Tải bản đầy đủ (.pdf) (5 trang)

Giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai thương phiếu p8 pps

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (439.72 KB, 5 trang )

Cách 2: Chọn n = 15.
V
15
= a.

= 2.500.000 x = 43.233.542
Kỳ khoản 15, ông ta phải gửi vào tài khoản một số tiền là:
a
15
= a - (V
15
– V
n
)
= 2.500.000 - (43.233.542 - 42.000.000)
a
15
= 1.266.458
Cách 3: Chọn n = 14.
V
14
= 39.934.845
Để đạt được số tiền là 42.000.000 VND, ông ta để V
14
trên
tài khoản một thời gian x:
x = = = 2,546 quý
= 7 tháng 19 ngày.
4.2.3. Chuỗi tiền tệ đều phát sinh đầu kỳ
Xét một chuỗi tiền tệ gồm các khoản tiền bằng nhau a phát sinh vào đầu
mỗi kỳ trong suốt n kỳ. Lãi suất áp dụng cho mỗi kỳ là i. Chuỗi tiền tệ này được


gọi là chuỗi tiền tệ đều phát sinh đầu kỳ.
4.2.3.1.Giá trị hiện tại
Đồ thị biểu diễn

V
0
’: Giá trị hiện tại của chuỗi tiền tệ
Chọn thời điểm t = 0 làm thời điểm so sánh, ta có:
V
0
’ = a + +

+…+

+


V
o
’ là tổng của một cấp số nhân với n số hạng, số hạng đầu tiên là và
công bội là (1+i).
V
0
’ = .


V
0
’ = a (1+i).



Ví dụ:
Lấy lại ví dụ ở trên về việc một người mua một cái bàn ủi bằng cách trả
góp. Thay vì trả vào cuối mỗi tháng, ông trả tiền vào đầu mỗi tháng. Trường hợp
này, người đó đã mua cái bàn ủi với giá bao nhiêu?
i = i
(12)
/12 = 9,6%/12 = 0,8%
V
0
’ = 1.000.000 x (1 + 0,008) x = 11.489.803 VND
4.2.3.2.Giá trị tích luỹ (giá trị tương lai)
Đồ thị biểu diễn


V
n
’: Giá trị tích luỹ (tương lai) của chuỗi tiền tệ
V
n
’ = a(1+i) + a(1+i)
2
+ …+ a(1+i)
n-1
+ a(1+i)
n

Vế phải là dạng tổng của một cấp số nhân n số hạng với số hạng đầu tiên
là a(1+i), công bội là (1+i)
V

n
’ = a(1+i).


V
n
’ = a(1+i).


Ví dụ:
Để thành lập một số vốn, một doanh nghiệp gửi vào một tài khoản đầu
mỗi năm một số tiền không đổi là 10 triệu VND. Cho biết số tiền trong tài khoản
này vào lúc doanh nghiệp ký gởi tiền lần thứ 6, nếu lãi suất là 8,5%/năm.
V
6
= 10.000.000 x = 74.290.295 VND
V
6
’ = 10.000.000 x (1+0,085).

= 80.604.970 VND
Tiết 4, 5, 6 :
4.3. Chuỗi tiền tệ tổng quát
Ở phần trên, ta chỉ tìm hiểu các chuỗi tiền tệ đơn giản. Đó là các chuỗi
tiền tệ đều với lãi suất áp dụng trong mỗi kỳ là như nhau và kỳ phát sinh trùng
với kỳ vốn hoá. Trong phần này, các chuỗi tiền tệ tổng quát hơn sẽ được giới
thiệu :
- Chuỗi tiền tệ với lãi suất áp dụng ở mỗi kỳ không giống nhau.
- Chuỗi tiền tệ với kỳ phát sinh không trùng với kỳ vốn hoá.
- Chuỗi tiền tệ phát sinh có quy luật (biến đổi theo cấp số nhân hoặc

cấp số cộng).
4.3.1. Chuỗi tiền tệ với lãi suất áp dụng ở mỗi kỳ không giống nhau
Giả sử có một chuỗi tiền tệ gồm n kỳ với số tiền phát sinh là a
1
, a
2
, … , a
n

tương ứng vào cuối kỳ thứ 1, 2, …, n Lãi suất áp dụng trong kỳ thứ k là i
k
. Đối
với trường hợp này, có hai tình huống nảy sinh:
4.3.1.1.Tình huống 1:
i
k
của kỳ thứ k sẽ được áp dụng cho tất cả các khoản tiền phát sinh tại bất
cứ kỳ nào. Khi đó, giá trị hiện tại của chuỗi tiền tệ này sẽ là :
V
0
= +

+

+ … +
Giá trị tương lai :
V
n
= a
1

(1+i
2
)(1+i
3
)(1+i
4
)…(1+i
n
) + a
2
(1+i
3
)(1+i
4
)…(1+i
n
) + a
3
(1+i
4
)…(1+i
n
) +
… + a
n

4.3.1.2.Tình huống 2:
i
k
của kỳ thứ k sẽ được áp dụng cho duy nhất khoản tiền phát sinh tại kỳ

đó. Khi đó, giá trị hiện tại của chuỗi tiền tệ này sẽ là :


Giá trị tương lai :
V
n
= a
1
(1+i)
n-1
+ a
2
(1+i)
n-2
+ + a
3
(1+i)
n-3
+ … + a
n

4.3.2. Chuỗi tiền tệ với kỳ phát sinh không trùng với kỳ vốn hoá
Giả sử một chuỗi tiền tệ có số tiền phát sinh vào cuối mỗi quý nhưng kỳ
vốn hoá lại cuối mỗi tháng. Trong trường hợp này, ta sẽ tính lãi suất tương ứng
với lãi suất đã cho sao cho kỳ vốn hoá của lãi suất mới trùng với kỳ phát sinh.
Ví dụ :
A muốn có một số tiền là 40.000.000 VND bằng cách gửi vào ngân hàng
cuối mỗi 6 tháng một khoản tiền bằng nhau là a trong 5 năm. Lãi suất danh
nghĩa của ngân hàng là i
(12)

= 8,4%, vốn hoá cuối mỗi tháng. Xác định số tiền a.
Để xác định lãi suất áp dụng với mỗi 6 tháng tương ứng với i
(12)
, trước
hết, ta xác định lãi suất danh nghĩa i
(2)
vốn hóa mỗi 6 tháng.
Ta có :

Lãi suất áp dụng đối với mỗi 6 tháng của chuỗi tiền
tệ:
Phương trình giá trị:

Ví dụ :
B vay một khoản tiền là 50.000.000 VND và phải trả vào cuối mỗi quý một
khoản tiền bằng nhau trong 2 năm. Nếu lãi suất của khoản vay là lãi suất danh
nghĩa i
(2)
= 8% vốn hoá mỗi 6 tháng thì số tiền mà B phải trả cuối mỗi quý là bao
nhiêu?
Tương tự như ví dụ trên, ta sẽ xác định lãi suất danh nghĩa i
(4)
vốn hoá
cuối mỗi quý.

Lãi suất áp dụng đối với mỗi quý của chuỗi tiền tệ là :

Phương trình giá trị sẽ là :

Như vậy, đối với chuỗi tiền tệ có kỳ phát sinh không trùng với kỳ vốn hoá :

số kỳ phát sinh là n kỳ/năm trong khi lãi suất lại vốn hoá m kỳ/năm i
(m)
, m ≠ n.
Trước hết, ta tính lãi suất vốn hoá n kỳ/năm i
(n)
tương ứng với lãi suất đã cho i
(m)

bằng công thức sau :

Khi đó, lãi suất áp dụng với mỗi kỳ của chuỗi tiền tệ sẽ là :

4.3.3. Chuỗi tiền tệ phát sinh có quy luật
4.3.3.1.Chuỗi tiền tệ biến đổi theo cấp số cộng
Xét một chuỗi tiền tệ biến đổi theo cấp số cộng có giá trị của kỳ khoản đầu
tiên là a, công sai là r, số kỳ phát sinh là n và lãi suất áp dụng trong mỗi kỳ là i. Ở
đây, ta cũng đặt giá thiết là kỳ phát sinh trùng với kỳ vốn hoá.

×