Tải bản đầy đủ (.pdf) (11 trang)

Giáo trình kỹ thuật điều khiển 4 ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (352.04 KB, 11 trang )

34
và các biến vào của hệ thống. Hơn nữa, việc sử dụng sơ đồ khối cho phép chúng
ta hình dung được các khả năng sửa đổi sơ đồ khối bằng cách thêm các khối vào
sơ đồ đang có nhằm làm thay đổi và tăng hiệu suất của hệ thống.

G
1
G
2
G
3

G
4

H
1

H
2
/G
4

H
3

+

+
+
+



R
(
s
)

C
(
s
)
(a)

G
1
G
2

143
43
1 HGG
GG


H
2
/G
4

H
3


+

+

R
(
s
)

C
(
s
)
(b)
G
1

232143
432
1 HGGHGG
GGG
+−
H
3

+

R
(

s
)
C
(
s
)

(c)


34321232143
4321
1 HGGGGHGGHGG
GGGG
++−
R
(
s
)
C
(
s
)

(d)
Hình 2.16(a) − (d). Các bước rút gọn sơ đồ khối của hệ thống điều khiển phản
hồi nhiều vòng trong Hình 2.15

2.7. Mô hình lưu đồ tín hiệu
Các mô hình sơ đồ khối đủ để biểu diễn các mối quan hệ giữa các biến cần điều

khiển và các biến vào của hệ thống. Tuy nhiên, với các hệ thống tương đối phức
tạp, việc thực hiện thủ tục rút gọn sơ đồ khối khá là rắc rối và thường rất khó
hoàn thành trọn vẹn. Một lựa chọn khác cho việc xác định mối quan hệ giữ
a các
35
biến của hệ thống là phương pháp biểu diễn hệ thống bằng đồ thị, được phát triển
bởi Mason và được gọi là phương pháp lưu đồ tín hiệu. Điểm mạnh của phương
pháp này là ở công thức tính gia lượng (gain) của lưu đồ, cho phép xác định quan
hệ giữa các biến hệ thống mà không cần tới việc rút gọn hay biến đổi lưu đồ.
Vi
ệc chuyển đổi từ dạng biểu diễn sơ đồ khối sang dạng đồ thị khá đơn giản.
Lưu đồ tín hiệu (signal-flow graph) là một đồ thị có nhiều nút được nối với nhau
bởi các nhánh có hướng nhằm biểu diễn một tập hợp các quan hệ tuyến tính. Lưu
đồ tín hiệu đặc biệt hữu ích cho các hệ thống điều khiển phản hồi b
ởi vì mối quan
tâm chủ yếu của lý thuyết phản hồi là sự lưu chuyển và xử lý tín hiệu trong các
hệ thống. Phần tử cơ sở của một lưu đồ tín hiệu là một đoạn đơn hướng được gọi
là nhánh (branch), biểu thị sự phụ thuộc giữa một biến vào và một biến ra, tương
tự như một khối trong sơ
đồ khối. Các điểm vào và ra hay các điểm chuyển tiếp
được gọi là các nút (node). Một lưu đồ tương đương với sơ đồ khối trong Hình
2.12 được thể hiện trong Hình 2.17. Tất cả các nhánh xuất phát từ một nút sẽ
chuyển tín hiệu của nút đó tới nút ra của mỗi nhánh. Tín hiệu tại mỗi nút, trừ các
nút tín hiệu vào, là tổng của tín hiệu do tất cả các nhánh đi vào nút đ
ó mang tới.
Một đường dẫn (path) là một nhánh hay một chuỗi liên tiếp các nhánh theo đó có
thể đi từ một nút (tín hiệu) tới một nút (tín hiệu) khác. Một vòng (loop) là một
đường dẫn đóng kín xuất phát và kết thúc tại cùng một nút và trên đường dẫn đó
không có nút nào được đi qua hơn một lần.


R
1
(s)
R
2
(s)
C
1
(s)
C
2
(s)
G
11
(s)
G
22
(s)
G
21
(s)
G
12
(s)
Hình 2.17. Đồ thị dòng tín hiệu của một hệ thống liên kết

Lưu đồ chính là một phương pháp trực quan để biểu diễn các hệ phương trình
đại số, nhằm thể hiện sự phụ thuộc lẫn nhau của các biến. Để làm ví dụ, xem xét
hệ phương trình đại số sau đây:
a

11
x
1
+ a
12
x
2
+ r
1
= x
1
(2.73)
a
21
x
1
+ a
22
x
2
+ r
2
= x
2
(2.74)
ở đó r
1
, r
2
là các biến vào và x

1
, x
2
là các biến ra. Lưu đồ biểu diễn hệ phương
trình trên được thể hiện trong Hình 2.18. Viết lại hệ phương trình dưới dạng:
(1
− a
11
)x
1
+ (−a
12
)x
2
= r
1
(2.75)
(
−a
21
)x
1
+ (1 − a
22
)x
2
= r
2
(2.76)
Nghiệm của hệ phương trình:

2
12
1
22
21122211
212122
1
1
)1)(1(
)1(
r
a
r
a
aaaa
rara
x

+


=
−−−
+

=
(2.77)
36
2
11

1
21
21122211
121211
2
1
)1)(1(
)1(
r
a
r
a
aaaa
rara
x


+

=
−−−
+

=
(2.78)
ở đó
∆ là định thức của hệ phương trình (2.75)(2.76) và được tính như sau:

∆ = (1 − a
11

) (1 − a
22
) − a
12
a
21
= 1 − (a
11
+ a
22
+ a
12
a
21
) + a
11
a
22
(2.79)
Trong lưu đồ ở Hình 2.18 có tất cả ba vòng: a
11
, a
22
và a
12
a
21
, ở đó a
11
và a

22

được gọi là các vòng không cắt nhau bởi chúng không có nút nào chung.

r
1

r
2

1
1
x
1

x
2

a
11

a
22

a
21
a
12

Hình 2.18. Lưu đồ của một hệ phương trình đại số


Trường hợp tổng quát, sự phụ thuộc tuyến tính T
ij
giữa một biến độc lập r
i

(thường được gọi là biến vào) với một biến phụ thuộc x
j
được xác định bằng quy
tắc vòng của Mason:



=

k
ijij
ij
kk
P
T (2.80)
ở đó:
− P
ij
k
: gia lượng của đường dẫn thứ k từ nút r
i
đến nút x
j
trong lưu đồ, được

tính bằng tích các gia lượng (hay hàm chuyển) của tất cả các nhánh của
đường dẫn đó
− ∆: định thức của lưu đồ
− ∆
ij
k
: định thức của lưu đồ sau khi đã loại trừ các vòng cắt với đường dẫn
thứ k từ nút r
i
đến nút x
j

Phần tổng trong công thức (2.80) bao gồm tất cả các đường dẫn có thể từ nút r
i

đến nút x
j
. Giả sử lưu đồ có tất cả N vòng với gia lượng của các vòng là L
1
, L
2
, ,
L
N
, định thức của lưu đồ khi đó sẽ được tính như sau:


=
−=∆
N

i
i
L
1
1

+
Σ
{L
i
L
j
| 2 vòng i và j không cắt nhau}


Σ
{L
i
L
j
L
k
| 3 vòng i, j và k đôi một không cắt nhau}
+
37
 Ví dụ 2.5
Quay lại ví dụ 2.4, lưu đồ tín hiệu của hệ thống điều khiển phản hồi nhiều vòng
trong ví dụ đó được thể hiện trong Hình 2.19. Lưu đồ có ba vòng với gia lượng
của các vòng lần lượt là L
1

= −G
2
G
3
H
2
, L
2
= G
3
G
4
H
1
và L
3
= −G
1
G
2
G
3
G
4
H
3
.
Từng đôi một trong cả ba vòng này đều cắt nhau. Vì vậy, chúng ta tính được định
thức của lưu đồ như sau:


∆ = 1 − (−G
2
G
3
H
2
+ G
3
G
4
H
1
−G
1
G
2
G
3
G
4
H
3
)
= 1 + G
2
G
3
H
2
− G

3
G
4
H
1
+ G
1
G
2
G
3
G
4
H
3
(2.81)
R(s) C(s)
1 G
1
G
2
G
3
G
4

H
1



H
2


H
3

1 1
Hình 2.19. Lưu đồ tín hiệu của một hệ thống điều khiển phản hồi nhiều vòng

Đường dẫn duy nhất từ R(s) đến C(s) trong lưu đồ có gia lượng là:
P
1
= G
1
G
2
G
3
G
4
(2.82)
Do đường dẫn này cắt cả ba vòng của lưu đồ, khi loại bỏ ba vòng này lưu đồ sẽ
không còn vòng nào, vì vậy

1
= 1. Từ đó, chúng ta tính được hàm chuyển của hệ
thống:

34321143232

4321
11
1)(
)(
)(
HGGGGHGGHGG
GGGG
P
sR
sC
sT
+−+
=


==
(2.83)
Lưu đồ tín hiệu và công thức tính gia lượng của lưu đồ có thể sử dụng được
trong việc phân tích các hệ thống điều khiển phản hồi, máy tính tương tự, các
mạch khuyếch đại, các hệ thống thống kê, các hệ thống cơ học, và nhiều ứng
dụng khác nữa.
Bài tập
Bài 2.1. Một nhiệt điện trở có đáp ứng với nhiệt độ là R = R
0
e
−0,1T
, ở đó giá trị
điện trở R
0
= 10.000Ω, R là điện trở (Ω) và T là nhiệt độ (

o
C). Xác định mô hình
tuyến tính của nhiệt điện trở tại T = 20
o
C cho một khoảng thay đổi nhỏ của nhiệt
độ.
Bài 2.2
. Một máy in laser có vị trí của đầu laser được điều khiển bởi một tín hiệu
vào r(t). Biến đổi Laplace của phương trình biểu diễn quan hệ giữa r(t) và vị trí
y(t) của đầu laser là:
)(
50060
)100(500
)(
2
sR
ss
s
sY
++
+
=
(a)
Xác định đáp ứng y(t) của hệ thống khi tín hiệu vào r(t) là hàm nhảy bậc
đơn vị (r(t) = 0 khi t < 0 và r(t) = 1 khi t ≥ 0).
38
(b) Xác định giá trị cuối cùng (trạng thái thường trực) của y(t) trong trường
hợp (a).
Bài 2.3
. Một mạch lọc có tác dụng lọc các thành phần có tần số cao (hình vẽ

dưới). Xác định hàm chuyển V
2
(s)/V
1
(s).
v
1
(t) v
2
(t)
C
1

L
C
2


Bài 2.4
. Một thiết bị phi tuyến được biểu diễn bằng phương trình y = f(x) = x .
Điểm làm việc của thiết bị là tại x
0
= 0,5. Xác định xấp xỉ tuyến tính của thiết bị.
Bài 2.5
. Thiết lập các phương trình vi phân mô tả hoạt động của mạch điện trong
hình vẽ dưới.
~
v(t)
R
1


R
2

C
1

L
1

L
2

C
2

i
1
(t) i
2
(t)

Bài 2.6
. Một hệ thống chống rung được thể hiện trong hình vẽ dưới. Khối lượng
của vật M
2
và hệ số đàn hồi của lò xo K
2
được chọn sao cho vật có khối lượng M
1


sẽ không di chuyển nếu lực F(t) =
α
sin
ω
o
t.
(a)
Thiết lập các phương trình vi phân mô tả hệ thống.
(b)
Vẽ mạch điện đồng dạng với hệ thống này, dựa trên cặp đồng dạng lực-
dòng điện.
39
F(t) K
1

K
2

M
1

M
2

f
y
1
(t)
y

2
(t)

Bài 2.7
. Một bộ khuyếch đại phi tuyến có đặc tính được mô tả như sau:



<−

=
0 khi
0 khi
)(
vào
2
vào
vào
2
vào
ra
vv
vv
tv

Bộ khuyếch đại hoạt động trong khoảng ±0,5V quanh điểm làm việc. Mô tả bộ
khuyếch đại bằng một xấp xỉ tuyến tính khi điểm làm việc là v
vào
= 0V và khi
điểm làm việc là v

vào
= 1V.
Bài 2.8
. Sử dụng biến đổi Laplace để tính I
2
(s) trong bài 2.5, với giả thiết v(t) = 0,
i
1
(0) = 0, i
2
(0) = 0, hiệu điện thế ban đầu trên tụ C
1
bằng không và hiệu điện thế
ban đầu trên tụ C
2
bằng 10V.
Bài 2.9
. Xác định hàm chuyển của mạch vi phân trong hình vẽ dưới
v
1
(t) v
2
(t)
C
R
1

R
2



Bài 2.10
. Cường độ ánh sáng của một bóng đèn được giữ không đổi nhờ sử dụng
một vòng phản hồi điều khiển bằng transitor quang. Lưu đồ của hệ thống được
thể hiện trong hình vẽ dưới, ở đó I(s) là cường độ ánh sáng của đèn và R(s) là
mức ánh sáng mong muốn. Tính hàm chuyển I(s)/R(s).
40

R(s) I(s)
1 G
1
(s) G
2
(s)

H(s)

Bài 2.11
. Một hệ thống phanh chống bó cứng cho bốn bánh của ô tô sử dụng
phản hồi điện tử để tự động điều khiển lực phanh trên mỗi bánh. Lưu đồ đơn giản
của hệ thống được biểu diễn trong hình vẽ dưới, ở đó F
f
(s) và F
r
(s) là lực phanh
trên các bánh trước và sau, còn R(s) là đáp ứng mong muốn của xe trên đường
trơn trượt. Xác định F
f
(s)/R(s).


R(s)
F
f
(s)
F
r
(s)
1 G
1
(s)
G
2
(s)
G
3
(s)

H
1
(s)

H
2
(s)

Bài 2.12
. Lưu đồ tín hiệu của một hệ thống lái tàu thủy được thể hiện trong hình
vẽ dưới, ở đó C(s) là hướng đi thực sự của tàu, R(s) là hướng đi mong muốn và
A(s) là góc quay của bánh lái. Xác định hàm chuyển C(s)/R(s).


R(s) C(s)
A(s)
1 K 1 G
1
(s) G
2
(s)

H
2
(s)

H
3
(s)

H
1
(s)

1
1/s

Bài 2.13
. Một hệ thống giảm xóc chủ động cho xe chạy trên những địa hình phức
tạp sử dụng một cảm biến có khả năng nhận biết được điều kiện đường xá ở phía
trước. Hệ thống có khả năng chủ động thích ứng để xe không bị nảy khi xe đi vào
những chỗ gồ ghề. Sơ đồ khối của hệ thống đượ
c biểu diễn trong hình vẽ dưới.
Xác định K

1
phù hợp để xe không bị xóc (độ nảy mong muốn R(s) = 0).
41

K
1

K
2
G(s)
Độ nảy
mong
muốn
R(s)
Độ nảy
thực sự
C(s)
Động lực
của xe
Trở ngại trên đường
D(s)
Cảm nhận trở ngại
trên đường
+

− +
+

Bài 2.14
. Một mạch cầu T có hàm chuyển như sau:

22
2121
22
211
vào
ra
)2(1
21
)(
)(
sCRRCsRR
sCRRCsR
sV
sV
+++
++
=

Vẽ đồ thị các điểm cực và điểm không khi R
1
= 0,5; R
2
= 1 và C = 0,5.
Bài 2.15
. Amplidyne là một thiết bị khuyếch đại công suất có hệ số khuyếch đại
cực lớn (hình vẽ dưới), có hàm chuyển là:
)1)(1(
)(
)(
)(

++
=
qc
qc
c
d
ss
RRK
sV
sV
ττ

ở đó, K là một hằng số,
τ
c
= L
c
/L
c

τ
q
= L
q
/L
q
.
v
c
L

c

R
c

i
c

i
q

R
q

L
q

i
d

L
d

v
d

R
d



Một hệ thống điều khiển động cơ sử dụng amplidyne được thể hiện trong hình vẽ
dưới. Xác định hàm chuyển
Θ
(s)/V
c
(s) và vẽ sơ đồ khối của hệ thống.
42
v
c
L
c

R
c

i
c

i
q

R
q

L
q

i
d


L
d

i
f
= I
R
d
R
a

L
a

J, f
θ


Bài 2.16
. Một động cơ một chiều điều khiển bởi phần trường (i
a
= I không đổi)
được biểu diễn trong hình vẽ dưới. Chuyển động của trục động cơ được truyền
tới trục của tải trọng bằng cơ cấu khớp bánh răng có hệ số truyền là n = N
1
/N
2
.
Mômen quán tính và hệ số ma sát của trục động cơ là J
m

và f
m
. Mômen quán tính
và hệ số ma sát của tải trọng là là J
L
và f
L
. Tính hàm chuyển của hệ thống
θ
L
(s)/V
f
(s).

i
f

i
a

v
a

R
a
L
a

Tải trọng
v

f

R
f

L
f

ω
L
,
θ
L

J
L
, f
L

J
m
, f
m

N
1

N
2



Bài 2.17
. Xem xét một hệ thống bao gồm một động cơ một chiều điều khiển bởi
phần trường và tải trọng. Thời gian để tốc độ quay của tải trọng đạt được 1rad/s
là 0,5s khi đưa một hiệu điện thế đầu vào không đổi là 100V. Tốc độ của tải
trọng khi hệ thống đạt tới trạng thái thường trực là 2rad/s. Xác định hàm chuyển
c
ủa hệ thống
θ
(s)/V
f
(s), với giả thiết hệ số thời gian của phần trường của động cơ
có thể bỏ qua được.
Bài 2.18
. Một hệ phương trình đại số được biểu diễn dưới dạng ma trận như sau:
43






















=










3
2
1
3
2
1
1
4
0
0
1
1

2
0
3
x
x
x
x
x
x

Vẽ lưu đồ tín hiệu của hệ phương trình và tính định thức của hệ thống bằng quy
tắc vòng của Mason.
Bài 2.19
. Thiết lập lưu đồ tín hiệu cho hệ phương trình sau, ở đó x
1
, x
2
là các biến
phụ thuộc và hai giá trị 8 và 13 là các giá trị vào:
x
1
+ 2 x
2
= 8
2x
1
+ 3x
2
= 13
Tính giá trị của các biến phụ thuộc bằng quy tắc vòng của Mason.

Bài 2.20
. Một mạch điện được mô tả bằng hệ phương trình sau đây:
i
1
= (v
1
− v
a
)L
1

i
a
= (v
a
− v
2
)L
2

v
a
= (i
1
− i
a
)C
1

v

2
= i
a
C
2

ở đó v
1
là biến vào, v
2
là biến ra, còn i
1
, i
a
và v
a
là các biến phụ thuộc khác. Thiết
lập lưu đồ của hệ và xác định hàm chuyển V
2
(s)/V
1
(s).
Bài 2.21
. Lưu đồ tín hiệu của một mạch khuyếch đại thuật toán không đảo được
biểu diễn trong hình vẽ dưới, ở đó k = (R
1
+ R
f
)/R
1

. Tính hệ số khuyếch đại của
mạch v
ra
/v
vào
.

e
vào
v
vào
v
ra

1 A

k

Bài 2.22
. Lưu đồ tín hiệu của một hệ thống điều khiển với hai biến vào và hai
biến ra được thể hiện trên hình vẽ dưới. Xác định C
1
(s)/R
1
(s) và C
2
(s)/R
1
(s) khi
R

2
(s) bằng không.
R
1

R
2

C
1

C
2

1
1
G
1
G
2

G
3
G
4

G
5
G
6



H
1

H
2


44
Chương III

CÁC MÔ HÌNH BIẾN TRẠNG THÁI


Tóm tắt nội dung
Chúng ta đã dùng biến đổi Laplace để mô tả hoạt động của các hệ thống phản
hồi. Tuy nhiên, cần phải nhớ rằng đáp ứng của hệ thống theo thời gian mới thực
sự là vấn đề được quan tâm chủ yếu. Chương này sẽ đề cập tới một phương pháp
phân tích hệ thống ngay trong miền thời gian.
Các phương trình vi phân mô tả một hệ thống điều khi
ển sẽ được xem xét và
một dạng phương trình thích hợp được chọn. Một tập các biến trạng thái được sử
dụng để biến đổi các phương trình vi phân thành hệ phương trình vi phân bậc
nhất. Các phương pháp tính toán ma trận sẽ được sử dụng để xác định đáp ứng
theo thời gian của một hệ thống điều khiển. Những phương pháp tính toán ma
trận trong miền thời gian cho phép chúng ta dễ
dàng xây dựng giải thuật để giải
các bài toán này bằng máy tính. Một ưu điểm của mô hình biến trạng thái là nó
cho phép mô hình hóa cả các hệ thống phi tuyến, là điều mà các mô hình dựa trên

biến đổi Laplace không thể làm được. Mặc dù việc phân tích các hệ thống phi
tuyến không nằm trong phạm vi của cuốn sách này, chúng ta vẫn sẽ đưa ra một
phương pháp đơn giản cho phép tính toán đáp ứng theo thời gian của một hệ
thống phi tuy
ến nhằm minh họa cho sự ưu việt nói trên của mô hình biến trạng
thái, đó là phương pháp xấp xỉ theo thời gian rời rạc.
3.1. Giới thiệu
Trong chương trước, chúng ta đã nghiên cứu việc sử dụng biến đổi Laplace để
biến các phương trình vi phân mô tả hệ thống thành phương trình đại số của một
biến phức s. Chúng ta có thể dễ dàng giải các phương trình đại số này để thu
được hàm chuyển biểu diễn mối quan hệ giữa biến vào và biến ra của hệ thống.
Các phương pháp trong miền tần số đã và vẫn sẽ
là những công cụ vô cùng quan
trọng trong kỹ thuật điều khiển. Tuy nhiên, những hạn chế của các phương pháp
trong miền tần số đòi hỏi chúng ta phải xem xét các phương pháp giải phương
trình vi phân biểu diễn hệ thống trong miền thời gian.
Như chúng ta đã biết, các kỹ thuật trong miền tần số thường chỉ áp dụng cho
các hệ thống tuyến tính có tham số bất biến theo thời gian. Thêm nữa, khả
năng
áp dụng các kỹ thuật này cho các hệ thống đa biến cũng rất hạn chế bởi vì hàm
chuyển chỉ biểu thị mối quan hệ của một cặp biến vào-ra. Ngược lại, các kỹ thuật
trong miền thời gian có thể sử dụng được cho các hệ thống phi tuyến, các hệ
thống biến đổi hay các hệ thống đa biến. Ví dụ về một hệ th
ống biến đổi là một
quả tên lửa, với trọng lượng là một tham số thay đổi do nhiêu liệu bị đốt cháy
trong khi bay. Ví dụ về các hệ thống phi tuyến hay đa biến cũng rất nhiều, vì
phần lớn các hệ thống điều khiển trong thực tế là các hệ thống phi tuyến và đa
biến.
Miền thời gian bao gồm cả đáp ứng và mô tả của một h
ệ thống theo đại lượng

×