SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10
TP ĐÀ NẲNG Khóa ngày 23 tháng 06 năm 2009
MÔN: TOÁN
( Thời gian 120 phút, không kể thời gian giao đề )
Bài 1. ( 3 điểm )
Cho biểu thức
a 1 1 2
K :
a 1
a 1 a a a 1
= − +
÷
÷
−
− − +
a) Rút gọn biểu thức K.
b) Tính giá trị của K khi a = 3 + 2
2
c) Tìm các giá trị của a sao cho K < 0.
Bài 2. ( 2 điểm ) Cho hệ phương trình:
mx y 1
x y
334
2 3
− =
− =
a) Giải hệ phương trình khi cho m = 1.
b) Tìm giá trị của m để phương trình vô nghiệm.
Bài 3. ( 3,5 điểm )
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI =
2
3
AO.
Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C
không trùng với M, N và B. Nối AC cắt MN tại E.
a) Chứng minh tứ giác IECB nội tiếp được trong một đường tròn.
b) Chứng minh ∆AME ∆ACM và AM
2
= AE.AC.
c) Chứng minh AE.AC - AI.IB = AI
2
.
d) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp
tam giác CME là nhỏ nhất.
Bài 4. ( 1,5 điểm )
Người ta rót đầy nước vào một chiếc ly hình nón thì được 8 cm
3
. Sau đó người ta rót nước
từ ly ra để chiều cao mực nước chỉ còn lại một nửa. Hãy tính thể tích lượng nước còn lại
trong ly.
1
ĐÁP ÁN
ĐỀ SỐ 1.
Bài 1.
a)
Điều kiện a > 0 và a ≠ 1 (0,25đ)
a 1 1 2
K :
a 1 a( a 1) a 1 ( a 1)( a 1)
= − +
÷
÷
− − + + −
a 1 a 1
:
a( a 1) ( a 1)( a 1)
− +
=
− + −
a 1 a 1
.( a 1)
a( a 1) a
− −
= − =
−
b)
a = 3 + 2
2
= (1 +
2
)
2
a 1 2⇒ = +
3 2 2 1 2(1 2)
K 2
1 2 1 2
+ − +
= = =
+ +
c)
a 1 0
a 1
K 0 0
a 0
a
− <
−
< ⇔ < ⇔
>
a 1
0 a 1
a 0
<
⇔ ⇔ < <
>
Bài 2.
a)
Khi m = 1 ta có hệ phương trình:
x y 1
x y
334
2 3
− =
− =
x y 1
3x 2y 2004
− =
⇔
− =
2x 2y 2
3x 2y 2004
− =
⇔
− =
x 2002
y 2001
=
⇔
=
b)
mx y 1
y mx 1
x y
3
334
y x 1002
2 3
2
− =
= −
⇔
− =
= −
2
y mx 1
y mx 1
3
3
m x 1001 (*)
mx 1 x 1002
2
2
=
=
=
=
ữ
H phng trỡnh vụ nghim
(*) vụ nghim
3 3
m 0 m
2 2
= =
Bi 3.
a)
* Hỡnh v ỳng
*
ã
0
EIB 90=
(gi thit)
*
0
ECB 90 =
(gúc ni tip chn na ng trũn)
* Kt lun: T giỏc IECB l t giỏc ni tip
b) (1 im) Ta cú:
* s
cungAM
= s
cungAN
*
AME ACM =
*GúcAchung,suyraAME ACM.
* Do ú:
AC AM
AM AE
=
AM
2
= AE.AC
c)
* MI l ng cao ca tam giỏc vuụng MAB nờn MI
2
= AI.IB
* Tr tng v ca h thc cõu b) vi h thc trờn
* Ta cú: AE.AC - AI.IB = AM
2
- MI
2
= AI
2
.
d)
* T cõu b) suy ra AM l tip tuyn ca ng trũn ngoi tip tam giỏc CME. Do ú tõm
O
1
ca ng trũn ngoi tip tam giỏc CME nm trờn BM. Ta thy khong cỏch NO
1
nh
nht khi v ch khi NO
1
BM.)
* Dng hỡnh chiu vuụng gúc ca N trờn BM ta c O
1
. im C l giao ca ng trũn
ó cho vi ng trũn tõm O
1
, bỏn kớnh O
1
M.
Bi 4. (2 im)
Phn nc cũn li to thnh hỡnh nún cú chiu cao bng mt na chiu cao ca hỡnh nún
do 8cm
3
nc ban u to thnh. Do ú phn nc cũn li cú th tớch bng
3
1 1
2 8
=
ữ
th
tớch nc ban u. Vy trong ly cũn li 1cm
3
nc.
Sở GD&ĐT Hà Nội Đề thi tuyển sinh lớp 10
Năm học: 2009 - 2010.
Môn: Toán.
3
A B
M
E
C
I
O
1
N
Ngày thi: 23 - 6 - 2009.
Thời gian làm bài: 120 phút.
Câu I(2,5đ): Cho biểu thức A =
1 1
4
2 2
x
x
x x
+ +
+
, với x 0 và x 4.
1/ Rút gọn biểu thức A.
2/ Tính giá trị của biểu thức A khi x = 25.
3/ Tìm giá trị của x để A = -1/3.
Câu II (2,5đ): Giải bài toán bằng cách lập phơng trình hoặc hệ phơng trình:
Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may
trong 5 ngày thì cả hai tổ may đợc 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may đợc
nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may đợc bao nhiêu chiếc áo?
Câu III (1,0đ):
Cho phơng trình (ẩn x): x
2
2(m+1)x + m
2
+2 = 0
1/ Giải phơng trình đã cho khi m = 1.
2/ Tìm giá trị của m để phơng trình đã cho có nghiệm phân biệt x
1
, x
2
thoả mãn hệ thức x
1
2
+ x
2
2
= 10.
Câu IV(3,5đ):
Cho đờng tròn (O;R) và điểm A nằm bên ngoài đờng tròn. Kẻ tiếp tuyến AB, AC với đ-
ờng tròn (B, C là các tiếp điểm).
1/ Chứng minh ABOC là tứ giác nội tiếp.
2/ Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R
2
.
3/ Trên cung nhỏ BC của đờng tròn (O;R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K
của đờng tròn (O;R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi
không đổi khi K chuyển động trên cung nhỏ BC.
4/ Đờng thẳng qua O và vuông góc với OA cắt các đờng thẳng AB, AC theo thứ tự tại các điểm
M, N. Chứng minh PM + QN MN.
Câu V(0,5đ):
Giải phơng trình:
2 2 3 2
1 1 1
(2 2 1)
4 4 2
x x x x x x + + + = + + +
Đáp án
Câu I:
4
C©u II:
C©u III:
5
C©u V:
6
Së GD&§T Thõa Thiªn HuÕ
§Ò thi tuyÓn sinh líp 10
N¨m häc: 2009 - 2010.
M«n: To¸n.
7
Thời gian làm bài: 120 phút
Bài 1: (2,25đ)
Không sử dụng máy tính bỏ túi, hãy giải các phơng trình sau:
a) 5x
2
+ 13x - 6=0 b) 4x
4
- 7x
2
- 2 = 0 c)
3 4 17
5 2 11
x y
x y
=
+ =
Bài 2: (2,25đ)
a) Cho hàm số y = ax + b. Tìm a, b biết rằng đồ thị của hàm số đã cho song song với đ-
ờng thẳng y = -3x + 5 và đi qua điểm A thuộc Parabol (P): y =
1
2
x
2
có hoàng độ bằng -2.
b) Không cần giải, chứng tỏ rằng phơng trình (
3 1+
)x
2
- 2x -
3
= 0 có hai nghiệm phân
biệt và tính tổng các bình phơng hai nghiệm đó.
Bài 3: (1,5đ)
Hai máy ủi làm việc trong vòng 12 giờ thì san lấp đợc
1
10
khu đất. Nừu máy ủi thứ nhất làm một
mình trong 42 giờ rồi nghỉ và sau đó máy ủi thứ hai làm một mình trong 22 giờ thì cả hai máy
ủi san lấp đợc 25% khu đất đó. Hỏi nếu làm một mình thì mỗi máy ủi san lấp xong khu đất đã
cho trong bao lâu.
Bài 4: (2,75đ) Cho đờng tròn (O) đờng kính AB = 2R. Vẽ tiếp tuyến d với đờng tròn (O) tại B.
Gọi C và D là hai điểm tuỳ ý trên tiếp tuyến d sao cho B nằm giữa C và D. Các tia AC và AD cắt
(O) lần lợt tại E và F (E, F khác A).
1. Chứng minh: CB
2
= CA.CE
2. Chứng minh: tứ giác CEFD nội tiếp trong đờng tròn tâm (O
).
3. Chứng minh: các tích AC.AE và AD.AF cùng bằng một số không đổi. Tiếp tuyến của (O
) kẻ
từ A tiếp xúc với (O
) tại T. Khi C hoặc D di động trên d thì điểm T chạy trên đờng thẳng cố
định nào?
Bài 5: (1,25đ)
Một cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R = 15cm,
chiều cao h = 30cm. Một hình trụ đặc bằng kim loại có bán kính đáy r =
10cm đặt vừa khít trong hình nón có đầy nớc (xem hình bên). Ngời ta nhấc
nhẹ hình trụ ra khỏi phễu. Hãy tính thể tích và chiều cao của khối nớc còn lại
trong phễu.
Gợi ý đáp án
8
Së GD vµ §T
Thµnh phè Hå ChÝ Minh
K× thi tuyÓn sinh líp 10
Trung häc phæ th«ng
N¨m häc 2009-2010
9
Khoá ngày 24-6-2009
Môn thi: toán
Câu I: Giải các phơng trình và hệ phơng trình sau:
a) 8x
2
- 2x - 1 = 0
b)
2 3 3
5 6 12
x y
x y
+ =
=
c) x
4
- 2x
2
- 3 = 0
d) 3x
2
- 2
6
x + 2 = 0
Câu II:
a) Vẽ đồ thị (P) của hàm số y =
2
2
x
và đờng thẳng (d): y = x + 4 trên cùng một hệ trục toạ
độ.
b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính.
Câu III:
Thu gọn các biểu thức sau:
A =
4 8 15
3 5 1 5 5
+
+ +
B =
:
1
1 1
x y x y
x xy
xy
xy xy
+
+
ữ
ữ
ữ
+
Câu IV: Cho phơng trình x
2
- (5m - 1)x + 6m
2
- 2m = 0 (m là tham số)
a) Chứng minh phơng trình luôn có nghiệm với mọi m.
b) Gọi x
1
, x
2
là nghiệm của phơng trình. Tìm m để x
1
2
+ x
2
2
=1.
Câu V: Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đờng tròn (O) có tâm O, bán kính
R. Gọi H là giao điểm của ba đờng cao AD, BE, CF của tam giác ABC. Gọi S là diện tích tam
giác ABC.
a) Chúng minh rằng AEHF và AEDB là các tứ giác nội tiếp đờng tròn.
b) Vẽ đờng kính AK của đờng tròn (O). Chứng minh tam giác ABD và tam giác AKC
đồng dạng với nhau. Suy ra AB.AC = 2R.AD và S =
. .
4
AB BC CA
R
.
c) Gọi M là trung điểm của BC. Chứng minh EFDM là tứ giác nội tiếp đờng tròn.
d) Chứngminh rằng OC vuông góc với DE và (DE + EF + FD).R = 2 S.
Gợi ý đáp án
10
11
12
13
14
Sở GD&ĐT Cần Thơ Đề thi tuyển sinh lớp 10
Năm học: 2009 - 2010.
Môn: Toán.
Thời gian làm bài: 120 phút
Câu I: (1,5đ) Cho biểu thức A =
1 1
1 1 1
x x x
x x x x x
+
1/ Rút gọn biểu thức A.
2/ Tìm giá trị của x để A > 0.
Câu II: (2,0đ) Giải bất phơng trình và các phơng trình sau:
1. 6 - 3x -9 2.
2
3
x +1 = x - 5
3. 36x
4
- 97x
2
+ 36 = 0 4.
2
2 3 2
3
2 1
x x
x
=
+
Câu III: (1,0đ) Tìm hai số a, b sao cho 7a + 4b = -4 và đờng thẳng ax + by = -1 đi qua điểm
A(-2;-1).
Câu IV: (1,5đ) Trong mặt phẳng toạ độ Oxy cho hàm số y = ax
2
có đồ thị (P).
1. Tìm a, biết rằng (P) cắt đờng thẳng (d) có phơng trình y = -x -
3
2
tại điểm A có hoành
độ bằng 3. Vẽ đồ thị (P) ứng với a vừa tìm đợc.
2. Tìm toạ độ giao điểm thứ hai B (B khác A) của (P) và (d).
Câu V: (4,0đ) Cho tam giác ABC vuông ở A, có AB = 14, BC = 50. Đờng phân giác của góc
ABC và đờng trung trực của cạnh AC cắt nhau tại E.
1. Chứng minh tứ giác ABCE nội tiếp đợc trong một đờng tròn. Xác định tâm O của đờng
tròn này.
2. Tính BE.
3. Vẽ đờng kính EF của đờng tròn tâm (O). AE và BF cắt nhau tại P. Chứng minh các đ-
ờng thẳng BE, PO, AF đồng quy.
4. Tính diện tích phần hình tròn tâm (O) nằm ngoài ngũ giác ABFCE.
15
Gîi ý §¸p ¸n:
16
Së GD - §T K× thi tun sinh líp 10 n¨m häc 2009-2010
Kh¸nh hoµ m«n: to¸n
Ngµy thi : 19/6/2009
Thêi gian lµm bµi: 120 phót (kh«ng kĨ thêi gian giao ®Ị)
Bµi 1: (2,0®) (Kh«ng dïng m¸y tÝnh cÇm tay)
a. Cho biÕt A = 5 +
15
vµ B = 5 -
15
h·y so s¸nh tỉng A + B vµ tÝch A.B.
b. Gi¶i hƯ ph¬ng tr×nh
2 1
3 2 12
x y
x y
+ =
− =
Bài 2: (2,50 điểm)
Cho Parabol (P) : y = x
2
và đường thẳng (d): y = mx – 2 (m là tham số, m ≠ 0 )
a. Vẽ đồ thò (P) trên mặt phẳng Oxy.
b. Khi m = 3, tìm tọa độ giao điểm của (p) và (d).
c. Gọi A(x
A
; y
A
), B(x
B
; y
B
) là hai giao điểm phân biệt của (P) và (d). tìm các giá trò của
m sao cho y
A
+ y
B
= 2(x
A
+ x
B
) – 1
Bài 3: (1,50 điểm)
Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6(m) và bình phương độ dài đường
chéo gấp 5 lần chu vi. Xác đònh chiều dài và chiều rộng mảnh đất đó.
Bài 4: (4,00 điểm)
Cho đường tròn (O; R). Từ một điểm M nằm ngoài (O; R) vẽ hai tiếp tuyến MA và MB (A,
B là hai tiếp điểm). Lấy điểm C bất kì trên cung nhỏ AB (Ckhác với A và B). Gọi D, E, F
lần lượt là hình chiếu vuông góc của C trên AB, AM, BM.
a. Chứng minh AECD là một tứ giác nội tiếp.
b. Chứng minh:
·
·
CDE CBA=
c. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh
IK//AB.
d. Xác đònh vò trí điểm C trên cung nhỏ AB để (AC
2
+ CB
2
) nhỏ nhất. Tính giá trò nhỏ
nhất đó khi OM = 2R.
Hết
17
HƯỚNG DẪN GIẢI
Bài 1: (2,00 điểm) (Không dùng máy tính cầm tay)
a. Cho biết
5 15 và B = 5 15 hãy so sánh tổng A+B và tích A.BA = + −
( ) ( )
( ) ( ) ( )
2
2
Ta có : A+B= 5 15 5 15 10
A.B = 5 15 . 5 15 5 15 25 15 10
A+B = A.BVậy
+ + − =
+ − = − = − =
b. Giải hệ phương trình:
2 1
3 2 12
x y
x y
+ =
− =
( )
1 2
2 1 1 2
3 2 1 2 12
3 2 12 3 2 4 12
1 2 1 2 1 4 3
7 2 12 7 14 2 2
y x
x y y x
x x
x y x x
y x y x y y
x x x x
= −
+ = = −
⇔ ⇔
− − =
− = − + =
= − = − = − = −
⇔ ⇔ ⇔ ⇔
− = = = =
Bài 2: (2,50 điểm)
Cho Parabol (P) : y = x
2
và đường thẳng (d): y = mx – 2 (m là tham số, m ≠ 0 )
a. Vẽ đồ thò (P) trên mặt phẳng Oxy.
TXĐ: R
BGT:
x -2 -1 0 1 2
y = x
2
4 1 0 1 4
Điểm đặc biệt:
Vì : a = 1 > 0 nên đồ thò có bề lõm quay lên trên.
Nhận trục Oy làm trục đối xứng. Điểm thấp nhất O(0;0)
ĐỒ THỊ:
b. Khi m = 3, tìm tọa độ giao điểm của (p) và (d).
Khi m = 3 thì (d) : y = 3x – 2
Phương trình tìm hoành độ giao điểm:
x
2
= 3x – 2
x
2
- 3x + 2 = 0
(a+b+c=0)
=>x
1
= 1 ; y
1
= 1 và x
2
= 2; y
2
= 4
Vậy khi m = 3 thì d cắt P tại hai điểm
(1; 1) và (2; 4).
c. Gọi A(x
A
; y
A
), B(x
B
; y
B
) là hai giao
điểm phân biệt của (P) và (d). tìm các
giá trò của m sao cho
y
A
+ y
B
= 2(x
A
+ x
B
) – 1(*)
18
1-1-2 2
4
1
y=x
2
0 x
y
Vì A(x
A
; y
A
), B(x
B
; y
B
) là giao điểm
của (d) và (P) nên:
( )
A A
B B
A B A B
y = mx 2
y = mx 2
y y =m x x 4
−
−
+ + −
( ) ( )
( ) ( )
( )
( ) ( )
( )
A B A B
A B A B
A B
A B A B
A B
Thay vào (*) ta có:
m x x 4 2 x x 1
m x x 2 x x 3
2 x x
3
m
x x x x
3
m 2
x x
+ − = + −
⇔ + = + +
+
⇔ = +
+ +
⇔ = +
+
Bài 3: (1,50 điểm)
( )
[ ]
x(m) là chiều dài mảnh đất hình chữ nhật.
=> x-6 (m) là chiều rộng mảnh đất hình chữ nhật(ĐK: x-6>0 => x> 6)
chu vi mảnh đất là 2. x+ x-6 = 2. 2x-6 4 12
; bình
Gọi
x
Theo đònh lí Pitago
= −
( )
( )
2
2 2 2 2
2
2
phương độ dài đường chéo sẽ là:
x x-6 x x 36 12 2x 12 36
:2x 12 36 5. 4 12
2x 12 36 20 60
x x
Ta có phương trình x x
x x
+ = + + − = − +
− + = −
⇔ − + = −
( )
2
2
1 2
2x 32 96 0
x 16 48 0
' 64 48 16
' 16 4 0
8 4 8 4
nghiệm: x 12 và x 4 6
1 1
chiều dài mảnh đất là 12(m) và chiều rộng mảnh đất là 6(m)
x
x
Phương trình co ùhai loại
Vậy
⇔ − + =
⇔ − + =
∆ = − =
⇒ ∆ = = 〉
+ −
= = = = 〈
Bài 4: (4,00 điểm)
GT
đt:(O; R),tt:MA,MB;C
»
AB∈
; ;CD AB CE AM CF BM⊥ ⊥ ⊥
KL
a. Chứng minh AECD là một tứ giác
nội tiếp.
b. Chứng minh:
·
·
CDE CBA=
c. IK//AB
19
BÀI LÀM:
a. Chứng minh AECD là một tứ giác nội tiếp.
Xét tứ giác AECD ta có :
- Hai góc đối
·
·
90 ( ; )AEC ADC CD AB CE AM= = ⊥ ⊥
d
Nên tổng của chúng bù nhau.
Do đó tứ giác AECD nội tiếp đường tròn
b. Chứng minh:
·
·
CDE CBA=
Tứ giác AECD nội tiếp đường tròn nên
·
·
( )CDE CAE cùngchắncungCE=
Điểm C thuộc cung nhỏ AB nên:
·
·
( )CAE CBA cùngchắncungCA=
Suy ra :
·
·
CDE CBA=
c. Chứng minh IK//AB
µ
µ
µ
µ
·
·
·
·
µ
¶
¶
¶
·
·
·
·
·
1 1 2 2
0
0
Xét DCE và BCA ta có:
D ( )
DCE KCI
E ( )
EAD IDK( ; )
EAD DCE 180 ( nội tiếp)
KCI IDK 180
B cmt
A cùngchắncungCD
mà A D A D FBC
tứ giác AECD
=
⇒ =
=
= = = =
+ =
⇒ + =
V V
Suy ra tứ giác ICKD nội tiếp.
=>
·
·
»
( )
CKCIK CDK cùngchắn=
Mà
·
·
·
( )
CBFCAB CDK cùngchắn=
Suy ra
·
·
( )
vò trí đồng vòCIK CBA ở=
IK//AB (đpcm)
d. Xác đònh vò trí điểm C trên cung nhỏ AB
để (AC
2
+ CB
2
) nhỏ nhất. Tính giá trò nhỏ nhất đó khi OM = 2R.
Gọi N là trung điểm của AB.
Ta có:
AC
2
+ CB
2
= 2CD
2
+ AD
2
+ DB
2
=2(CN
2
– ND
2
) + (AN+ND)
2
+ (AN – ND)
2
= 2CN
2
– 2ND
2
+ AN
2
+ 2AN.ND + ND
2
+ AN
2
– 2AN.ND + ND
2
.
= 2CN
2
+ 2AN
2
= 2CN
2
+ AB
2
/2
AB
2
/2 ko đổi nên CA
2
+ CB
2
đạt GTNN khi CN đạt GTNN C là giao điểm của ON và cung
nhỏ AB.
=> C là điểm chính giữa của cung nhỏ AB.
Khi OM = 2R thì OC = R hay C là trung điểm của OM => CB = CA = MO/2 = R
Do đó: Min (CA
2
+ CB
2
)
= 2R
2
.
20
A
B
M
C
D
E
F
I
K
A
2
D
1
D
2
A
1
N
Sở GD&ĐT Hà Tĩnh
ĐỀ CHÍNH THỨC
Mã 04
ĐỀ TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2009-2010
Môn: Toán
Thời gian là bài:120 phút
Bàì 1:
1. Giải phương trình: x
2
+ 5x + 6 = 0
2. Trong hệ trục toạ độ Oxy, biết đường thẳng y = ax + 3 đi qua điểm M(-2;2). Tìm hệ số a
Bài 2:Cho biểu thức:
−
+
+
+
=
xxxx
x
x
xx
P
1
2
1
2
với x >0
1.Rút gọn biểu thức P
2.Tìm giá trị của x để P = 0
Bài 3: Một đoàn xe vận tải nhận chuyên chở 15 tấn hàng. Khi sắp khởi hành thì 1 xe phải điều
đi làm công việc khác, nên mỗi xe còn lại phải chở nhiều hơn 0,5 tấn hàng so với dự định. Hỏi
thực tế có bao nhiêu xe tham gia vận chuyển. (biết khối lượng hàng mỗi xe chở như nhau)
Bài 4: Cho đường tròn tâm O có các đường kính CD, IK (IK không trùng CD)
1. Chứng minh tứ giác CIDK là hình chữ nhật
2. Các tia DI, DK cắt tiếp tuyến tại C của đường tròn tâm O thứ tự ở G; H
a. Chứng minh 4 điểm G, H, I, K cùng thuộc một đường tròn.
b. Khi CD cố định, IK thay đổỉ, tìm vị trí của G và H khi diện tích tam giác DỊJ đạt giá trị
nhỏ nhất.
Bài 5: Các số
[ ]
4;1,, −∈cba
thoả mãn điều kiện
432 ≤++ cba
chứng minh bất đẳng thức:
3632
222
≤++ cba
Đẳng thức xảy ra khi nào?
…………… HẾT……………
gi¶i
21
Bài 1: a., Giải PT: x
2
+ 5x +6 = 0
x
1
= -2, x
2
= -3.
b. Vì đờng thẳng y = a.x +3 đi qua điểm M(-2;2) nên ta có:
2 = a.(-2) +3
a = 0,5
Bài 2:
ĐK: x> 0
a. P = (
xxx
x
x
xx
+
+
+
2
1
).(2-
x
1
)
=
x
x
x
xxx 12
.
1
+
+
=
)12( xx
.
b. P = 0
)12( xx
x = 0 , x =
4
1
Do x = 0 không thuộc ĐK XĐ nên loại.
Vậy P = 0
x =
4
1
.
Bài 3: Gọi số xe thực tế chở hàng là x xe ( x
N
*
)
Thì số xe dự định chở hàng là x +1 ( xe ).
Theo dự định mỗi xe phải chở số tấn là:
1
15
+x
(tấn)
Nhng thực tế mỗi xe phải chở số tấn là:
x
15
(tấn)
Theo bài ra ta có PT:
x
15
-
1
15
+x
= 0,5
Giải PT ta đợc: x
1
= -6 (loại)
x
2
= 5 (t/m)
Vậy thực tế có 5 xe tham gia vận chuyển hàng.
Bài 4.
1. Ta có CD là đờng kính, nên:
CKD =
CID = 90
0
(T/c góc nội tiếp)
Ta có IK là đờng kính, nên:
KCI =
KDI = 90
0
(T/c góc nội tiếp)
Vậy tứ giác CIDK là hình chữ nhật.
2. a. Vì tứ giác CIDK nội tiếp nên ta có:
ICD =
IKD (t/c góc nội tiếp)
Mặt khác ta có:
G =
ICD (cùng phụ với
GCI)
G =
IKD
Vậy tứ giác GIKH nội tiếp.
b. Ta có: DC
GH (t/c)
DC
2
= GC.CH mà CD là đờng kính ,nên độ dài CD không đổi.
GC. CH không đổi.
22
§Ó diÖn tÝch
∆
GDH ®¹t gi¸ trÞ nhá nhÊt khi GH ®¹t gi¸ trÞ nhá nhÊt. Mµ GH = GC + CH
nhá nhÊt khi GC = CH
Khi GC = CH ta suy ra : GC = CH = CD
Vµ IK
⊥
CD .
Bµi 5: Do -1
4,, ≤≤ cba
Nªn a +1
≥
0
a - 4
≤
0
Suy ra: (a+1)( a -4)
≤
0
⇒
a
2
≤
3.a +4
T¬ng tù ta cã b
2
≤
3b +4
⇒
2.b
2
≤
6 b + 8
3.c
2
≤
9c +12
Suy ra: a
2
+2.b
2
+3.c
2
≤
3.a +4+6 b + 8+9c +12
a
2
+2.b
2
+3.c
2
≤
36
(v× a +2b+3c
≤
4).
…………… HẾT……………
23
SỞ GIÁO DỤC &ĐÀO TẠO
TỈNH BÌNH ĐỊNH
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2009-2010
Môn thi: TOÁN ( Hệ số 1 – môn Toán chung)
Thời gian: 120 phút (không kể thời gian phát đề)
*****
Bài 1: (1,5 điểm)
Cho
2 1 1
1
1 1
x x x
P
x
x x x x
+ + +
= + −
−
− + +
a. Rút gọn P
b. Chứng minh P <1/3 với và x#1
Bài 2: (2,0 điểm)
Cho phương trình:
(1)
a. Chứng minh rằng phương trình (1) luôn luôn có 2 nghiệm phân biệt.
b. Gọi là 2 nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
c. Tìm hệ thức giữa và không phụ thuộc vào m.
Câu 3: (2,5 điểm)
Hai vòi nước cùng chảy vào 1 cái bể không có nước trong 6 giờ thì đầy bể. Nếu để riêng vòi
thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được
2/5 bể. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong bao lâu?
Bài 4: (3 điểm)
Cho tam giác ABC nội tiếp trong đường tròn (O), I là trung điểm của BC, M là 1 điểm trên
đoạn CI (M khác C và I). Đường thẳng AM cắt (O) tại D, tiếp tuyến của đường tròn ngoại tiếp
tam giác AIM tại M cắt BD tại P và cắt DC tại Q.
a. Chứng minh DM . AI = MP . IB
b. Tính tỉ số
Câu 5: (1,0 điểm)
Cho 3 số dương a, b, c thoả mãn điều kiện a+b+c=3. Chứng minh rằng:
24
HƯỚNG DẪN BÀI 4 ,5
a. Chứng minh DM . AI = MP . IB
Chứng minh hai tam giác MDP và ICA đồng dạng :
·
·
·
= =PMQ AMQ AIC
( Đối đỉnh + cùng chắn cung)
·
·
=MDP ICA
( cùng chắn cung AB )
Vậy hai tam giác đồng dạng trường hợp góc – góc
Suy ra
MD IC
MP IA
=
=> Tích chéo bằng nhau & thế IC =IB
b) Chứng minh hai tam giác MDQ và IBA đồng dạng :
·
·
DMQ AIB=
( cùng bù với hai góc bằng nhau ) ,
·
·
ABI MDC=
(cùng chắn cung AC)
=>
MD IB
MQ IA
=
đồng thời có
MD IC
MP IA
=
=> MP = MQ => tỉ số của chúng bằng 1
Bài 5 :
2 2 2
2 2 2
1 1 1
a a ab ab ab
a
b b b
+ −
= = −
+ + +
tương tự với 2 phân thức còn lại suy ra
2 2 2
2 2 2 2 2 2
( )
1 1 1 1 1 1
a b c ab bc ca
a b c
b c a b c a
+ + = + + − + + ≥
+ + + + + +
2 2 2
3 ( )
2 2 2
ab bc ca
b c c
− + +
Ta có
2
( ) 3( )a b c ab bc ca+ + ≥ + +
, thay vào trên có
2 2 2
1 1 1
a b c
b c a
+ + ≥
+ + +
3 – 9/6 => điều phải chứng minh , dấu đẳng thức xảy ra khi và chỉ khi a
= b = c = 1
25