Tải bản đầy đủ (.doc) (9 trang)

de thi hoc ky II toan 11

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (172.68 KB, 9 trang )

NGÂN HÀNG ĐỀ KIỂM TRA- TOÁN 11- CHƯƠNG TRÌNH CHUẨN
STT

câu
hỏi
Ý,
thời
gian
Nội dung Điểm
 
  
 
3
3
3 2 5
lim
1 2
n n
n
+ +
+


 
5 2.3
lim
4 3.5
n n
n n
+



 
3
2 3
3
3
2 5
3
3 2 5 3
lim lim .
1
1 2 2
2
n n
n n
n
n
+ +
+ +
= =
+
+

 
3
1 2.
5 2.3 1
5
lim lim .
4 3.5 3

4
3
5
n
n n
nn n
 
+
 ÷
+
 
= = −

 

 ÷
 

 
  
 
2
3 2
lim
1
n n
n n
− + +
− +


 
1 1
( 2) 3
lim
( 2) 3
n n
n n+ +
− +
− +


3 2
2
2
3 1 2
3 2
lim lim 0.
1 1
1
1
n n
n n n
n n
n n
− + +
− + +
= =
− +
− +


 
11 1
2
1
( 2) 3 1 1
3
lim lim .
( 2) 3 3 3
2
1
3
n
n n
nn n ++ +
 
 
− +
 
 ÷
− +
 
 
= =
 
− +
 
− +
 
 ÷
 

 

 
 
( )
1
3 3 3 3 3( 1)

2 4
2 2 2
2
n
n
S
+

= − + − + + +

 !"#$%!&'(
1
1 3
,
2 2
q u= − =
)*+,
( )
1
3
3 3 3 3 3( 1) 3
2

.
1
2 4
2 2 2 1 2
2
1
2
n
n
S
+

= − + − + + + = =
+
+


 
 
2
2
1
1
lim
3 2
x
x
x x
→−


+ +


2
2
1 1 1
1 ( 1)( 1) 1
lim lim lim 2.
3 2 ( 1)( 2) 2
x x x
x x x x
x x x x x
→− →− →−
− + − −
= = = −
+ + + + +


 
 
2
1
2 3
lim
1
x
x
x

− +




2
2
1 1
1
1
2 3 4 ( 3)
lim lim
1
( 1)(2 3)
( 1)
lim
( 1)( 1)(2 3)
1 1
lim .
8
( 1)(2 3)
x x
x
x
x x
x
x x
x
x x x
x x
→ →



− + − +
= =

− + +
− −
=
− + + +

= −
+ + +



- 
 
3 2
4 2
3
5 3 9
lim
8 9
x
x x x
x x

− + +
− −



3 2 2
4 2 2 2
3 3
2
3
5 3 9 ( 3) ( 1)
lim lim
8 9 ( 1)( 9)
( 3)( 1)
lim 0
( 1)( 3)
x x
x
x x x x x
x x x x
x x
x x
→ →

− + + − +
= =
− − + −
− +
=
+ +


. 
/ 
3

2
4 2
lim
2
x
x
x





( )
( )
( ) ( )
( )
2
3 3 3
3
2
2 2
3 3
2 2
2 2
3 3 3 3
2
2
3 3
( 4 2) 4 2 4 4
4 2

lim lim
2
( 2) 4 2 4 4
4 8 4( 2)
lim lim
( 2) 4 2 4 4 ( 2) 4 2 4 4
4 1
lim .
3
4 2 4 4
x x
x x
x
x x x
x
x
x x x
x x
x x x x x x
x x
→ →
→ →

 
− + +
 

 
=


 
− + +
 
 
− −
= =
   
− + + − + +
   
   
= =
 
+ +
 
 



0 

12!345"6%
2
1
Õu 1
( ) ¹i 1.
1
2 Õu 1
x
n x
f x t x

x
n x


≠ −

= = −
+


− = −


1*789:7;)<=;>7'"
2
1 1 1 1
1 ( 1)( 1)
lim ( ) lim lim lim( 1) 2 ( 1)
1 1
x x x x
x x x
f x x f
x x
→− →− →− →−
− − +
= = = − = − = −
+ +
*+,"6%!34:7;)



? 

@6AB6,C"6%!34:7;
3 4 1
Õu 1
( ) .
1
Õu 1
x
n x
f x
x
m n x

+ −
≠ −

=

+

= −



1 1 1
1
3 4 1 3 4 1
lim ( ) lim lim
1

( 1)( 3 4 1)
3 3
lim
2
3 4 1
x x x
x
x x
f x
x
x x
x
→− →− →−
→−
+ − + −
= =
+
+ + +
= =
+ +
<=;>76)DE ,C"6%!34:7;F'"GF67H)



 

/96$IJA@#6KL6KF+M=;
N>
5 3
2 5 1 0.x x− − =


O<=:>7
5 3
2 5 1x x− −

<=;>7<=>7;
P+,<=;>)<=>Q=>
<=:>!34A383!34A3R;NS=>
T=>'"=>$IJA@<=:>7#6KL6A3F+M
=;N>9!"KF+M=;N>)



 
 ,+"65"6%
(2 1)(4 3)y x x= + −
)


' (2 1)'(4 3) (2 1)(4 3)'
1 2 8 1
(4 3) (2 1) .
y x x x x
x
x x
x x x
= + − + + −

= − + + =



 
 ,+"65"6%
3 4
.
4 5
x
y
x

=
+


2
2 2
(3 4)'(4 5) (3 4)(4 5)'
'
(4 5)
3(4 5) (3 4)4 31
.
(4 5) (4 5)
x x x x
y
x
x x
x x
− + − − +
=
+

+ − −
= =
+ +


 
 ,+"65"6%
2
1 os
2
x
y c= +


'
2
2
2
2 2
1
' 1 os
2
2 1 os
2
1
.2 os (cos )'
2 2
2 1 os
2
1 s inx

.2 os ( sin ).( )' .
2 2 2
2 1 os 4 1 os
2 2
x
y c
x
c
x x
c
x
c
x x x
c
x x
c c
 
= + =
 ÷
 
+
+

= − =
+ +



 


/+,IU+=/>
3
( ) .y f x
x
= =
DV$IJA@V$ V5
=/>VV$ V,++',IUW 7;:)

D@V$ V5=/>++',IUW 7;:3L%
F7;)

*+,
2
0 0
2
0
3
1 3 3x x
x
− = − ⇔ = ⇔ = ±
F
0 0 0
3
3 × 3 µ ' 1
3
x th y v y= = = = −
$IJA@V$ VIJ9!"
2 3y x= − +
F
0 0 0

3
3 × 3 µ ' 1
3
x th y v y= − = − = = −
$IJA@V$ VIJ9!"
2 3.y x= − −


 
/
/+,IU+=/>
2
( ) 2 3.y f x x x= = − +
DV$IJA@V$
 V5=/>VV$ V,'(',IUW:X 7)

D@V$ V5=/>'(',IUW:X 73L%
F7
*+,
0 0
2 2 4 3x x− = ⇔ =
F
0 0
3 × 6x th y= =
$IJA@V$ V5=/>!" 7:;-)



- 
Y

/+9PL/*)
/96
AB CD AD CB+ = +
uuur uuur uuur uuur


V,'VA
AB CD AD DB CB BD+ = + + +
uuur uuur uuur uuuur uuur uuuur
= >AB CD AD CB DB BD+ = + + +
uuur uuur uuur uuur uuuur uuuur
AB CD AD CB+ = +
uuur uuur uuur uuur



. 
Y
/+@$Z)/*Z

=/*>, /*!"@
'()[\]^!_!I`!"A,C65Z'"Z*)

 /96
= >BC SAB⊥
/ /96]^

=Z/>

/96

= >BC SAB⊥
= >
BC AB
BC SAB
BC SA


⇒ ⊥




/
/96]^

=Z/>
= >
BD SA
BD SAC
BD AC


⇒ ⊥



=>
]^HH*=>
T=>'"=> A]^


=Z/>

0

Y
/+9PL/*'
= >AB BCD⊥
'"7N, /*!"6
,a)[\b!"A,C65/*)@6+c
HA
uuur
'"
BH
uuur

[+c
HA
uuur
'"
BH
uuur
b7

· ·


 


a

AHB AHB
a
= = ⇒ =
=
HA
uuur
N
BH
uuur
>70

d

7




?  Y /+9PL,a/*e)bf '(I 
A
B
C
D
B
D
H
2a
a
C
A

Z

/
*

]
^
g
h


)AB AD
uuur uuur
.
/
)AB CM
uuur uuuur
A+,]!"A,C6*)



 
) ) )+= ) >

 ) )+-
 
AB AD AB AD AB AD
a
a a a
=

= = =
uuur uuur uuur uuur uuur uuur


/
   
  
) = > ) )
   
) + ) )+- ) ) )
   

  
AB CM AB AM AC AB AM AB AC
a a a a a a
a a a
= − = −
= − = −
= − =
uuur uuuur uuur uuuur uuur uuur uuuur uuur uuur



 
Y
/+@!E$$IJ/*)YY/Y*Ye)i
,IUW
/'"*YNY'"*YN/Y'"**Y)

X*+Y/YHH/3i/'"*YY!"

iY/Y'"Y*Y'"e


)
X6Y*Y,a3i
*Y'"Y!"

-
X[i/Y'"**Y!"i/Y'"
Y
3
 
  A 

A C a
AA a
ϕ ϕ
= = = ⇒ =




 
Y
/+@$Z)/*, !"@'()/3Z'(
'6$=/*>)A3Z!# ,C6]'"A3Z/!# ,C6^++
SM SN
SA SC
=
)


 /96Ae6O3@$!"6'() 
/ /96
= >MN SBD⊥
)


*+Z'(', 3
SB AB SB BD SAB⊥ ⊥ ⇒V
'"
SBDV
'(
)
*+/*!"@'(3
NBA AD BC CD⊥ ⊥
j+,B
!,IU'(
NSA AD SC CD⊥ ⊥
 A
SADV
'('"
SCDV
'(/)



/
*+
= >SB ABCD SB AC⊥ ⇒ ⊥
'"

= >AC BD AC SBD⊥ ⇒ ⊥


C
D
B
A
M
A'
B'
C'
B
D
C
A
D'
N
M
O
D
B
C
A
S
6OFP+
HH = >
SM SN
MN AC MN SBD
SA SC
= ⇒ ⇒ ⊥


 
Y
/+@$Z)/*, !"@'(e)/3
Z'('6$=/*>)[iZ'"6$=/*>!"

-
)


1,BiZ*'"6$=/*>T,,KP"3
@$)

/ hk
BK SO

l!"+5/'"*96
= >BK SAC⊥


D@*!"@V5Z*A36O, 
3iZ*'", !"
¼

-SDB =

 - )  -SB BD a a= = =


 


+-

BD a
SD a= = =
     
- . .SA SB AB a a a SA a SC= + = + = ⇒ = =




/
*+
= >AC SBD⊥
j+96A33
AC BK

D@
BK SO

j+MV
= >BK SAC⇒ ⊥


 
Y
/+@$Z)/*, !"@'('"Z

=/*>)V
Z7

a
'"7)


/966O35@$!"6'() 
*
i,IUWZ/) 

D@
( )
SA ABCD⊥
 3 
SA AB⊥

SA AD⊥
 3    6  
 SAB SAD
!"6'()

( )
SA CD
CD SAD CD SD
CD AD


⇒ ⊥ ⇒ ⊥



36

SCD
!"6'()IJm6
SBC
!"6
'()



*

HHAB CD
3
·
( )
·
( )
·
 AB SC CD SC SCD= =
)
D@Z7
a
'"7/*73Z*7
a
)A+6'(
Z/*
Z*  
/ 7 7 7 
/* 
)DE 
·

( )
 -AB SC =
o



O
D
B
C
A
S
K
 
Y
/+@$,aZ)/*l!"65/*Z7
a

7)[\g!"A,C65/*)


/96/*⊥=Zlg>

*
%,+i6O$W=Z/*>'"=/*> 

/*⊥=Zlg>
Zg⊥/*=Zg!"A VFkT,G6Z/*>
D"lg⊥/*=lg!"A VFkT,G6l/*>
*+,/*⊥=Zl]>



*
=Z/*>∩=/*>7/*Zg⊥/*'"lg⊥/*3i=Z/*>'"
=/*>!"Zgl)
A+6'(Zl/Zl

7Z/

;l/

7

H
A+6'(Zlg
Zgl7Zllg7
¼


  . .-n
 
a a
SIO
= ⇒ =




 
Y

/+@$Z)/*, /*!"@iE6l)Z
=/*>  *  Z )⊥ = = =

 /966O3!"6'()

[\b!"A,C65*)/96lb
= >⊥ SAD
)
/
F+MTl,V=Z*>

Z

=/*>

Z

NZ

* 
!"@V5ZA3=/*>
]"/

3/

Z
b 6Z/'(
/]IJm6Z*/'(*






lb

*
lb

Z

lb

=Z*>


/
)h+MTl,V=Z*>!"lb 
lb7H7H


A
B
D
C
O
S
I
H
H
O

D
B
C
A
S

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×