¨o
P (D)
P (x, D)
¨o
¨o
¨o
¨o
G
k,λ
=
∂
2
∂x
2
+ x
2k
∂
2
∂y
2
+ iλx
k−1
∂
∂y
,
(x, y) ∈ Ω R
2
, λ ∈ C, i k
G
k,λ
k k
G
k,λ
G
a,b
k,c
= X
2
X
1
+ icx
k−1
∂
∂y
,
X
2
=
∂
∂x
− iax
k
∂
∂y
, X
1
=
∂
∂x
− ibx
k
∂
∂y
,
a = −1, b = 1
G
a,b
k,c
a, b ab < 0 G
a,b
k,c
k k
G
a,b
k,c
G
k,λ
G
k,λ
G
a,b
k,c
a, b, c Re(a) < 0, Re(b) > 0
G
k,λ
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0,
k
G
k,λ
G
k,λ
ψ
ψ
G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0,
a = −1, b = 1, c = λ + k G
a,b
k,c
= G
k,λ
.
a = −1, b = 1 k
k k k k
a, b
a = −1, b = 1
a, b, c k
G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0,
a, b, c Re(a) < 0, Re(b) > 0 k
(x, y) ∈ Ω R
2
G
a,b
k,c
k
a = −1, b = 1
k
k k
G
a,b
k,c
G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0,
a, b, c k
G
a,b
k,c
G
a,b
k,c
= X
2
X
1
+ icx
k−1
∂
∂y
,
(x, y) ∈ R
2
; a, b, c ∈ C; Re(a) < 0; Re(b) > 0; i =
√
−1 k
X
1
=
∂
∂x
− ibx
k
∂
∂y
, X
2
=
∂
∂x
− iax
k
∂
∂y
.
Re(a) < 0 Re(a) > 0
A
+
= −ax
k+1
+ bu
k+1
+ i(k + 1)(y − v)
A
−
= bx
k+1
− au
k+1
− i(k + 1)(y − v)
R = A
+
A
−
= −ab(x
2k+2
+ u
2k+2
) + (a
2
+ b
2
)(x
k+1
u
k+1
)
+ (k + 1)
2
(y − v)
2
+ i(k + 1)(y − v)(a + b)(x
k+1
− u
k+1
)
p =
(a − b)
2
x
k+1
u
k+1
R
−1
xu = 0,
0 xu = 0,
M = A
−
c
(k+1)(b−a)
+
A
−
k(b−a)−c
(k+1)(b−a)
−
.
G
a,b
k,c
.
k Re(a) < 0 Re(b) > 0
p /∈ (1, +∞)
p = 1 ⇔ y = v, x = ± u u = 0
E
a,b
k,c
(x, y, u, v) G
a,b
k,c
.
M = M(x, y, u, v), F (p) = F
a,b
k,c
(p(x, y, u, v)),
E
a,b
k,c
= E
a,b
k,c
(x, y, u, v) = MF (p).
E
a,b
k,c
(x, y, u, v)
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = δ(x − u, y − v).
E
a,b
k,c
G
a,b
k,c
E
a,b
k,c
= 0
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = 0 F (p)
p(1 −p)F
(p) +
γ −(1 + α + β)p
F
(p) − αβF (p) = 0,
α =
c
(k + 1)(b − a)
, β =
k(b − a) − c
(k + 1)(b − a)
, γ =
k
k + 1
F (p) = C
1
F
c
(k + 1)(b − a)
,
k(b − a) − c
(k + 1)(b − a)
,
k
k + 1
, p
+ C
2
p
1
k+1
F
c + b − a
(k + 1)(b − a)
,
(k + 1)(b − a) − c
(k + 1)(b − a)
,
k + 2
k + 1
, p
:= C
1
F
a,b
k,c;1
(p) + C
2
F
a,b
k,c;2
(p),
F (α, β, γ, p) C
1
, C
2
k F
a,b
k,c
(p) p /∈ (1, +∞)
C
1
= −
Γ(
c
(k+1)(b−a)
)Γ(
k(b−a)−c
(k+1)(b−a)
)
4(b − a)
1
k+1
πΓ(
1
k+1
)
:= C
a,b
k,c
,
C
2
= −
Γ(
c+b−a
(k+1)(b−a)
)Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
4(b − a)
1
k+1
πΓ(
k+2
k+1
)
:= D
a,b
k,c
.
c = ±[N(k + 1)(b − a)], c = ±[N(k + 1) + k](b − a),
N |C
a,b
k,c
|, |D
a,b
k,c
| < ∞.
k a, b, c, k
k a, b, c, k
E
a,b
k,c
(x, y, u, v) = M(C
a,b
k,c
F
a,b
k,c;1
(p) + D
a,b
k,c
F
a,b
k,c;2
(p))
= −
Γ
c
(k+1)(b−a)
)Γ(
k(b−a)−c
(k+1)(b−a)
)F (
c
(k+1)(b−a)
,
k(b−a)−c
(k+1)(b−a)
,
k
k+1
, p
4(b − a)
1
k+1
πΓ(
k
k+1
)A
c
(k+1)(b−a)
+
A
k(b−a)−c
(k+1)(b−a)
−
−
xuΓ(
c+b−a
(k+1)(b−a)
)Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)F (
c+b−a
(k+1)(b−a)
),
(k+1)(b−a)−c
(k+1)(b−a)
,
k+2
k+1
, p)
4(b − a)
−
1
k+1
πΓ(
k+2
k+1
)A
c+b−a
(k+1)(b−a)
+
A
(k+1)(b−a)−c
(k+1)(b−a)
−
k a, b, c, k
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = δ(x − u, y − v).
C
2
(Ω)
E
a,b
k,c
X
1
=
∂
∂u
− ibu
k
∂
∂v
,
X
2
=
∂
∂u
− iau
k
∂
∂v
,
G
a,b
k,c
=
X
2
X
1
+ icu
k−1
∂
∂v
Ω ⊂ R
2
f ∈ C
2
(Ω)
f(x, y) =
∂Ω
f(u, v)
B
2
(E
a,b
k,c
(x, y, u, v), a, b, c, k)ds
−
∂Ω
E
a,b
k,c
(x,y,u,v)
B
1
(f(u, v), a, b, c, k)ds +
Ω
E
a,b
k,c
(x, y, u, v)
G
a,b
k,c
f(u, v)dudv(1.10)
Ω
B
1
(f(u, v), a, b, c, k) = (ν
1
− iau
k
ν
2
)
X
1
f(u, v) + icu
k−1
ν
2
f(u, v)
B
2
(E
a,b
k,c
(x, y, u, v), a, b, c, k) = (ν
1
− ibu
k
ν
2
)
X
2
E
a,b
k,c
(x, y, u, v)
ν = (ν
1
, ν
2
) ∂Ω
ψ
k G
a,b
k,c
a, b, c, k
G
m
k,
(Ω) =
f ∈ L
2
(Ω) :
(α,β,γ)∈Ξ
m
k
||
γ
∂
α,β
f||
L
2
(K)
< ∞
,
K Ω
γ
∂
α,β
f := x
γ
∂
α+β
f
∂x
α
∂y
β
Ξ
m
k
=
(α, β, γ) ∈ Z
3
+
: α + β ≤ m, km ≥ γ ≥ α + (1 + k)β − m
.
ψ C
∞
m ≥ 2k + 3
k a, b, c, k G
m
k,
(Ω)
C
∞
(Ω) Ψ
a,b
k,c
f(x, y) Ω R
2
∂
α
f
∂x
α
,
∂
β
f
∂y
β
∂
α
1
f, ∂
β
2
f r
0
= 2k + 2 r ∈ Z
+
Γ
r
(α, β)
Γ
r
= Γ
1
r
∪ Γ
2
r
Γ
1
r
= {(α, β) : α ≤ r
0
, 2α + β ≤ r}
Γ
2
r
= {(α, β) : α ≥ r
0
, α + β ≤ r − r
0
}
|f, Ω|
r
= max
(α,β)∈Γ
r
|∂
α
1
∂
β
2
f, Ω| + max
(α,β)∈Γ
r
α≥1,β≥1
max
(x,y)∈
¯
Ω
|∂
α+2
1
∂
β
2
f|,
|f, Ω| = max
(x,y)∈
¯
Ω
|f| +
∂f
∂x
+
x
k
∂f
∂y
.
k a, b, c, k
ψ ∈ G
s
s ≥ 1 C
∞
(Ω)
G
s
(Ω) Ψ
a,b
k,c
ψ C
∞
(Ω)
Ω Ψ
a,b
k,c
E
a,b
k,c
V
T
, V
T
2T S
V
T
V
T
x
γ
∂
α+β
E
a,b
k,c
(x, y, u, v)
∂x
α
∂y
β
≤ CR
−
1
2
1
, ∀(α, β, γ) ∈ Ξ
1
k
. (1.32)
S
σ
N
(x,y)
(x, y) |x| ≤
2σ
N
(x, y)
1
k+1
γ
∂
α,β
X
2
E
a,b
k,c
(x, y, u, v)
≤
C
σ
k+2
k+1
N
(x, y)
. (1.36)
S
σ
N
(x,y)
(x, y) |x| ≥
2σ
N
(x, y)
1
k+1
γ
∂
α,β
X
2
E
a,b
k,c
(x, y, u, v)
u
k
≤
C
σ
2
N
(x, y)
; ∀(α, β, γ) ∈ Ξ
1
k
.
V
T
δ
V
T
δ (x, y) ∈ V
T
σ
N
(x, y) =
1
N
ρ
(x, y), S
(α, β, γ) ∈ Ξ
1
k
, (α
1
, β
1
) ∈ Γ
N+1
, α
1
≥ 1, β
1
≥ 1
C
61
max
(x,y)∈V
T
δ
γ
∂
α,β
∂
α
1
1
∂
β
1
2
f(x, y)
≤ C
61
T
1
k+1
|f, V
T
δ
|
N+1
+ H
0
H
1
δ
N−r
0
−1
(N − r
0
− 1)!
s
T
1
k+1
+
1
H
1
(α, β, γ) ∈ Ξ
1
k
C
73
max
(x,y)∈V
T
δ
γ
∂
α,β
∂
N+1
2
f(x, y)
≤ C
73
T
1
k+1
f, V
T
δ”
N+1
+
+ H
0
H
1
δ
N−r
0
−1
((N − r
0
− 1)!)
s
T
1
k+1
+
1
H
1
(α, β, γ) ∈ Ξ
1
k
C
98
max
(x,y)∈V
T
δ
γ
∂
α,β
∂
N−r
0
+1
1
f(x, y)
≤ C
98
T
1
k+1
f, V
T
δ
N+1
+
+ H
0
H
1
δ
N−r
0
−1
((N − r
0
− 1)!)
s
T
1
k+1
+
1
H
1
(α
1
, β
1
) ∈ Γ
N+1
\ Γ
N
, α
1
≥ 1, β
1
≥ 1.
C
117
max
(x,y)∈V
T
δ
∂
α
1
+2
1
∂
β
1
2
f(x, y)
≤ C
117
T
1
k+1
f, V
T
δ
N+1
+H
0
H
1
δ
N−r
0
−1
(N − r
0
− 1)!
s
T
1
k+1
+
1
H
1
.
k a, b, c, k
m ≥ 2k + 3
ψ ∈ G
s
(s ≥ 1) G
m
k,loc
(Ω)
G
s
(Ω) Ψ
a,b
k,c
ψ C
m
(Ω)
Ω Ψ
a,b
k,c
G
a,b
k,c
G
a,b
k,c
.
G
a,b
k,c
k
G
a,b
k,c
k
G
a,b
k,c
k E
a,b
k,c
(x, y, u, v)
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = δ(x − u, y − v) = δ(x − u) × δ(y − v)
y,
E
xx
(x, ξ, u, v) + (a + b)x
k
ξ
E
x
(x, ξ, u, v)
+
abx
2k
ξ
2
+ (kb − c)x
k−1
ξ)
E(x, ξ, u, v) = δ(x − u)e
−iξv
. (2.4)
˜
E
xx
(x, ξ, u, v) + (a + b)x
k
ξ
˜
E
x
(x, ξ, u, v)
+
abx
2k
ξ
2
+ (kb − c)x
k−1
ξ
˜
E(x, ξ, u, v) = 0. (2.5)
k ξ > 0
˜
E(x, ξ, u, v) =
e
−iξv
e
bξ(u
k+1
−x
k+1
)
k+1
ξ(b−a)
k+1
−1
k+1
(A(a, b, k, c))
−1
×
Γ(
1
k+1
)
Γ(
c+b−a
(k+1)(b−a)
)
Φ(
c
(k+1)(b−a)
,
k
(k+1)
,
(b−a)x
k+1
ξ
k+1
)
+x
Γ(
−1
k+1
)
Γ(
c
(k+1)(b−a)
)
ξ(b−a)
k+1
1
k+1
Φ(
b+c−a
(k+1)
,
k+2
(k+1)
,
(b−a)x
k+1
ξ
k+1
)
×
Γ(
1
k+1
)
Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
Φ(
k(b−a)−c
(k+1)(b−a)
,
k
(k+1)
,
(a−b)u
k+1
ξ
k+1
)
−u
Γ(
−1
k+1
)
Γ(
k(b−a)−c
(k+1)(b−a)
)
ξ(b−a)
k+1
1
k+1
Φ(
(k+1)(b−a)−c
(k+1)(b−a)
,
k+2
(k+1)
,
(a−b)u
k+1
ξ
k+1
)
x ≥ u,
e
−iξv
e
aξ(u
k+1
−x
k+1
)
k+1
ξ(b−a)
k+1
−1
k+1
(A(a, b, k, c))
−1
×
Γ(
1
k+1
)
Γ(
c+b−a
(k+1)(b−a)
)
Φ(
c
(k+1)(b−a)
,
k
(k+1)
,
(b−a)u
k+1
ξ
k+1
)
+u
Γ(
−1
k+1
)
Γ(
c
(k+1)(b−a)
)
ξ(b−a)
k+1
1
k+1
Φ(
b+c−a
(k+1)
,
k+2
(k+1)
,
(b−a)u
k+1
ξ
k+1
)
×
Γ(
1
k+1
)
Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
Φ(
k(b−a)−c
(k+1)(b−a)
,
k
(k+1)
,
(a−b)x
k+1
ξ
k+1
)
−x
Γ(
−1
k+1
)
Γ(
k(b−a)−c
(k+1)(b−a)
)
ξ(b−a)
k+1
1
k+1
Φ(
(k+1)(b−a)−c
(k+1)(b−a)
,
k+2
(k+1)
,
(a−b)x
k+1
ξ
k+1
)
x ≤ u.
k ξ < 0
˜
E(x, ξ, u, v) =
e
−iξv
e
aξ(u
k+1
−x
k+1
)
k+1
ξ(a−b)
k+1
−1
k+1
A(a, b, k, c)
−1
×
Γ(
1
k+1
)
Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
Φ(
k(b−a)−c
(k+1)(b−a)
,
k
(k+1)
,
(a−b)x
k+1
ξ
k+1
)
+ x
Γ(
−1
k+1
)
Γ(
k(b−a)−c
(k+1)(b−a)
)
ξ(a−b)
k+1
1
k+1
Φ(
(k+1)(b−a)−c
(k+1)(b−a)
,
k+2
(k+1)
,
(a−b)x
k+1
ξ
k+1
)
×
Γ(
1
k+1
)
Γ(
c+b−a
(k+1)(b−a)
)
Φ(
c
(k+1)(b−a)
,
k
(k+1)
,
(b−a)u
k+1
ξ
k+1
)
− u
Γ(
−1
k+1
)
Γ(
c
(k+1)(b−a)
)
ξ(a−b)
k+1
1
k+1
Φ(
b+c−a
(k+1)
,
k+2
(k+1)
,
(b−a)u
k+1
ξ
k+1
)
x ≥ u,
e
−iξv
e
bξ(u
k+1
−x
k+1
)
k+1
ξ(a−b)
k+1
−1
k+1
(A(a, b, k, c))
−1
×
Γ(
1
k+1
)
Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
Φ(
k(b−a)−c
(k+1)(b−a)
,
k
(k+1)
,
(a−b)u
k+1
ξ
k+1
)
+ u
Γ(
−1
k+1
)
Γ(
k(b−a)−c
(k+1)(b−a)
)
ξ(a−b)
k+1
1
k+1
Φ(
(k+1)(b−a)−c
(k+1)(b−a)
,
k+2
(k+1)
,
(a−b)u
k+1
ξ
k+1
)
×
Γ(
1
k+1
)
Γ(
c+b−a
(k+1)(b−a)
)
Φ(
c
(k+1)(b−a)
,
k
(k+1)
,
(b−a)x
k+1
ξ
k+1
)
− x
Γ(
−1
k+1
)
Γ(
c
(k+1)(b−a)
)
ξ(a−b)
k+1
1
k+1
Φ(
b+c−a
(k+1)
,
k+2
(k+1)
,
(b−a)x
k+1
ξ
k+1
)
x ≤ u.
E(x, y, u, v) =
1
2π
∞
−∞
e
iyξ
˜
E(x, ξ, u, v)dξ,
G
a,b
k,c
G
a,b
k,c
k
k G
a,b
k,c
G
a,b
k,c
k
G
a,b
k,c
G
a,b
k,c
k
G
a,b
k,c
k
k
a, b, k, c A(a, b, k, c) = 0 k
B
1
(a, b, c, k) = 0 B
2
(a, b, k, c) = 0 k a, b, k, c
(u, v) ∈ R
2
E(u, v) : C
∞
0
(R
2
) → C
E(u, v) : ϕ(x, y) ∈ C
∞
0
(R
2
) −→
1
2π
R
2
E(x, ξ, u, v) ϕ(x, ξ)dξdx ∈ C.
ϕ(x, ξ) =
R
e
iξy
ϕ(x, y)dy
E(u, v)
a, b, k, c (u, v) ∈ R
2
E(u, v) ∈ C
∞
(R
2
\ (u, v)) G
a,b
k,c
E(x, y, u, v) = δ(x − u, y − v).
a, b, k, c
|E(x, y, u, v)| ≤ C
|x
k+1
− u
k+1
|
2
+ |y − v|
2
−
k
2k+2
(2.13)
(x, y, u, v) R
4
E(u, v)
E(x, y, u, v) ∈ L
1
loc
(R
2
(x, y))
a, b, k, c
R
4
, (x, y) = (u, v) (α, β) 0 ≤
α + β ≤ 1
max
x
kβ
∂
α+β
E(x, y, u, v)
∂x
α
∂y
β
,
u
kβ
∂
α+β
E(x, y, u, v)
∂u
α
∂v
β
,
∂
α+β
E(x, y, u, v)
∂x
α
∂u
β
,
x
kβ
∂
α+β
E(x, y, u, v)
∂u
α
∂y
β
,
u
kβ
∂
α+β
E(x, y, u, v)
∂x
α
∂v
β
,
(xu)
kβ
∂
α+β
E(x, y, u, v)
∂y
α
∂v
β
≤ C
α,β
|x
k+1
− u
k+1
| + |y − v|
−
k+α+β
k+1
.
k k
k k
G
a,b
k,c
k
V
T
k
k
k
V
T
a, b, k, c k
x
γ
∂
α+β
E(x, y, u, v)
∂x
α
∂y
β
≤ C
|x
k+1
− u
k+1
|
2
+ (k + 1)
2
(y − v)
2
−
1
2
(α, β, γ) ∈ Ξ
1
k
S
σ
N
(x,y)
(x, y) |x| ≤
2σ
N
(x, y)
1
k+1
|u| ≤ 3
σ
N
(x, y)
1
k+1
x
γ
∂
α+β
X
2
E(x, y, u, v)
∂x
α
∂y
β
≤
C
σ
k+2
k+1
N
(x, y)
∀(α, β, γ) ∈ Ξ
1
k
.
S
σ
N
(x,y)
(x, y) |x| ≤ (2σ
N
(x, y))
1
k+1
x
γ
|u|
k
∂
α+β
X
2
E(x, y, u, v)
∂x
α
∂y
β
S
σ
N
(x,y)
(x,y)
≤
C
σ
2
N
(x, y)
∀(α, β, γ) ∈ Ξ
1
k
.
k a, b, c, k
ψ ∈ G
s
s ≥ 1 C
∞
(Ω)
G
s
(Ω) Ψ
a,b
k,c
ψ C
∞
(Ω)
Ω Ψ
a,b
k,c
k a, b, c, k
m ≥ 2k + 3
ψ ∈ G
s
(s ≥ 1) G
m
k,loc
(Ω)
G
s
(Ω) Ψ
a,b
k,c
ψ C
m
(Ω)
Ω Ψ
a,b
k,c
G
a,b
k,c
=
∂
∂x
− iax
k
∂
∂y
∂
∂x
− ibx
k
∂
∂y
+ icx
k−1
∂
∂y
,
a, b, c Re(a) < 0, Re(b) > 0 k
Ψ
a,b
k,c
f = G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0. (1)
Ψ
a,b
k,c
¨o
¨o
¨o