M., Alberts, A., Brindle, P., Meinkoth, J., Feramisco, J., Deng, T., Karin, M.,
Shenolikar, S., Montminy, M. (1992). Transcriptional attenuation following cAMP induction
requires PP-1-mediated dephosphorylation of CREB. Cell, 70, 105–113.
Hagiwara, M., Brindle, P., Harootunian, A., Armstrong, R., Rivier, J., Vale, W., Tsien, R., Montminy, M. R.
(1993). Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor
CREB is rate limited by nuclear entry of protein kinase A. Molecular and Cellular Biology, 13,
4852–4859.
Hampoelz, B. & Knoblich, J. A. (2004). Heterotrimeric G proteins: new tricks for an old dog. Cell,
119, 453–456.
Handschin, C., Chin, S., Li, P., Liu, F., Maratos-Flier, E., Lebrasseur, N. K., Yan Z, Spiegelman BM.
(2007). Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α
muscle-specific knock-out animals. Journal of Biological Chemistry, 282, 30014–30021.
467
Role of b-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia
Harcourt, L. J., Schertzer, J. D., Ryall, J. G., Lynch, G. S. (2007). Low dose formoterol administration
improves muscle function in dystrophic mdx mice without increasing fatigue. Neuromuscular
Disorders, 17, 47–55.
Hardt, S. E. & Sadoshima, J. (2002). Glycogen synthase kinase-3: a novel regulator of cardiac
hypertrophy and development. Circulation Research, 90, 1055–1063.
Hinkle, R. T., Hodge, K. M., Cody, D. B., Sheldon, R. J., Kobilka, B. K., Isfort, R. J. (2002).
Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the b
2
-
adrenergic receptor. Muscle & Nerve, 25, 729–734.
Hinkle, R. T., Dolan, E., Cody, D. B., Bauer, M. B., Isfort, R. J. (2005). Phosphodiesterase 4
inhibition reduces skeletal muscle atrophy. Muscle & Nerve, 32, 775–781.
Hudlická, O. & Price, S. (1990). Effects of torbafylline, pentoxifylline and buflomedil on vascu-
larisation and fibre type of rat skeletal muscles subjected to limited blood supply. British
Journal of Pharmacology, 99, 786–790.
Jefferies, H. B., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B., Thomas, G. (1997).
Rapamycin suppresses 5¢TOP mRNA translation through inhibition of p70
s6k
. The EMBO
Journal, 16, 3693–3704.
Johnson, M. (2006). Molecular mechanisms of b
2
-adrenergic receptor function, response, and
regulation. The Journal of Allergy and Clinical Immunology, 117, 18–24. quiz 25.
Kandarian, S. C. & Jackman, R. W. (2006). Intracellular signaling during skeletal muscle atrophy.
Muscle & Nerve, 33, 155–165.
Kass, D. A., Champion, H. C., Beavo, J. A. (2007). Phosphodiesterase type 5: expanding roles in
cardiovascular regulation. Circulation Research, 101, 1084–1095.
Kaye, D. & Esler, M. (2005). Sympathetic neuronal regulation of the heart in aging and heart
failure. Cardiovascular Research, 66, 256–264.
Kim, M. S., Fielitz, J., McAnally, J., Shelton, J. M., Lemon, D. D., McKinsey, T. A., Richardson
J. A., Bassel-Duby, R., Olson, E. N. (2008). Protein kinase D1 stimulates MEF2 activity in
skeletal muscle and enhances muscle performance. Molecular Cell Biology, 28, 3600–3609.
Kim, Y. S., Sainz, R. D., Molenaar, P., Summers, R. J. (1991). Characterization of b
1
- and b
2
-
adrenoceptors in rat skeletal muscles. Biochemical Pharmacology, 42, 1783–1789.
Kissel, J. T., McDermott, M. P., Natarajan, R., Mendell, J. R., Pandya, S., King, W. M., Griggs,
R. C., Tawil, R. (1998). Pilot trial of albuterol in facioscapulohumeral muscular dystrophy.
Neurology, 50, 1402–1406.
Kissel, J. T., McDermott, M. P., Mendell, J. R., King, W. M., Pandya, S., Griggs, R. C., Tawil, R.
(2001). Randomized, double-blind, placebo-controlled trial of albuterol in facioscapu-
lohumeral dystrophy. Neurology, 57, 1434–1440.
Klco, J. M., Wiegand, C. B., Narzinski, K., Baranski, T. J. (2005). Essential role for the second
extracellular loop in C5a receptor activation. Nature Structural & Molecular Biology, 12,
320–326.
Kline, W. O., Panaro, F. J., Yang, H., Bodine, S. C. (2007). Rapamycin inhibits the growth and
muscle-sparing effects of clenbuterol. Journal of Applied Physiology, 102, 740–747.
Kobilka, B. K., Dixon, R. A., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Sigal, I. S., Yang-
Feng, T. L., Francke, U., Caron, M. G., Lefkowitz, R. J. (1987). cDNA for the human b
2
-
adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a
gene whose chromosomal location is shared with that of the receptor for platelet-derived
growth factor. Proceedings of the National Academy of Sciences of the United States of
America, 84, 46–50.
Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., Lefkowitz, R. J. (1988).
Chimeric a
2
-, b
2
-adrenergic receptors: delineation of domains involved in effector coupling
and ligand binding specificity. Science, 240, 1310–1316.
Lai, K. M., Gonzalez, M., Poueymirou, W. T., Kline, W. O., Na, E., Zlotchenko, E., Stitt, T. N.,
Economides, A. N., Yancopoulos, G. D., Glass, D. J. (2004). Conditional activation of akt in adult
skeletal muscle induces rapid hypertrophy. Molecular and Cellular Biology, 24, 9295–9304.
Larkin, L. M., Halter, J. B., Supiano, M. A. (1996). Effect of aging on rat skeletal muscle b-AR
function in male Fischer 344 × brown Norway rats. The American Journal of Physiology, 270,
R462–R468.
468 J.G. Ryall and G.S. Lynch
Latres, E., Amini, A. R., Amini, A. A., Griffiths, J., Martin, F. J., Wei, Y., Lin, H. C., Yancopoulos,
G. D., Glass, D. J. (2005). Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-
induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin
(PI3K/Akt/mTOR) pathway. The Journal of Biological Chemistry, 280, 2737–2744.
Léger, B., Cartoni, R., Praz, M., Lamon, S., Dériaz, O., Crettenand, A., Gobelet, C., Rohmer, P.,
Konzelmann, M., Luthi, F., Russell, A. P. (2006). Akt signalling through GSK-3beta, mTOR
and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. Journal de
Physiologie, 576, 923–933.
Lohse, M. J. (1999). G-Proteins and their regulators. Naunyn Schmiedeberg’s Archives of
Pharmacology, 360, 3–4.
Lopez-Ilasaca, M., Crespo, P, Pellici, P. G., Gutkind, J. S., Wetzker, R. (1997). Linkage of G protein-
coupled receptors to the MAPK signaling pathway through PI 3-kinase g. Science, 275, 394–397.
Lynch, G. S. & Ryall, J. G. (2008). Role of b-adrenoceptor signaling in skeletal muscle: implica-
tions for muscle wasting and disease. Physiological Reviews, 88, 729–767.
Martin, W. H., 3rd, Murphree, S. S., Saffitz, J. E. (1989). b-Adrenergic receptor distribution
among muscle fiber types and resistance arterioles of white, red, and intermediate skeletal
muscle. Circulation Research, 64, 1096–1105.
Maxwell, M. A., Cleasby, M. E., Harding, A., Stark, A., Cooney, G. J., Muscat, G. E. (2005).
Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-
adrenergic and an orphan nuclear hormone receptor pathway. The Journal of Biological
Chemistry, 280, 12573–12584.
Mayr, B. & Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent
factor CREB. Nature Reviews. Molecular Cell Biology, 2, 599–609.
McDaneld, T. G., Hancock, D. L., Moody, D. E. (2004). Altered mRNA abundance of ASB15 and
four other genes in skeletal muscle following administration of b-adrenergic receptor agonists.
Physiological Genomics, 16, 275–283.
McDaneld, T. G., Hannon, K., Moody, D. E. (2006). Ankyrin repeat and SOCS box protein 15
regulates protein synthesis in skeletal muscle. American Journal of Physiology: Regulatory,
Integrative and Comparative Physiology, 290, R1672–R1682.
McKinsey, T. A., Zhang, C. L., Olson, E. N. (2002). Signaling chromatin to make muscle. Current
Opinion in Cell Biology, 14, 763–772.
McPherron, A. C., Lawler, A. M., Lee, S. J. (1997). Regulation of skeletal muscle mass in mice
by a new TGF-b superfamily member. Nature, 387, 83–90.
Meng, E. C. & Bourne, H. R. (2001). Receptor activation: what does the rhodopsin structure tell
us? Trends in Pharmacological Sciences, 22, 587–593.
Mirshahi, T., Mittal, V., Zhang, H., Linder, M. E., Logothetis, D. E. (2002). Distinct sites on G
protein bg subunits regulate different effector functions. The Journal of Biological Chemistry,
277, 36345–36350.
Molenaar, P. & Parsonage, W. A. (2005). Fundamental considerations of b-adrenoceptor subtypes
in human heart failure. Trends in Pharmacological Sciences, 26, 368–375.
Molenaar, P., Chen, L., Parsonage, W. A. (2006). Cardiac implications for the use of b
2
-
adrenoceptor agonists for the management of muscle wasting. British Journal of Pharmacology,
147, 583–586.
Molkentin, J. D. & Olson, E. N. (1996). Combinatorial control of muscle development by basic
helix-loop-helix and MADS-box transcription factors. Proceedings of the National Academy
of Sciences of the United States of America, 93, 9366–9373.
Morris, A. J. & Malbon, C. C. (1999). Physiological regulation of G protein-linked signaling.
Physiological Reviews, 79, 1373–1430.
Murga, C., Laguinge, L., Wetzker, R., Cuadrado, A., Gutkind, J. S. (1998). Activation of Akt/
protein kinase B by G protein-coupled receptors. A role for a and bg subunits of heterotrimeric
G proteins acting through phosphatidylinositol-3-OH kinase g. The Journal of Biological
Chemistry, 273, 19080–19085.
Murga, C., Fukuhara, S., Gutkind, J. S. (2000). A novel role for phosphatidylinositol 3-kinase b
in signaling from G protein-coupled receptors to Akt. The Journal of Biological Chemistry,
275, 12069–12073.
469
Role of b-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia
Nader, G. A. (2005). Molecular determinants of skeletal muscle mass: getting the “AKT” together.
The International Journal of Biochemistry & Cell Biology, 37, 1985–1996.
Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R., Shepherd, P. R. (1999). Mammalian target
of rapamycin is a direct target for protein kinase B: identification of a convergence point for
opposing effects of insulin and amino-acid deficiency on protein translation. The Biochemical
Journal, 344(Pt 2), 427–431.
Navegantes, L. C., Resano, N. M., Migliorini, R. H., Kettelhut, I. C. (2000). Role of adrenoceptors
and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle.
American Journal of Physiology. Endocrinology and Metabolism, 279, E663–E668.
Nichols, C. D. & Roth, B. L. (2009). Engineered G-protein coupled receptors are powerful tools to
investigate biological processes and behaviors. Frontiers in Molecular Neuroscience, 2, 16.
Nicholson, K. M. & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in
human malignancy. Cellular Signalling, 14, 381–395.
Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., Nakatani, Y. (1996). The transcrip-
tional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 953–959.
Ohkura, N., Ito, M., Tsukada, T., Sasaki, K., Yamaguchi, K., Miki, K. (1998). Alternative splicing
generates isoforms of human neuron-derived orphan receptor-1 (NOR-1) mRNA. Gene, 211,
79–85.
Omori, K. & Kotera, J. (2007). Overview of PDEs and their regulation. Circulation Research, 100,
309–327.
Oh, M., Rybkin, I. I., Copeland, V., Czubryt, M. P., Shelton, J. M., van Rooij, E., Richardson, J. A.,
Hill, J. A., De Windt, L. J., Bassel-Duby, R., Olson, E. N., Rothermel, B. A. (2005). Calcineurin
is necessary for the maintenance but not embryonic development of slow muscle fibers.
Molecular Cell Biology, 25, 6629–6638.
Pallafacchina, G., Calabria, E., Serrano, A. L., Kalhovde, J. M., Schiaffino, S. (2002). A protein
kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not
fiber type specification. Proceedings of the National Academy of Sciences of the United States
of America, 99, 9213–9218.
Pearen, M. A., Ryall, J. G., Maxwell, M. A., Ohkura, N., Lynch, G. S., Muscat, G. E. (2006). The
orphan nuclear receptor, NOR-1, is a target of b-adrenergic signaling in skeletal muscle.
Endocrinology, 147, 5217–5227.
Pearen, M. A., Ryall, J. G., Lynch, G. S., Muscat, G. E. (2009). Expression profiling of skeletal
muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy,
metabolism and circadian rhythm. BMC Genomics, 10, 448.
Pei, Y., Rogan, S. C., Yan, F., Roth, B. L. (2008). Engineered GPCRs as tools to modulate signal
transduction. Physiology, 23, 313–321.
Pourquié, O. (2005). Signal transduction: a new canon. Nature, 433, 208–209.
Rattigan, S., Appleby, G. J., Edwards, S. J., McKinstry, W. J., Colquhoun, E. Q., Clark, M. G.,
Richter, E. A. (1986). a-adrenergic receptors in rat skeletal muscle. Biochemical and
Biophysical Research Communications, 136, 1071–1077.
Ricks, C. A., Dalrymple, R. H., Baker, P. K., Ingle, D. L. (1984). Use of a b-agonist to alter fat
and muscle deposition in steers. Journal of Animal Science, 59, 1247–1255.
Rodbell, M., Birnbaumer, L., Pohl, S. L., Krans, H. M. (1971). The glucagon-sensitive adenyl
cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides
in glucagon action. The Journal of Biological Chemistry, 246, 1877–1882.
Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D.,
Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI3K/Akt/
mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3, 1009–1013.
Roth, J. F., Shikama, N., Henzen, C., Desbaillets, I., Lutz, W., Marino, S., Wittwer, J., Schorle, H.,
Gassmann, M., Eckner, R. (2003). Differential role of p300 and CBP acetyltransferase during
myogenesis: p300 acts upstream of MyoD and Myf5. The EMBO Journal, 22, 5186–5196.
Ryall, J. G., Gregorevic, P., Plant, D. R., Sillence, M. N., Lynch, G. S. (2002). b
2
-Agonist fenoterol
has greater effects on contractile function of rat skeletal muscles than clenbuterol. American
Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 283,
R1386–R1394.
470 J.G. Ryall and G.S. Lynch
Ryall, J. G., Plant, D. R., Gregorevic, P., Sillence, M. N., Lynch, G. S. (2004). b
2
-Agonist
administration reverses muscle wasting and improves muscle function in aged rats. Journal de
Physiologie, 555, 175–188.
Ryall, J. G., Sillence, M. N., Lynch, G. S. (2006). Systemic administration of b
2
-adrenoceptor
agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar
doses. British Journal of Pharmacology, 147, 587–595.
Ryall, J. G., Schertzer, J. D., Lynch, G. S. (2007). Attenuation of age-related muscle wasting
and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia.
The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 62,
813–823.
Ryall, J. G., Schertzer, J. D., Alabakis, T. M., Gehrig, S. M., Plant, D. R., Lynch, G. S. (2008a).
Intramuscular b
2
-agonist administration enhances early regeneration and functional repair in
rat skeletal muscle after myotoxic injury. Journal of Applied Physiology, 105, 165–172.
Ryall, J. G., Schertzer, J. D., Murphy, K. T., Allen, A. M., Lynch, G. S. (2008b). Chronic b
2
-
adrenoceptor stimulation impairs cardiac relaxation via reduced SR Ca
2+
-ATPase protein and
activity. American Journal of Physiology. Heart and Circulatory Physiology, 294,
H2587–H2595.
Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S.,
Lecker, S. H., Goldberg, A. L. (2004). Foxo transcription factors induce the atrophy-related
ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117, 399–412.
Sartorelli, V., Huang, J., Hamamori, Y., Kedes, L. (1997). Molecular mechanisms of myogenic
coactivation by p300: direct interaction with the activation domain of MyoD and with the
MADS box of MEF2C. Molecular and Cellular Biology, 17, 1010–1026.
Schertzer, J. D., Plant, D. R., Ryall, J. G., Beitzel, F., Stupka, N., Lynch, G. S. (2005). b
2
-Agonist
administration increases sarcoplasmic reticulum Ca
2+
-ATPase activity in aged rat skeletal
muscle. American Journal of Physiology. Endocrinology and Metabolism, 288, E526–E533.
Schmidt, P., Holsboer, F., Spengler, D. (2001). b
2
-adrenergic receptors potentiate glucocorticoid
receptor transactivation via G protein bg-subunits and the phosphoinositide 3-kinase pathway.
Molecular Endocrinology, 15, 553–564.
Sillence, M. N. (2004). Technologies for the control of fat and lean deposition in livestock. The
Veterinary Journal, 167, 242–257.
Sillence, M. N. & Matthews, M. L. (1994). Classical and atypical binding sites for b-adrenoceptor
ligands and activation of adenylyl cyclase in bovine skeletal muscle and adipose tissue mem-
branes. British Journal of Pharmacology, 111, 866–872.
Small, K. M., Brown, K. M., Forbes, S. L., Liggett, S. B. (2001). Modification of the b
2
-adrenergic
receptor to engineer a receptor-effector complex for gene therapy. The Journal of Biological
Chemistry, 276, 31596–31601.
Smith, W. N., Dirks, A., Sugiura, T., Muller, S., Scarpace, P., Powers, S. K. (2002). Alteration of
contractile force and mass in the senescent diaphragm with b
2
-agonist treatment. Journal of
Applied Physiology, 92, 941–948.
Sneddon, A. A., Delday, M. I., Steven, J., Maltin, C. A. (2001). Elevated IGF-II mRNA and phos-
phorylation of 4E-BP1 and p70
S6k
in muscle showing clenbuterol-induced anabolism.
American Journal of Physiology. Endocrinology and Metabolism, 281, E676–E682.
Spangenburg, E. E. (2005). SOCS-3 induces myoblast differentiation. The Journal of Biological
Chemistry, 280, 10749–10758.
Spurlock, D. M., McDaneld, T. G., McIntyre, L. M. (2006). Changes in skeletal muscle gene
expression following clenbuterol administration. BMC Genomics, 7, 320.
Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M.,
Yancopoulos, G. D., Glass, D. J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of
muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular
Cell, 14, 395–403.
Thompson, P. R., Wang, D., Wang, L., Fulco, M., Pediconi, N., Zhang, D., An, W., Ge, Q., Roeder,
R. G., Wong, J., Levrero, M., Sartorelli, V., Cotter, R. J., Cole, P. A. (2004). Regulation of the
471
Role of b-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia
p300 HAT domain via a novel activation loop. Nature Structural & Molecular Biology, 11,
308–315.
Tintignac, L. A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M. P., Leibovitch, S. A. (2005).
Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. The Journal of
Biological Chemistry, 280, 2847–2856.
Tran, H., Brunet, A., Griffith, E. C., Greenberg, M. E. (2003). The Many Forks in FOXO’s Road.
Sci STKE 2003, RE5.
Wadzinski, B. E., Wheat, W. H., Jaspers, S., Peruski, L. F., Jr., Lickteig, R. L., Johnson, G. L., Klemm,
D. J. (1993). Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated
CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 13,
2822–2834.
Wenzel-Seifert, K. & Seifert, R. (2000). Molecular analysis of b
2
-adrenoceptor coupling to G
s
-, G
i
-,
and G
q
-proteins. Molecular Pharmacology, 58, 954–966.
Wilkie, T. M., Gilbert, D. J., Olsen, A. S., Chen, X. N., Amatruda, T. T., Korenberg, J. R., Trask,
B. J., de Jong, P., Reed, R. R., Simon, M. I. (1992). Evolution of the mammalian G protein alpha
subunit multigene family. Nature Genetics, 1, 85–91.
Williams, R. S., Caron, M. G., Daniel, K. (1984). Skeletal muscle b-adrenergic receptors: varia-
tions due to fiber type and training. The American Journal of Physiology, 246, E160–E167.
Wu, A. L., Kim, J. H., Zhang, C., Unterman, T. G., Chen, J. (2008). Forkhead box protein O1
negatively regulates skeletal myocyte differentiation through degradation of mammalian target
of rapamycin pathway components. Endocrinology, 149, 1407–1414.
Yamamoto, D. L., Hutchinson, D. S., Bengtsson, T. (2007). b
2
-Adrenergic activation increases
glycogen synthesis in L6 skeletal muscle cells through a signalling pathway independent of
cyclic AMP. Diabetologia, 50, 158–167.
Yang, X. J. (2004). Lysine acetylation and the bromodomain: a new partnership for signaling.
Bioessays, 26, 1076–1087.
Yang, X., Yang, C., Farberman, A., Rideout, T. C., de Lange, C. F., France, J., Fan, M. Z. (2008).
The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
Journal of Animal Science, 86(14 Suppl), E36–E50.
Zeman, R. J., Ludemann, R., Easton, T. G., Etlinger, J. D. (1988). Slow to fast alterations in skel-
etal muscle fibers caused by clenbuterol, a b
2
-receptor agonist. The American Journal of
Physiology, 254, E726–E732.
Zeman, R. J., Peng, H., Etlinger, J. D. (2004). Clenbuterol retards loss of motor function in motor
neuron degeneration mice. Experimental Neurology, 187, 460–467.
Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner,
R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J. R., Emerson, B., Hogenesch, J. B.,
Unterman, T., Young, R. A., Montminy, M. (2005). Genome-wide analysis of cAMP-response
element binding protein occupancy, phosphorylation, and target gene activation in human tis-
sues. Proceedings of the National Academy of Sciences of the United States of America, 102,
4459–4464.
473
A
ACE. See Angiotensin converting enzyme
Acquired immunodeficiency syndrome
(AIDS), 15, 172, 396–397, 427
Action potential, 48–50, 112, 115, 117, 370
Activin, 210, 235, 421–422, 426–428, 432,
452
Actomyosin, 4, 14, 73–106, 267, 272, 274
Adenosine triphosphate (ATP), 11, 15, 40,
42, 74–79, 82, 83, 86, 87, 91, 92,
101, 134–136, 143, 176, 178, 180,
188, 260, 261, 267, 269–270, 272,
320, 340, 447, 458
Adenovirus, 13
Adipose, 11, 16–17, 19, 27, 142, 400, 416, 418
b-Adrenergic, 445–460
b-Adrenoceptor (b-adrenoceptor), 446–452,
456–459
b-Adrenoceptor agonists, 452–456, 459
b-Adrenoceptor antagonist, 457–458
Aerobic capacity, 134, 151, 340
Age, 2, 19, 42, 56, 79, 112, 136, 157, 174,
206, 222, 225, 286, 314, 330, 372, 392,
416, 452
Ageing, 5, 19, 39, 55, 74, 111, 133, 159, 172,
207, 222, 256, 286, 322, 330, 433, 452
Age-related, 2–5, 19, 21–26, 37–51, 73–106,
112, 114–117, 119–125, 134–148, 159,
186, 205–213, 222, 223, 226, 228,
242–243, 264, 267–270, 272, 275–276,
285–301, 314, 319–322, 334, 337,
369–384, 389–405, 433, 435, 452,
454, 455, 459
b-Agonist (b-agonist), 448, 451, 453–459
AIDS. See Acquired immunodeficiency
syndrome
Alpha actinin 3 (ACTN3), 230, 232–233,
237, 241–242
Alpha-bungarotoxin, 44, 120, 122, 123
Amino acid (AA), 10, 17, 74, 81, 94, 99, 101,
102, 104, 208, 291–295, 298–300, 334,
335, 337, 349, 350, 379, 391–392, 395,
396, 401, 416, 417, 421, 428, 447
Amyotrophic lateral sclerosis, 56, 58, 141
Anabolic resistance, 208, 288, 291, 293, 296,
300, 301, 334–336
Anabolic stimuli, 207–209, 211, 288, 297,
301, 332, 334–337
Androgen receptor (AR), 229, 237–240
Anemia, 10
Angiotensin converting enzyme (ACE),
229–232, 237, 241–242
Anorexia, 2, 10–12, 21, 27
Antioxidant supplementation, 322
Apoptosis, 3, 4, 12–15, 24–26
Apoptosome, 14, 15, 144, 180
Appendicular muscle mass, 331, 339–341
AR. See Androgen receptor
Asthenia, 10, 22
Astrocytes, 123
ATP. See Adenosine triphosphate
Atrogin, 14, 208, 297, 334, 396, 429, 450
Atrophy, 3, 4, 10, 21, 22, 26, 39, 56, 63, 112,
116–118, 120, 124, 134, 141–146, 173,
174, 176, 178, 182, 190–191, 206–210,
240, 264, 268, 271, 272, 289, 290, 297,
314, 332–339, 372, 391, 393, 395–398,
404, 405, 428, 429, 431–435, 450, 451,
453–454, 458
Atrophy gene-1 (Atrogin-1), 334, 395
Autocrine, 22, 122, 124, 125, 186, 393–394, 405
Axon terminal, 38, 44, 122
B
Basal lamina, 158, 162, 163, 211, 289, 290,
338, 379, 381
BAT. See Brown adipose tissue
Index
G.S. Lynch (ed.), Sarcopenia – Age-Related Muscle Wasting and Weakness,
DOI 10.1007/978-90-481-9713-2, © Springer Science+Business Media B.V. 2011
474 Index
Bedridden, 2
Biceps brachii, 60, 117
Bioinformatics, 100, 103, 104
Biopsy, 79, 135, 207, 225, 344, 373, 376, 398
Bivariate linkage, 227
Body composition, 2, 22, 223, 227, 243,
330–331, 337, 339, 340
Bone marrow, 11
Brown adipose tissue (BAT), 11, 12, 142
C
Cachectic, 10–12, 15, 26, 27, 433
Cachexia, 2, 3, 9–27, 256, 391, 396, 427–430
Calcineurin, 241
Calcium, 15, 64, 66, 74, 97–99, 112, 116, 121,
175, 176, 190, 273, 370, 379, 380, 401,
402, 422
Calcium ion (Ca
2+
), 24, 40, 47, 76, 78, 79,
82, 86, 87, 97, 101, 112, 114–115,
134, 144, 267, 268, 273–275, 334,
403, 458
Caloric restriction, 341, 401, 405, 451
Calpain, 15, 160, 300, 334, 379, 432
cAMP. See cyclic AMP
cAMP response element (CRE), 448
cAMP response element binding protein
(CREB), 113, 114, 448, 449
Cancer cachexia, 9–27, 256, 396, 427, 429
Cardiac hypertrophy, 210, 457
Cardiac output, 340
Cardiorespiratory function, 331
Caspase, 14, 15, 24, 144, 175–186
Catabolic mediator, 11
Caveolin, 432
Cellular, 3–5, 19, 26, 46, 74, 79, 91, 100,
101, 104, 134, 135, 140, 173–178,
180, 183, 190, 191, 206, 255–257,
265, 270–273, 275, 276, 297,
314–320, 347, 381, 382, 451
Cholinergic, 46–48, 50
Chronic obstructive pulmonary
disease (COPD), 14, 230–232, 236,
256, 445
Ciliary neurotrophic factor (CNTF), 18, 22,
230, 233, 234, 237
Circadian rhythm, 452
Citrate synthase (CS), 340
Clenbuterol, 450, 453, 455, 457, 459
CNTF. See Ciliary neurotrophic factor
Collagen, 103, 119, 157–164, 435, 458
Comorbidity, 4, 256, 287
Compensatory hypertrophy, 117
Conditioning protocol, 384
Connective tissue, 25, 64, 66, 158, 159, 161,
163, 373
Contractile apparatus, 66, 257, 266–267, 382
COPD. See Chronic obstructive pulmonary
disease
Costamere, 120, 121, 381, 382
CRE. See cAMP response element
C-reactive protein (CRP), 17, 18
CREB. See cAMP response element binding
protein
Cross-bridges, 40, 42, 64, 77, 78, 80, 83, 86,
90, 105, 112, 134, 370, 372
CS. See Citrate synthase
Cultured myotube, 13
Cyclic AMP (cAMP), 447–449, 458
Cytochrome c, 14, 15, 92, 144–146, 176–178,
180, 270
Cytoprotective, 271, 272, 316, 318, 321
D
Deacetylase, 340–341, 432, 449
Delta, 212, 213
Denervation, 3, 39, 42–43, 47–48, 51, 56, 58,
59, 63, 113–118, 120–121, 139–142,
146, 147, 151, 173, 182, 187, 190, 264,
265, 271, 334, 391, 396, 398, 404,
450–451, 458
Depolarization, 56, 113, 116, 121, 274
Designer receptors exclusively activated by
designer drugs (DREADDs), 459
Desmin, 381, 382, 429
Dexamethasone, 428, 433
DHPR. See Dihydropyridine receptor
Diabetes, 4, 14–15, 172, 206, 256, 273,
286–287, 330, 334, 339, 391, 396,
397, 403
Diaphragm, 41, 43–51, 162, 453
Differentiation, 13–15, 22, 158, 162, 172, 189,
210, 213, 257, 264, 271, 273, 290, 296,
300, 319, 336, 393, 394, 416, 417, 419,
422–424, 448, 451, 452
Dihydropyridine receptor (DHPR), 112, 113,
115, 121, 122, 273–275
Disabilities, 2, 9, 19, 21, 23, 56, 73, 79, 124,
222, 330, 331, 339, 344, 345
DNA damage, 142–144, 178
DREADDs. See Designer receptors exclu-
sively activated by designer drugs
Dysferlin-related myopathy, 271
Dystrophin, 15, 121, 162–164, 271, 317,
381–383, 431, 432
Dystrophin glycoprotein complex,
15, 317
475Index
E
EAA. See Essential amino acids
Eccentric contraction, 116, 160, 296, 371
ECM. See Extracellular matrix
Economic burden, 3
ECU. See Excitation-contraction uncoupling
EDL. See Extensor digitorum longus
Electrical stimulation, 115, 122, 148, 150,
315, 335
Electromyography, 48, 59, 117
Electron transport chain (ETC), 91–93, 95,
136–138, 140, 143, 146, 178, 320
Endoplasmic reticulum (ER), 15, 46, 47, 97,
175, 176, 184, 190, 258
Endotoxic, 11
End-plate potential, 47, 48, 50, 112
Endurance, 78, 112, 120, 148, 149, 151, 159,
189, 264, 271, 295, 296, 298, 330, 331,
340, 341, 348, 349, 351, 433
Essential amino acids (EAA), 17, 291, 292,
295–297, 299–300, 321, 334–335
Estrogen receptor (ESR1), 234–235, 237
ETC. See Electron transport chain
Excitability, 39, 115, 124, 173, 274, 449, 459
Excitation-contraction coupling (ECC), 3, 4,
64, 68, 74, 76, 79, 111–125, 263, 265,
268, 273–275
Excitation-contraction uncoupling (ECU),
112–113, 115–116, 124, 125
Exercise, 5, 21, 78, 113, 135, 159, 187,
207, 227, 258, 285, 314, 339, 372,
390, 432
Extensor digitorum longus (EDL), 44, 47–50,
113, 119, 123, 137, 145, 374, 375, 377,
378, 418, 448, 452, 454–458
Extracellular matrix (ECM), 68, 158, 160,
163, 300, 381, 418
F
Fall, 3, 55, 56, 172, 206, 222, 243, 314, 315,
317, 319, 320, 333, 344
Familial aggregation, 223, 226
Fatigue, 10, 38, 40, 57, 112, 117, 268, 373,
453, 454
Fenoterol, 454, 455, 459
Fibre type transformation, 267, 276
Fibre type transition, 267, 276
Fibrosis, 4, 162–164, 381, 425, 435
Follistatin (FST), 235, 238, 239, 419, 426,
428, 432
Force deficit, 377–379, 383
Formoterol, 451–452, 455–457, 459
Fracture, 3, 19, 206, 222
Frailty, 3, 56, 73, 79, 275, 300, 314, 330, 347,
372, 384, 402, 453
Free radicals, 4, 64, 81, 91, 93, 95, 96, 178, 314
FST. See Follistatin
G
Gastrocnemius, 41, 58–59, 137, 146, 147, 149,
162, 208, 260, 265, 267, 269, 274, 275,
370, 453, 458
GDP. See Guanosine diphosphate
Genetic screening, 241, 243
Genetic variation, 5, 221–243
Genome-wide association, 228–229, 239, 240,
242, 243
GH. See Growth hormone
Glial cell, 123
Glucocorticoid, 21, 23, 184, 428
Glucose homeostasis, 331
Glutathione, 58, 102, 315, 320
Glutathione peroxidase, 319
Glycation, 58, 97, 102–104, 159
Glycation endproduct, 58
Glycoprotein, 15, 18, 274, 275, 317, 381
G-protein coupled receptor (GPCR), 446, 459
Growth hormone (GH), 22, 23, 161, 164, 209,
211, 239, 390, 393–394, 397–399,
401–405
Guanosine diphosphate (GDP), 446
H
Haplotype analysis, 232–234, 236, 238
Heat shock proteins (HSPs), 176, 265,
271–273, 316–318, 321, 322
Hepatocyte growth factor (HGF), 212, 380
Hepatocytes, 11, 17
Heritability, 223–226, 240, 242
Hindlimb suspension, 271, 453
Hippocampal, 124
Histones, 178, 242–243, 449, 452
HSPs. See Heat shock proteins
Human, 11, 56, 79, 112, 135, 161, 172,
207, 235, 256, 288, 316, 332, 370,
390, 418, 448
Humoural, 10, 11, 27
Hydrogen peroxide (H
2
O
2
), 91, 95, 139, 314,
315, 319–320, 322
Hydroxyl, 91, 99, 314
Hydroxyl radical (HO
•
), 91, 99, 314
Hypercholesterolemia, 16, 190
Hyperinsulinemia, 292, 335
Hyperlipaemia, 16
Hyperlipidemia, 287