Tải bản đầy đủ (.doc) (14 trang)

Chuyen de Quang hoc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (204.07 KB, 14 trang )

-phần quang học-
I- Tóm tắt lý thuyết.
1/ Khái niệm cơ bản:
- Ta nhận biết đợc ánh sáng khi có ánh sáng đi vào mắt ta.
- Ta nhìn thấy đợc một vật khi có ánh sáng từ vật đó mang đến mắt ta. ánh sáng
ấy có thể do vật tự nó phát ra (Nguồn sáng) hoặc hắt lại ánh sáng chiếu vào nó. Các vật
ấy đợc gọi là vật sáng.
- Trong môi trờng trong suốt và đồng tính ánh sáng truyền đi theo 1 đờng thẳng.
- Đờng truyền của ánh sáng đợc biểu diễn bằng một đờng thẳng có hớng gọi là tia
sáng.
- Nếu nguồn sáng có kích thớc nhỏ, sau vật chắn sáng sẽ có vùng tối.
- Nếu nguồn sáng có kích thớc lớn, sau vật chắn sáng sẽ có vùng tối và vùng nửa
tối.
2/ Sự phản xạ ánh sáng.
- Định luật phản xạ ánh sáng.
+ Tia phản xạ nằm trong mặt phẳng chứa tia tới và đờng pháp tuyến với gơng ở
điểm tới.
+ Góc phản xạ bằng góc tới.
- Nếu đặt một vật trớc gơng phẳng thì ta quan sát đợc ảnh của vật trong gơng.
+ ảnh trong gơng phẳng là ảnh ảo, lớn bằng vật, đối xứng với vật qua gơng.
+ Vùng quan sát đợc là vùng chứa các vật nằm trớc gơng mà ta thấy ảnh của các
vật đó khi nhìn vào gơng.
+ Vùng quan sát đợc phụ thuộc vào kích thớc của gơng và vị trí đặt mắt.
II- Phân loại bài tập.
Loại 1: Bài tập về sự truyền thẳng của ánh sáng.
Ph ơng pháp giả i : Dựa trên định luật truyền thẳng ánh sáng.
Thí dụ 1: Một điểm sáng đặt cách màn 1 khoảng 2m, giữa điểm sáng và màn ngời
ta đặt 1 đĩa chắn sáng hình tròn sao cho đĩa song song với màn và điểm sáng nằm trên
trục đi qua tâm và vuông góc với đĩa.
a) Tìm đờng kính của bóng đen in trên màn biết đờng kính của đĩa d = 20cm và
đĩa cách điểm sáng 50 cm.


1
b) Cần di chuyển đĩa theo phơng vuông góc với màn một đoạn bao nhiêu, theo
chiều nào để đờng kính bóng đen giảm đi một nửa?
c) Biết đĩa di chuyển đều với vận tốc v= 2m/s. Tìm vận tốc thay đổi đờng kính của
bóng đen.
d) Giữ nguyên vị trí của đĩa và màn nh câu b thay điểm sáng bằng vật sáng hình
cầu đờng kính d
1
= 8cm. Tìm vị trí đặt vật sáng để đờng kính bóng đen vẫn nh câu a.
Tìm diện tích của vùng nửa tối xung quanh bóng đen?
Giải
a) Gọi AB, AB lần lợt là đờng kính của đĩa và của bóng đen. Theo định lý Talet
ta có:
cm
SI
SIAB
BA
SI
SI
BA
AB
80
50
200.20'.
''
'''
====
b) Gọi A
2
, B

2
lần lợt là trung điểm của IA và IB. Để đờng kính bóng đen giảm
đi một nửa(tức là A
2
B
2
) thì đĩa AB phải nằm ở vị trí A
1
B
1
. Vì vậy đĩa AB phải dịch
chuyển về phía màn .
Theo định lý Talet ta có :
cmSI
BA
BA
SI
SI
SI
BA
BA
100200.
40
20
'.
'
22
11
1
1

22
11
====
Vậy cần dịch chuyển đĩa một đoạn II
1
= SI
1
SI = 100-50 = 50 cm
c) Thời gian để đĩa đi đợc quãng đờng I I
1
là:
t =
v
s
=
v
II
1
=
2
5,0
= 0,25 s
Tốc độ thay đổi đờng kính của bóng đen là:
v =
t
BA -BA
22

=
25,0

4,08,0
= 1,6m/s
d) Gọi CD là đờng kính vật sáng, O là tâm .Ta có:
4
1
4
1
80
20
33
3333
=

+
==

=

IIMI
MI
BA
BA
IM
MI
=> MI
3
=
cm
II
3

100
3
3
=


2
S
A
B
A
1
B
1
I
I
1
A'
A
2
I'
B
2
B'
Mặt khác
cmMIMO
BA
CD
MI
MO

3
40
3
100
5
2
5
2
5
2
20
8
3
333
=ì=====

=> OI
3
= MI
3
MO =
cm20
3
60
3
40
3
100
==
Vậy đặt vật sáng cách đĩa một khoảng là 20 cm

- Diện tích vùng nửa tối S =
22222
2
15080)4080(14,3)( cmAIAI =




Thí dụ 2: Ngời ta dự định mắc 4 bóng đèn tròn ở 4 góc của một trần nhà hình
vuông, mỗi cạnh 4 m và một quạt trần ở đúng giữa trần nhà, quạt trần có sải cánh là 0,8
m (khoảng cách từ trục đến đầu cánh), biết trần nhà cao 3,2 m tính từ mặt sàn. Hãy tính
toán thiết kế cách treo quạt trần để khi quạt quay, không có điểm nào trên mặt sàn loang
loáng.
Giải Để khi quạt quay, không một điểm nào trên sàn sáng loang loáng thì bóng
của đầu mút cánh quạt chỉ in trên tờng và tối đa là đến chân tờng C,D vì nhà hình hộp
vuông, ta chỉ xét trờng hợp cho một bóng, còn lại là tơng tự.
Gọi L là đờng chéo của trần nhà thì L = 4
2
= 5,7 m
Khoảng cách từ bóng đèn đến góc chân tờng đối diện:
S
1
D =
22
LH
=
22
)24()2,3( +
=6,5 m
T là điểm treo quạt, O là tâm quay của quạt

A,B là các đầu mút khi cánh quạt quay.
Xét

S
1
IS
3
ta có
m
L
H
R
IT
SS
AB
OI
IT
OI
SS
AB
45,0
7,5
2
2,3
.8,0.2
2
.2
3131
===ì==
Khoảng cách từ quạt đến điểm treo: OT = IT OI = 1,6 0,45 = 1,15 m

Vậy quạt phải treo cách trần nhà tối đa là 1,15 m.
Bài tập tham khảo:
3
M
C
A
3
B
3
D
B
2
B
I
A
A
2
I
3
O
L
T
I
B
A
S
1
S
3
D

C
O
H
R
1/ Một điểm sáng S cách màn một khoảng cách SH = 1m. Tại trung điểm M của
SH ngời ta đặt tấm bìa hình tròn, vuông góc với SH.
a- Tính bán kính vùng tối trên màn nếu bán kính bìa là R = 10 cm.
b- Thay điểm sáng S bằng một hình sáng hình cầu có bán kính R = 2cm.
Tìm bán kính vùng tối và vùng nửa tối.
Đs: a) 20 cm
b) Vùng tối: 18 cm
Vùng nửa tối: 4 cm
2/ Một ngời có chiều cao h, đứng ngay dới ngọn đèn treo ở độ cao H (H > h). Ngời
này bớc đi đều với vận tốc v. Hãy xác định chuyển động của bóng của đỉnh đầu in trên
mặt đất.
ĐS: V =
v
hH
H
ì

Loại 2: Vẽ đờng đi của tia sáng qua gơng phẳng, ảnh của vật qua
gơng phẳng.
Phơng pháp giải:
- Dựa vào định luật phản xạ ánh sáng.
+ Tia phản xạ nằm trong mặt phẳng chứa tia tới và pháp tuyến tại điểm tới.
+ Góc phản xạ bằng góc tới.
- Dựa vào tính chất ảnh của vật qua gơng phẳng:
+ Tia phản xạ có đờng kéo dài đi qua ảnh của điểm sáng phát ra tia tới.
Thí dụ 1:

Cho 2 gơng phẳng M và N có hợp với nhau một góc

và có mặt phản xạ hớng
vào nhau. A, B là hai điểm nằm trong khoảng 2 gơng. Hãy trình bày cách vẽ đờng đi của
tia sáng từ A phản xạ lần lợt trên 2 gơng M, N rồi truyền đến B trong các trờng hợp sau:
a)

là góc nhọn
b)

lầ góc tù
c) Nêu điều kiện để phép vẽ thực hiện đợc.
4
S
S
I J
Giải
a,b) Gọi A là ảnh của A qua M, B là ảnh của B qua N.
Tia phản xạ từ I qua (M) phải có đờng kéo dài đi qua A. Để tia phản xạ qua (N) ở
J đi qua điểm B thì tia tới tại J phải có đờng kéo dài đi qua B. Từ đó trong cả hai trờng
hợp của

ta có cách vẽ sau:
- Dựng ảnh A của A qua (M) (A đối xứng A qua (M)
- Dựng ảnh B của B qua (N) (B đối xứng B qua (N)
- Nối AB cắt (M) và (N) lần lợt tại I và J
- Tia A IJB là tia cần vẽ.
c) Đối với hai điểm A, B cho trớc. Bài toán chỉ vẽ đợc khi AB cắt cả hai gơng
(M) và(N)
(Chú ý: Đối với bài toán dạng này ta còn có cách vẽ khác là:

- Dựng ảnh A của A qua (M)
- Dựng ảnh A của A qua (N)
- Nối AB cắt (N) tại J
- Nối JA cắt (M) tại I
- Tia AIJB là tia cần vẽ.
Thí dụ 2: Hai gơng phẳng (M) và (N) đặt song song quay mặt phản xạ vào nhau và
cách nhau một khoảng AB = d. Trên đoạn thẳng AB có đặt một điểm sáng S cách gơng
(M) một đoạn SA = a. Xét một điểm O nằm trên đờng thẳng đi qua S và vuông góc với
AB có khoảng cách OS = h.
a) Vẽ đờng đi của một tia sáng xuất phát từ S phản xạ trên gơng (N) tại I và truyền
qua O.
5
A
A
B
B
O
I
J (N)
(M)
A
A
B
B
O J
I
(M)
(N)
A
A

B
B
O
I
J (N)
(M)
A
A
B
B
O J
I
(M)
(N)
A
A
O
I
J
A
B
b) Vẽ đờng đi của một tia sáng xuất phát từ S phản xạ lần lợt trên gơng (N) tại H,
trên gơng (M) tại K rồi truyền qua O.
c) Tính các khoảng cách từ I, K, H tới AB.
Giải
a) Vẽ đờng đi của tia SIO
- Vì tia phản xạ từ IO phải có đờng kéo dài đi qua S (là ảnh của S qua (N).
- Cách vẽ: Lấy S đối xứng với S qua (N). Nối SO cắt (N) tại I. Tia SIO là tia
sáng cần vẽ.
b) Vẽ đờng đi của tia sáng SHKO.

- Đối với gơng (N) tia phản xạ HK phải có đờng kéo dài đi qua ảnh S của S qua
(N).
- Đối với gơng (M) để tia phản xạ từ KO đi qua O thì tia tới HK phải có đờng kéo
dài đi qua ảnh O của O qua (M).
Vì vậy ta có cách vẽ:
- Lấy S đối xứng với S qua (N); O đối xứng với O qua (M). Nối OS cắt (N) tại
H cắt (M) tại K. Tia SHKO là tia cần vẽ.
c) Tính IB, HB, KA.
Vì IB là đờng trung bình của

SSO nên IB =
22
hOS
=
Vì HB //OC =>
CS
BS
CO
HB
'
'
'
=
=> HB =
h
d
ad
CO
CS
BS

.
2
'.
'
'
=
Vì BH // AK =>
h
d
ad
h
d
ad
ad
ad
HB
BS
AS
AK
AS
BS
AK
HB
.
2
2
.
2
)(
.

)2(
.

=



=


=


=
6
O
I
H
S
S
A
B
C
K
O
(N)
(M)
Thí dụ 3: Bốn gơng phẳng G
1
, G

2
, G
3
, G
4
quay mặt sáng vào nhau làm thành 4 mặt
bên của một hình hộp chữ nhật. Chính giữa gơng G
1
có một lỗ nhỏ A.
a) Vẽ đờng đi của một tia sáng (trên mặt phẳng giấy vẽ)
đi từ ngoài vào lỗ A sau khi phản xạ lần lợt trên các gơng
G
2
; G
3
; G
4
rồi lại qua lỗ A đi ra ngoài.
b) Tính đờng đi của tia sáng trong trờng hợp nói trên.
Quãng đờng đi có phụ thuộc vào vị trí lỗ A hay không?
Giải
a) Vẽ đờng đi tia sáng.
- Tia tới G
2
là AI
1
cho tia phản xạ I
1
I
2

có đờng kéo dài đi qua A
2
(là ảnh A qua G
2
)
- Tia tới G
3
là I
1
I
2
cho tia phản xạ I
2
I
3
có đờng kéo dài đi qua A
4
(là ảnh A
2
qua G
3
)
- Tia tới G
4
là I
2
I
3
cho tia phản xạ I
3

A có đờng kéo dài đi qua A
6
(là ảnh A
4
qua G
4
)
Mặt khác để tia phản xạ I
3
A đi qua đúng điểm A thì tia tới I
2
I
3
phải có đờng kéo
dài đi qua A
3
(là ảnh của A qua G
4
).
Muốn tia I
2
I
3
có đờng kéo dài đi qua A
3
thì tia tới gơng G
3
là I
1
I

2
phải có đờng kéo
dài đi qua A
5
(là ảnh của A
3
qua G
3
).
Cách vẽ:
Lấy A
2
đối xứng với A qua G
2
; A
3
đối xứng với A qua G
4
Lấy A
4
đối xứng với A
2
qua G
3
; A
6
Đối xứng với A
4
qua G
4

7
(G
1
)
A
(G
2
)
(G
3
)
(G
4
)
A
I
1
I
2
I
3
A
3
A
2
A
4
A
5
A

6
Lấy A
5
đối xứng với A
3
qua G
3
Nối A
2
A
5
cắt G
2
và G
3
tại I
1
, I
2
Nối A
3
A
4
cắt G
3
và G
4
tại I
2
, I

3
, tia AI
1
I
2
I
3
A là tia cần vẽ.
b) Do tính chất đối xứng nên tổng đờng đi của tia sáng bằng hai lần đờng chéo của
hình chữ nhật. Đờng đi này không phụ thuộc vào vị trí của điểm A trên G
1
.
bài tập tham khảo
Bài 1: Cho hai gơng M, N và 2 điểm A, B. Hãy vẽ các tia sáng xuất phát từ A phản
xạ lần lợt trên hai gơng rồi đến B trong hai trờng hợp.
a) Đến gơng M trớc
b) Đến gơng N trớc.
Bài 2: Cho hai gơng phẳng vuông góc với nhau. Đặt 1 điểm sáng S và điểm M trớc
gơng sao cho SM // G
2
a) Hãy vẽ một tia sáng tới G
1
sao cho
khi qua G
2
sẽ lại qua M. Giải thích cách vẽ.
b) Nếu S và hai gơng cố định thì điểm M
phải có vị trí thế nào để có thể vẽ đợc tia sáng nh câu a.
c) Cho SM = a; SA = b, AO = a, vận tốc ánh sáng là v
Hãy tính thời gian truyền của tia sáng từ S -> M theo con đờng của câu a.

Bài 3: Hai gơng phẳng G
1
; G
2
ghép sát nhau nh hình vẽ,

= 60
0
. Một điểm sáng
S đặt trong khoảng hai gơng và
cách đều hai gơng, khoảng cách từ S
đến giao tuyến của hai gơng là SO = 12 cm.
a) Vẽ và nêu cách vẽ đờng đi của tia
sáng tù S phản xạ lần lợt trên hai gơng rồi quay lại S.
b) Tìm độ dài đờng đi của tia sáng nói trên?
Bài 4: Vẽ đờng đi của tia sáng từ S sau khi phản xạ trên tất cả các vách tới B.
8
A
B
S M
A
O
(G
1
)
(G
2
)
S
(G

1
)
(G
2
)
O

S
B
Loại 3: Xác định số ảnh, vị trí ảnh của một vật qua gơng phẳng?
Ph ơng pháp giải: Dựa vào tính chất ảnh của một vật qua gơng phẳng: ảnh
của một vật qua gơng phẳng bằng vật và cách vật một khoảng bằng từ vật đến gơng
(ảnh và vật đối xứng nhau qua gơng phẳng)
Thí dụ 1: Hai gơng phẳng M và N đặt hợp với nhau một góc

< 180
0
, mặt phản
xạ quay vào nhau. Một điểm sáng A nằm giữa hai gơng và qua hệ hai gơng cho n ảnh.
Chứng minh rằng nếu
)(2
360
Nkk =

thì n = (2k 1) ảnh.
Giải Sơ đồ tạo ảnh qua hệ:
A

)(
5

)(
3
)(
1
)(

NMNM
AAA
A

)(
6
)(
4
)(
2
)( MNMN
AAA

Từ bài toán ta có thể biễu diễn một số trờng hợp đơn giản.
Theo hình vẽ ta có:
Góc A
1
OA
2
= 2
Góc A
3
OA
4

= 4

Góc A
2k-1
OA
2k
= 2k
Theo điều kiện bài toán thì 360
0
/ = 2k
=> 2k = 360
0
. Vậy góc A
2k-1
OA
2k
= 2k = 360
0
Tức là ảnh A
2k-1
và ảnh A
2k
trùng nhau
Trong hai ảnh này một ảnh sau gơng (M) và một ảnh sau gơng (N) nên không tiếp
tục cho ảnh nữa. Vậy số ảnh của A cho bởi hai gơng là: n = 2k 1 ảnh
Thí dụ 2: Hai gơng phẳng M
1
và M
2
đặt nghiêng với nhau một góc


= 120
0
. Một
điểm sáng A trớc hai gơng, cách giao tuyến của chúng 1 khoảng R = 12 cm.
a) Tính khoảng cách giữa hai ảnh ảo đầu tiên của A qua các gơng M
1
và M
2
.
b) Tìm cách dịch chuyển điểm A sao cho khoảng cách giữa hai ảnh ảo câu trên là
không đổi.
Giải a) Do tính chất đối xứng nên A
1
, A
2
, A
nằm trên một đờng tròn tâm O bán kính R = 12 cm. K
Tứ giác OKAH nội tiếp (vì góc K + góc H = 180
0
) H
Do đó Â = -
9
A
A
1
A
2
A
3

A
6
A
8
A
7
A
5
A
4
O
(M)
(N)
A
A
1
A
2
O
(M
2
)
(M
1
)
=> góc A
2
OA
1
= 2Â (góc cùng chắn cung A

1
A
2
)
=> A
2
OA
1
= 2( - ) = 120
0

A
2
OA
1
cân tại O có góc O = 120
0
; cạnh A
2
0 = R = 12 cm
=> A
1
A
2
= 2R.sin30
0
= 12
3
b) Từ A
1

A
2
= 2R sin

. Do đó để A
1
A
2
không đổi
=> R không đổi (vì

không đổi)
Vậy A chỉ có thể dịch chuyển trên một mặt trụ, có trục là giao tuyến của hai gơng
bán kính R = 12 cm, giới hạn bởi hai gơng.
Thí dụ 3: Hai gơng phẳng AB và CD đặt song song đối diện và cách nhau a=10
cm. Điểm sáng S đặt cách đều hai gơng. Mắt M của ngời quan sát cách đều hai gơng
(hình vẽ). Biết AB = CD = 89 cm, SM = 100 cm.
a) Xác định số ảnh S mà ngời quan sát thấy đợc.
b) Vẽ đờng đi của tia sáng từ S đến mắt M sau khi:
- Phản xạ trên mỗi gơng một lần.
- Phản xạ trên gơng AB hai lần, trên gơng CD 1 lần.
Giải
Xét ánh sáng từ S truyền theo chiều tới AB trớc
S

531
121
SSS
GGG


ảnh ảo đối xứng với vật qua gơng nên ta có:
SS
1
= a
SS
3
= 3a
SS
5
= 5a

SS
n
= n a
Mắt tại M thấy đợc ảnh thứ n, nếu tia phản xạ trên gơng AB tại K lọt vào mắt và
có đờng kéo dài qua ảnh S
n
. Vậy điều kiện mắt thấy ảnh S
n
là: AK

AB
11
50
100
89
2
~ ==

= n

na
a
na
SM
AK
SS
AS
AKSSMS
n
n
nn
Vì n

Z => n = 4
Xét ánh sáng từ S truyền theo chiều tới gơng CD trớc ta cũng có kết quả tơng tự.
Vậy số ảnh quan sát đợc qua hệ là: 2n = 8
10
A
B
D
C
S
M
A
B
D
C
S
M
S

n
S
1
K
b) Vẽ đờng đi của tia sáng:
Bài tập tham khảo:
1- Một bóng đèn S đặt cách tủ gơng 1,5 m và nằm trên trục của mặt gơng. Quay
cánh tủ quanh bản lề một góc 30
0
. Trục gơng cánh bản lề 80 cm:
a) ảnh S của S di chuyển trên quỹ đạo nào?
b) Tính đờng đi của ảnh.
Loại 4: Xác định thị trờng của gơng.
Ta nhìn thấy ảnh của vật khi tia sáng truyền vào mắt ta có đờng kéo dài đi qua
ảnh của vật
Phơng pháp: Vẽ tia tới từ vật tới mép của gơng. Từ đó vẽ các tia phản xạ sau đó ta
sẽ xác định đợc vùng mà đặt mắt có thể nhìn thấy đợc ảnh của vật.
Thí dụ 1: bằng cách vẽ hãy tìm vùng không gian
mà mắt đặt trong đó sẽ nhìn thấy ảnh của toàn bộ vật
sáng AB qua gơng G.
Giải
Dựng ảnh AB của AB qua gơng. Từ A và B vẽ các tia qua hai mép gơng. Mắt
chỉ có thể nhìn thấy cả AB nếu đợc đặt trong vùng gạch chéo.
11
A
B
D
C
S
M

S
5
S
1
S
3
A
B
D
C
S
M
S
5
S
1
S
3
A
B
(G)
A
B
(G)
A
B
Thí dụ 2: Hai ngời A và B đứng trớc một gơng phẳng (hình vẽ)
a) Hai ngời có nhìn thấy nhau trong gơng không?
b) Một trong hai ngời đi dẫn đến gơng theo phơng vuông góc với gơng thì khi nào
họ thấy nhau trong gơng?

c) Nếu cả hai ngời cùng đi dần tới gơng theo phơng vuông góc với gơng thì họ có
thấy nhau qua gơng không?
Biết MA = NH = 50 cm; NK = 100 cm, h = 100 cm.
Giải
a) Vẽ thị trờng của hai ngời.
- Thị trờng của A giới hạn bởi góc MAN,
của B giới hạn bởi góc MBN.
- Hai ngời không thấy nhau vì ngời này
ở ngoài thị trờng của ngời kia.
b) A cách gơng bao nhiêu m.
Cho A tiến lại gần. Để B thấy đợc ảnh A
của A thì thị trờng của A phải nh hình vẽ sau:

AHN ~

BKN
->
mAHBKAH
KN
AN
BK
AH
5,0
1
5,0
1 ====
12
A
M N
H

K
B
h
h
M
N
H K
A
B
h
h
B'
A'
M
NH
K
B
h
A
A'
c) Hai ngời cùng đi tới gơng thì họ không nhìn thấy nhau trong gơng vì ngời này
vẫn ở ngoài thị trờng của ngời kia.
Thí dụ 3: Một ngời cao 1,7m mắt ngời ấy cách đỉnh đầu 10 cm. Để ngời ấy nhìn
thấy toàn bộ ảnh của mình trong gơng phẳng thì chiều cao tối thiểu của gơng là bao
nhiêu mét? Mép dới của gơng phải cách mặt đất bao nhiêu mét?
Giải
- Vật thật AB (ngời) qua gơng phẳng cho ảnh ảo AB đối xứng.
- Để ngời đó thấy toàn bộ ảnh của mình thì kích thớc nhỏ nhất và vị trí đặt gơng phải
thoã mãn đờng đi của tia sáng nh hình vẽ.


MIK ~ MAB => IK =
m
ABBA
85,0
22
==


BKH ~

BMB => KH =
m
MB
8,0
2
=
Vậy chiều cao tối thiểu của gơng là 0,85 m
Gơng đặt cách mặt đất tối đa là 0,8 m
Bài tập tham khảo:
Bài1: Một hồ nớc yên tĩnh có bề rộng 8 m. Trên bờ hồ có một cột trên cao 3,2 m
có treo một bóng đèn ở đỉnh. Một ngời đứng ở bờ đối diện quan sát ảnh của bóng đèn,
mắt ngời này cách mặt đất 1,6 m.
a) Vẽ chùm tia sáng từ bóng đèn phản xạ trên mặt nớc tới mắt ngời quan sát.
b) Ngời ấy lùi xa hồ tới khoảng cách nào thì không còn thấy ảnh ảnh của bóng
đèn?
Bài 2: Một gơng phẳng hình tròn, tâm I bán kính 10 cm. Đặt mắt tại O trên trục Ix
vuông góc với mặt phẳng gơng và cách mặt gơng một đoạn OI = 40 cm. Một điểm sáng
S đặt cách mặt gơng 120 cm, cách trục Ix một khoảng 50 cm.
a) Mắt có nhìn thấy ảnh S của S qua gơng không? Tại sao?
b) Mắt phải chuyển dịch thế nào trên trục Ix để nhìn thấy ảnh S của S. Xác định

khoảng cách từ vị trí ban đầu của mắt đến vị trí mà mắt bắt đầu nhìn thấy ảnh S của S
qua gơng.
Loại 5: Tính các góc.
Thí dụ 1: Chiếu một tia sáng hẹp vào một gơng phẳng. Nếu cho gơng quay đi một
góc

quanh một trục bất kỳ nằm trên mặt gơng và vuông góc với tia tới thì tia phản xạ
sẽ quay đi một góc bao nhiêu? theo chiều nào?
Giải Xét gơng quay quanh trục O
từ vị trí M
1
đến M
2
(góc M
1
OM
2
= )
lúc đó pháp tuyến cũng quay 1 góc N
1
KN
2
=
13
B
M
A
H
A'
B'

I
K
K
S
R
1
M
1
M
2
N
2
R
2
N
1
O
P
i
i
i' i'
J
I
(góc có cạnh tơng ứng vuông góc).
Xét

IPJ có IJR
2
= JIP + IPJ
Hay 2i = 2i + => = 2( i i ) (1)

Xét

IJK có IJN
2
= JIK + IKJ Hay i = i + => = ( i i ) (2)
Từ (1) và (2) =>

= 2

Vậy khi gơng quay một góc


quanh một trục bất kỳ vuông góc với tia tới thì tia phản xạ sẽ quay đi một góc 2

theo
chiều quay của gơng.
Thí dụ 2: Hai gơng phẳng hình chữ nhật giống nhau đợc ghép chung theo một
cạnh tạo thành góc

nh hình vẽ (OM
1
= OM
2
). Trong khoảng giữa hai gơng gần O có
một điểm sáng S. Biết rằng tia sáng từ S đặt vuông góc vào G
1
sau khi phản xạ ở G
1
thì
đập vào G

2
, sau khi phản xạ ở G
2
thì đập vào G
1
và phản xạ trên G
1
một lần nữa. Tia phản
xạ cuối cùng vuông góc với M
1
M
2
. Tính

.
Giải
- Vẽ tia phản xạ SI
1
vuông góc với (G
1
)
- Tia phản xạ là I
1
SI
2
đập vào (G
2
)
- Dựng pháp tuyến I
2

N
1
của (G
2
) S
- Dựng pháp tuyến I
3
N
2
của (G
1
)
- Vẽ tia phản xạ cuối cùng I
3
K
Dễ thấy góc I
1
I
2
N
1
= ( góc có cạnh tơng ứng vuông góc) => góc I
1
I
2
I
3
= 2
Theo định luật phản xạ ánh sáng ta có:
KI

3
M
1
= I
2
I
3
O = 90
0
- 2 => I
3
M
1
K = 2

M
1
OM cân ở O => + 2 + 2 = 5 = 180
0
=> = 36
0
Vậy = 36
0
Bài tập tham khảo:
Bài 1: Chiếu 1 tia sáng SI tới một gơng phẳng G. Nếu quay tia này xung quanh
điểm S một góc thì tia phản xạ quay một góc bằng bao nhiêu?
Bài 2: Hai gơng phẳng G
1
và G
2

có các mặt phản xạ hợp với nhau một góc = 60
0
chiếu 1 tia sáng SI tới G
1
tia này phản xạ theo IJ và phản xạ trên G
2
theo JR. tính góc
hợp bởi các tia SI và JR
14
O
I
2
I
1
I
3
(G
1
)
K
N
2
N
1
(G
2
)

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×