Tải bản đầy đủ (.doc) (5 trang)

ĐỀ THI THỬ TRƯỜNG LƯONG THẾ VINH (có DA)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (202 KB, 5 trang )

Trêng THPT lam kinh kiÓm tra chÊt lîng «n thi §h - c® (LÇn 2)
M«n: To¸n (khèi a), n¨m häc 2009 - 2010
Thêi gian: 180 phót (kh«ng kÓ thêi gian giao ®Ò)
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0 điểm)
C©u I (2.0 ®iÓm) Cho hàm số
23
23
+−= xxy
1. Khảo sát và vẽ đồ thị (C) của hàm số.
2. Biện luận số nghiệm của phương trình
1
22
2

=−−
x
m
xx
theo tham số m.
C©u II (2.0 ®iÓm )
1. Giải phương trình:
( )
2
3 4 2 2 2 1 2sin x cos x sin x− = +
2. Giải phương trình:
2 3
16 4
2
14 40 0
x x x
log x log x log x .− + =


C©u III (1.0 ®iÓm) Tính tích phân
3
2
3
x sin x
I dx.
cos x
π
π

=

C©u IV(1.0®iÓm) Trong không gian
Oxyz
cho đường thẳng d:
3
2
12
1

+
==
− zyx
và mặt phẳng
012:)( =−++ zyxP
.Tìm tọa độ giao điểm
A
của đường thẳng d với mặt phẳng
)(P
. Viết phương

trình của đường thẳng

đi qua điểm
A
vuông góc với d và nằm trong
)(P
.
C©u V:(1.0®iÓm) Trong không gian với hệ toạ độ
Oxyz
, cho hai điểm
)2;1;1(A
,
)2;0;2(B
. Tìm quỹ tích các
điểm cách đều hai mặt phẳng
)(OAB

)(Oxy
.
PHẦN RIÊNG ( 3.0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A.Theo chương trình Chuẩn
C©u VI.a(2.0 ®iÓm)
1. Cho hàm số
3
2
sin)(
2
−+−=
x
xexf

x
. Tìm giá trị nhỏ nhất của
)(xf
và chứng minh rằng
0)( =xf

có đúng hai nghiệm.
2. Giải hệ phương trình sau trong tập hợp số phức:



+−=+
−−=
izz
izz
.25
.55.
2
2
2
1
21

C©u VII.a(1.0 ®iÓm) Trong mặt phẳng
Oxy
cho
ABC∆

( )
0 5A ; .

Các đường phân giác và trung tuyến
xuất phát từ đỉnh
B
có phương trình lần lượt là
1 2
1 0 2 0d : x y ,d : x y .− + = − =
Viết phương trình ba cạnh
của tam giác ABC.
B.Theo chương trình Nâng cao
C©u VI.b (2.0 ®iÓm)
1. Giải phương trình
12
9.
4
1
4.69.
3
1
4.3
++
−=+
xxxx
.
2. Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x.sin2x, y = 2x, x =
2
π
C©u VII.b (1.0 ®iÓm) Cho hình chóp tứ giác đều
SABCD
có cạnh bên bằng a và mặt chéo
SAC

là tam giác
đều. Qua
A
dựng mặt phẳng
)(P
vuông góc với
SC
.Tính diện tích thiết diện tạo bởi mặt phẳng
)(P

và hình chóp.
…HÕt ®Ò …
Hä vµ tªn thÝ sinh:. . . . . . . . . . . . . . . . . . . . . . . . . ……… …………… ; Sè b¸o danh:. . . . . . . . . . . . . . .
ĐÁP ÁN
Câu I 2 điểm
a)
Khảo sát sự biến thiên và vẽ đồ thị của hàm số
3 2
3 2y x x .= − +
• Tập xác định: Hàm số có tập xác định
D R.=
• Sự biến thiên:
2
3 6y' x x.= −
Ta có
0
0
2
x
y'

x
=

= ⇔

=

0,25

( ) ( )
0 2 2 2
CD CT
y y ; y y .= = = = −
0,25
• Bảng biến thiên:
x
−∞
0 2
+∞
y'


+
0

0
+

y


2
+∞
−∞

2−
0,25
• Đồ thị: Học sinh tự vẽ hình
0,25
b)
Biện luận số nghiệm của phương trình
1
22
2

=−−
x
m
xx
theo tham số m.
• Ta có
( )
2 2
2 2 2 2 1 1
1
m
x x x x x m,x .
x
− − = ⇔ − − − = ≠

Do đó số nghiệm

của phương trình bằng số giao điểm của
( )
( )
2
2 2 1y x x x , C'= − − −
và đường
thẳng
1y m,x .= ≠
0,25
• Vì
( )
( )
( )
2
1
2 2 1
1
f x khi x
y x x x
f x khi x
>

= − − − =

− <


nên
( )
C'

bao gồm:
+ Giữ nguyên đồ thị (C) bên phải đường thẳng
1x .
=
+ Lấy đối xứng đồ thị (C) bên trái đường thẳng
1x
=
qua Ox.
0,25
• Học sinh tự vẽ hình
0,25
• Dựa vào đồ thị ta có:
+
2m :< −
Phương trình vô nghiệm;
+
2m := −
Phương trình có 2 nghiệm kép;
+
2 0m :− < <
Phương trình có 4 nghiệm phân biệt;
+
0m :≥
Phương trình có 2 nghiệm phân biệt.
0,25
0,25
Câu II 2 điểm
a)
Giải phương trình
( )

2
3 4 2 2 2 1 2sin x cos x sin x− = +
• Biến đổi phương trình về dạng
( ) ( )
2 3 2 1 2 1 0sin x sin x sin x+ − + =
0,75
• Do đó nghiệm của phương trình là
7 2 5 2
2 2
6 6 18 3 18 3
k k
x k ; x k ; x ; x
π π π π π π
π π
= − + = + = + = +
0,25
b)
Giải phương trình
2 3
16 4
2
14 40 0
x x x
log x log x log x .− + =
• Điều kiện:
1 1
0 2
4 16
x ; x ;x ; x .> ≠ ≠ ≠


0,25
• Dễ thấy x = 1 là một nghiệm của pt đã cho
• Với
1x ≠
. Đặt
2
x
t log=
và biến đổi phương trình về dạng
2 42 20
0
1 4 1 2 1t t t
− + =
− + +
0,5
• Giải ra ta được
1 1
2 4
2
2
t ;t x ; x .= = − ⇒ = =
Vậy pt có 3 nghiệm x =1;
1
4
2
x ; x .= =
0,25
Câu III 1.0 điểm
a)
Tính tích phân

3
2
3
x sin x
I dx.
cos x
π
π

=

• Sử dụng công thức tích phân từng phần ta có
3 3
3
3
3 3
1 4
3
x dx
I xd J ,
cosx cosx cosx
π π
π
π
π π
π

− −
 
= = − = −

 ÷
 
∫ ∫
với
3
3
dx
J
cosx
π
π

=

0,25
• Để tính J ta đặt
t sin x.=
Khi đó
3
3
3
2
2
2
3
3
2
3
2
1 1 2 3

1 2 1
2 3
dx dt t
J ln ln .
cosx t t
π
π



− −
= = = − = −
− +
+
∫ ∫
0,5
• Vậy
4 2 3
3
2 3
I ln .
π

= −
+
0,25
Câu IV 1.0 điểm
Tìm tọa độ giao điểm
A
của đường thẳng d với mặt phẳng

)(P
. Viết phương
trình của đường thẳng

đi qua điểm
A
vuông góc với d và nằm trong
)(P
.
• Tìm giao điểm của d và (P) ta được
1 7
2
2 2
A ; ;
 

 ÷
 
0,25
• Ta có
( ) ( ) ( )
2 1 3 2 1 1 1 2 0
d P d p
u ; ; ,n ; ; u u ;n ; ;

 
= − = ⇒ = = −
 
uur uur uur uur uur
0,5

• Vậy phương trình đường thẳng


1 7
2 2
2 2
: x t; y t; z .∆ = + = − = −
0,25
Câu V 1.0 điểm
Trong không gian với hệ toạ độ
Oxyz
, cho hai điểm
)2;1;1(A
,
)2;0;2(B
. Tìm
quỹ tích các điểm cách đều hai mặt phẳng
)(OAB

)(Oxy
.
( ) ( )
, ; ; ; ;2 2 2 2 1 1 1OA OB
 
= − = −
 
uuur uuur
( )
: 0OAB x y z⇒ + − =
.

( )
: 0Oxy z =
.
( )
; ;N x y z
cách đều
( )
OAB

( )
Oxy

( )
( )
( )
( )
, ,d N OAB d N Oxy⇔ =
1
3
x y z z+ −
⇔ =

( )
( )
.
3 1 0
3
3 1 0
x y z
x y z z

x y z

+ − + =

⇔ + − = ± ⇔

+ + − =


0.25
0.5
Vậy tập hợp các điểm N là hai mặt phẳng có phương trình
( )
3 1 0x y z+ − + =

( )
3 1 0x y z+ + − =
.
0.25
Câu VIa 2.0 điểm
1.
Cho hàm số
3
2
sin)(
2
−+−=
x
xexf
x

. Tìm giá trị nhỏ nhất của
)(xf
và chứng
minh rằng
0)( =xf
có đúng hai nghiệm.
• Ta có
x
f ( x ) e x cos x.

= + −
Do đó
( )
0
x
f ' x e x cos x.= ⇔ = − +
0,25
• Hàm số
x
y e=
là hàm đồng biến; hàm số
y x cosx= − +
là hàm nghịch biến

1 0y' sin x , x= − + ≤ ∀
. Mặt khác
0=x
là nghiệm của phương trình
x
e x cos x= − +

nên nó là nghiệm duy nhất.
0,25
• Lập bảng biến thiên của hàm số
( )
y f x=
(học sinh tự làm) ta đi đến kết
luận phương trình
0)( =xf
có đúng hai nghiệm.
• Từ bảng biến thiên ta có
( )
2 0min f x x .= − ⇔ =
0,5
Cho hàm số
3
2
sin)(
2
−+−=
x
xexf
x
. Tìm giá trị nhỏ nhất của
)(xf
và chứng
minh rằng
0)( =xf
có đúng hai nghiệm.
• Ta có
x

f ( x ) e x cos x.

= + −
Do đó
( )
0
x
f ' x e x cos x.= ⇔ = − +
0,25
2.
. Giải hệ phương trình sau trong tập hợp số phức:



+−=+
−−=
izz
izz
.25
.55.
2
2
2
1
21
Đáp số: (2 – i; -1 – 3.i), (-1 – 3i; 2 – i), (-2 + i; 1 + 3i), (1 + 3i; -2 + i)
Câu
VII.a
1.0 điểm
Trong mặt phẳng

Oxy
cho
ABC∆

( )
0 5A ; .
Các đường phân giác và trung
tuyến xuất phát từ đỉnh
B
có phương trình lần lượt là
1 2
1 0 2 0d : x y ,d : x y .− + = − =
Viết phương trình ba cạnh của tam giác ABC.
• Ta có
( )
1 2
2 1 3 5 0B d d B ; AB : x y .= ∩ ⇒ − − ⇒ − + =
0,25
• Gọi
A'
đối xứng với A qua
( ) ( )
1
2 3 4 1d H ; , A' ; .⇒

0,25
• Ta có
3 1 0A' BC BC : x y .∈ ⇒ − − =
0,25
• Tìm được

( )
28 9 7 35 0C ; AC : x y .⇒ − + =
0,25
Câu VI.b 2.0 điểm
1.
Giải phương trình
12
9.
4
1
4.69.
3
1
4.3
++
−=+
xxxx
• Biến đổi phương trình đã cho về dạng
2 2 2 2
9
3 2 27 3 6 2 3
4
x x x x
. . . .+ = −
0,5
• Từ đó ta thu được
3
2
3 2 2
2

39 39
x
x log
 
= ⇔ =
 ÷
 
0,5
2.
Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x.sin2x, y = 2x,
x =
2
π
Ta có: x.sin2x = 2x

x.sin2x – 2x = 0

x(sin2x – 2) =0

x = 0
DiÖn tÝch h×nh ph¼ng lµ:
∫∫
−=−=
2
0
2
0
)22(sin)22sin.(
π
π

dxxxdxxxxS
Đặt







=
=




−=
=
x
x
v
dxdu
dxxdv
xu
2
2
2cos
)22(sin
44424
222
πππππ

−=+−=⇔ S
(đvdt)
0.5
0.5
Câu
VII.b
1.0 điểm
Cho chóp tứ giác đều
SABCD
có cạnh bên bằng a và mặt chéo
SAC
là tam
giác đều. Qua
A
dựng mặt phẳng
)(P
vuông góc với
SC
.Tính diện tích thiết
diện tạo bởi mặt phẳng
)(P
và hình chóp.
• Học sinh tự vẽ hình
0,25
• Để dựng thiết diện, ta kẻ
AC' SC.

Gọi
I AC' SO.
= ∩


0,25
• Kẻ
B' D'
//
BD.
Ta có
2
1 1 2 3 3
2 2 3 2 6
AD' C' B'
a a
S B' D' .AC' . BD. .= = =
0,5

×