Tải bản đầy đủ (.pdf) (5 trang)

ĐỀ THI THỬ ĐẠI HỌC 2011 LẦN 2 THÁI PHIÊN_HẢI PHÒNG ppsx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.05 MB, 5 trang )

1.
KhAo
s6t
sU'bi6n thi6n
vi ve
d6
thi
(
C
)
cira
hdm
s6.
2.
M
ld di€m
b6tty
o'.tren
(C)
TicpjuytSn
cira
(
C)
tai
M cdt
c6c
dudng
ti€m
c4n
cria
(C)


tai
A vi
B;
gqi
I
ld
giao
di6m 2
duong
tiQrn
c{n.
Tim toa
dQ M
sao cho
dudng
trdn
ngoq.i
tirip
tam
!ij.
iae
c6 di€n
tichbing
2n
CAu II(
2 di€m):
io'crAo
Dvc
&
DAO

TAO
HATPHONG
TIIU,ONG
THPT
THAI
PHTEN
i. PHAN
CFILN{G
CHO
TAT
CA
THi
SINH
,
'^
7
Lau
l(z olem)
,
2x-3
Lno
ham
so
y
=
;-;.(
C)
I-L
cos2x
+ 5 sin

1) Giei
phuong
trinh
:
DE
THI
THII
EAI
HQC
LAN
II IYAM
2011
M6n :
TOAN
_
KIIoI
A
Thdt
gian
: 180
phrit
(
kh6ng
nC
tndt gtan
phdt
di
)
=-
/

2)
Gieibdt phuo'ng
trinh
:
-E
<
x+Zt
P
-
Jn.u)"
I
x=2+t
az:ll=-3+3t
felR.
I
z=t
J7T \
iT- I
)l
cAu rrr
(
1
di€m)
:
Tinh
,
's*(rr,
-+)*
d
(

J+-*')
c6u IV
(
I
di6m)
: Trong
kh6ng
gian
cho
ldng
tru
dtrr.g
ABC.AB:C,
eo
AB
=.a,AC
=Za,AA,
=2ali
vit
ti
=120"
.
Gqi
M
li.trungditim
cira canh
CC,
.
Hdy
chfrng

minh
MB
L
MAl
vi
tinh
khoing
c6ch
tir
A toi 1.ndt
phing (A.BM
).
Cdu V
(
I
di€m):
Tim ntde
hC
phuo,ng
trinh
sau c6
nghiQm
v6,ix
>
,,
{111 =-
fVx'+3*^ly'+5=m
rr.
PHAN
RrENG(

3
diem)
A.
Theo
chuong
trinh
chuAn
CduVLa:
(
2
di€m)
l)
Trong
mat phing
v6i
h0 trsc
tea dQ
Oxy cho
tam
gi6c
ABC c6
dinh
A rhugc (d):x
-
4y
-2=0;
dudng
thing
BC
songsongv6'i(d);phuongtrinhdudngcaoBH:x*y*3=0.vdtungdi6mcanhabtaM(f;1).ti-mtqadgcac

dinh
A,
B,
C.
2)
Trongkhdnggianv6'ihQtrqctqad0Oxyzchom{tphing(P)
:x
-2.y+Zz+2=1vdhaidi€mA(4;1;3)vh
B(2;-3;-1).Hdy
tim di€m
M thuQc
(P)
sao cho
MAz
+
MB.2 c6
gi6
ni
nh6
nh6t
.
C6.uVil.a(
ldi6rn)
.t
Trongc6c
s0
phuczthoamdnphucrngtrinh:
liz
-Zl=1,
-2

-
il
haytimstiphri'czc6acgumen
bingTr
B.
Theo
chuong
trinh
ning
cao :
4
Cdu VI.b:
(
2di€m):
l)
Trong
mdtphingOxyclio
di6m
C( 2;0)vit
Elip(E)
c6phuongtrinh:
t*
r=
=1.
Timcricdi6m
A,B thuQc
4'
@)
biet
ring

hai
di6rn
A,B
dOi xn'ng
nhau
qua
tmc
irodnh vir tam
gi6c
ABC ddg.
2)
Trong
kh6ng gian
vdi h€
tga dQ
Oxyz, cho
hai
dudng thdng:
r .x-4
y-I
z+5
At
|
;-
=
-;
=
:-
Va
:

J-i-2
-
Viet phuong
trinh
mflt cdu c6
b6n kfnh
nhd
nhAt ti6p
xirc voi chhai
duong
thing
d, vd
d2.
Cdu VII.b:
(1
diCm)
Tim
gi6
tri
nt
d€ hdm
s6
y
=
x2
+(m2
-r)x-m2
+m
x-L
zr)

x+- I
3)
tan
cira
d6
th!
di
qua
di€m
M(l;
5).
d6ng
bi6n trdn cdc
khoing
cria
tflp
x6c dinh vd
ti€m cdn
xi€n
www.MATHVN.com
www.mathvn.com
NOi
du
oAp
Ax vA
BIEU
DIEM
THI
THITE
C LAN

II
-
KIIOI
A -2011
l)Khio
sit
vi
vc a6 tni
hirm
s5
-2x-3
x-2
1. TXD
: R\{z}
2.
Su
biSn thi6n
:
+
Gini hpn
-
TiQm cgn
+D6thi:
Gitii
phu'o'ng
trinh :
lim
y
=a6p
;

hn-l_
!
=-q=
d6 thi
c6
ti6rn
cf.1
dirng
litx:2
x+2-
x-+2-
li+
y
=2
=
dd thi c6
tiQm cf.n ngang
lity
=
2
+
y'
= J-<
0 Vx ;e
2
=
hdrn
sii nghich
bi6n tr€n
(-

-;
2);(
2; +oo)
'
(*-2)'
v
E? thigiao
vdi
trpc
Oy tai di6m
A(0;312);
D6 thi
giao
v6i
fi'uc Ox t4i di6m
B
(3/2
;0)
D6 thi
nhdn Di6m
I
Q:2)
lA
giao
cria
2
tiQm
c6n
lALrn tAm
d6i xilng.

2)
co: M[",?;),
xs *
2,y'(xo)
=
6+
Phuong
frinh ti6p
ruyt5n A voi
(
C) t4i
M:
t:y
=-:!
"(r-ro;+?&:1
l*o
-2)-
xo
-
z
To4 dq
giao
didm
A, B cta
(A)
vd
hai tidm
cfln n(rje4)t
Bea
-z;z)

\
x\-z
)
.Mdt
khdc
l(?;2) vit
AIAB vu6ng
t4i
I n€n duorg
h'dn ngo4i ti6p
AIAB
duoTrg
tr-on cd
b6n kinh
R:AB/2.
Md theo
gt,
diQn
tich ducng
trdn
bdng 2x >
R=
Ji
o AB
=2Ji
|
-,
(z*-z
r'?l ,
[x^=1

f
< " -
tr'
-l?;
-,
).]
=
t
-,*
-
t)'
-
G+
=,
*
Ll
=',
a
M(t: t) vd
M
(3:
3)
cos2x+ssin(x+
=-z(1).
Ekxd:
0,25
0,25
0,2s
,un[,-
3n

2
z\
(
r\
-l.tanln+-l
6)
l.
3/
f
sin(x
-
a
J
cos(x
-
a
lsin(x+,r
Lcos(
r + z
l6)*0
l6)*0
/3)*0
/3)*0
l'*
*]
l'*
r
ktt
-+
-

62
r kr
+
-
2t
(
zo.1^
^
)
e costx
+5srnIrc*
2
)=2eZcos'
4,25
0,25
4,25
0,25
r
^
,, ., ;
2r
I
cosx=J
ltoat)
l
r=-;+hZ|T
<+l
r
<+l
'

I
cosr
=
I
2n
L
2
L"=-
:
+kt/,
KOt hgp Ekxd phuo'ng
trinh c6 ngiriQm
:
(g
lx>
e{ 2
t-
l^
[x
+
u
Cgc tri : kh6ng
c6
+
Bing
bi€n
thi6n
(tt\(n\
ra c6
:

t"[r-AJ
,*["*JJ=-l
n6n
(t)
x-5cosx-3=0
2r
3
l2x+9>
0
1 ,-
f
3-V9 +2x
+0
www.MATHVN.com
www.mathvn.com
^
/
?
2x'13
+
JS
+zx)-
t
-t2
r
\2
(3-Je
-2x)
13+Je+zx)-
. 2x2

bpte
l =
<x+21
\3-J9+2x)
2x219
+6^19
a2*
+9
+2x\
-T
<x+21
e18
+2x
+
6.,1; .
2. <2x
+ 42
Ktit
h-op
vdi
di6u
ki6n
x6c
dinh
x
+21
a
Jg+z*
.4
er<i

2
ta
c6
nghipm
cta
b6t phuong
trinh
ld
:
lg
j
l <.r<
-
l1
la2
[,*o
t-
(
I
-
lxl,2'
Jl
0\
I
I,
=
[xe?'dx
0
lx*y=3 lt=3-x
?

-
z)
fJ;r'
+
3 *
rly'
*5
=
n.'
lJx'
+:
+
D[t
/(x)
=.,6t;+.ft-rt'
* s
=
-+)0.='l*r',d*-'l-L*
'14-x')
i
irl+_*?
Dat
u
=
x,dy
=e2t
clx
-
tr=f
Ir

L='[+-
oo, ,=t[4-]
+at=P,
x=
0=>r
=z;
x=1=>r=v5
o
tf4-x'
^14-*/
2
+
r,=
le-f)at=f
4Ji
.
e2+l
16
+I=-:''*' 3Jj
43
lv{A,t
=
A,C,2
+C,Mt
=7zo)t
*("Ji)'
=9a2;BC2
=
AB2
+

AC2
-zAB.AC3osl20"
=7a2
i
BM2
=
N
+a,f
=7d
*(rJ
t)'
=tfr;48
=A4'
+zE
=(uJs)'
+d
=zti
Suy
ra
A,B'
=
MAr2
+
MBz
+
MB
L
MAl.
Hinlr
ch6p

MBAAT
vd
GABA,
c6
chung
d6y
ld tam
gi6c
BAA,
vd
du6ng
cao
birrg
nhau
n€n
th6
tich
bing
nhau
v-t/
-r/
-l
-
i
!a.za.sin:20"=ltJE
v
=
yMB,t,t,
=
yc'ae,t,

=
jA4'S^rr.
=:2atl
5'
2
3
^
a'JE
=d(A,(A,BM))=#=ffi:m=+
l(r
1
.
-
A.
I
\-
,f(:*1\s=,,
tt, ,
X
X-3
:.:,=:-:
.J
x' +3
./1:
-
x;'?
+
s
.f
'(x)=6a;"nf4afi

=(3-DJx'1
+3
o{"-'=t
l2x"
+I\x-27
=0
Phuong
trinh
thft
hai
c6
A,=81+54=135=9.15,
vd
hai
nghiQm:
,r=2Y.
hainghi€m
ndy
ddu
bi loai
vi
nh6 hon
2.
vfy, dg.o
hiim
cria
hdm
s6 kh6ng
rhe d6i
O5 t<icm

tra
ring
cd
d6u
tr6n
12;.o)
,
rigodi
www.MATHVN.com
www.mathvn.com
VIa
r)
VIb
1)
ra
f
'(3)
>
0 n6n
.f
'(*)
>
A,Yx2Z
.
Do
d6,
gi6
tri
nh6
nirdt

ciia
f
(x)
khix>2
phuong
trinh
d6
cho
c6 nghi€m (vdi
liL
f
(2)=^11
+Je .Ctng
d6
th6y
tyif
Q)=
co
, Tir.
d6
suy ra:
h€
x>2)
khi vd
chi
khi
*>"G
*J7
.
-4a-l

-a+I
2
.( 2 2\
1
=___
€d=
__=
,[_:
,
_
j
)
817
__0
_+b
DoBC//(il.'+=+
A( 4a+2i
a)
suy
ra
eUe+a-1;-a+1).
Do
AM LBH
M tdnunghek,q,c
,a"
c(2,!\
l3'? /
\'
-
/

:x+
y
+3
=0
n1n:
Be
(d):x+y+3=0
n€n
B(b;-b-3)
e
b=-4e
B(-4;l)
e,Kr1f
4y-lf =17
+1o*y
<>
ir
-
-2y
-1*
z=(-Zy
-1)
+
yi
-(q
1'7 \
=BC
I
Y-n
:1-+b l.

\3
'3
)
Gqi
I
ld trung
ditSm
AB
suy ra
I( 3
;-1
;1).
Ap dgng
hg thric
trung ruy6n
ftong
tam
gi6c
MAB
n6n
ta c6
:
MAz +IvB2
=2742
*AB2
2
+ MA2
+
W2 nhdnhd
e

tufr nnl nndi
e
l,fr L
(p)
ndn
M ld
hinh
chi6u
ctia
i tr€n
(p)
Gqi
(d)
ld
duong
thing
vu6ng g6c
v6'i
(p)
va di
qua
I
suy
ra
phuong
trinh
cria
(d)
Id
:

M
ld.
giao
di6m
crla
(d)
va
@)
n6n
ta c6
M(2;1;-1)
Ddt
z
=x+
yi(x,y
e R)
li(x
+
yi)-
:l
=l(x
+
yi)
-
z- rl
o
l-y
-
3
+

xil=le
-
2) +
(y
- \rl
x-3 y+1
z
-1
-=_=_
1aa
l z:] =r^4=4
(i)
Acgumencio,M)gfLellcz:'-,,"'
*"
4
Jz
t
l f-
=r-4=-l
{3)
l^lt-zy
-1)'
+ y'
a 'Jz
Ctng
Q)vd
(Z)cho
ta
y
-

-1,
thi
tai th1amdncd
1t1vd
1zy
Ydy
z
=1-i
Goi A(x;y)=B(x;-y).
A,B
phdn
bi|tn€n y*
0.
Ae(
Do
C
(2;0)
n€n
ACAB cdn
rai
C.
=ACAB
ftieCA=AB
€(z-x)t
+
t,
=4x2
(2)
lx=-2
>y=0(loqi)

Gi;ih€(DvA
e)ta
itdc:
i
to
'
,
iru
L^
-
13
-'Y
-
6'76
n,,.n*^e r\
,\(to
tz)
lto
-tz)
ta co z
dtem
A,b
can rm
ta
l,';
n
I
""
lO;
n

)
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
4,25
www.MATHVN.com
www.mathvn.com
(^
I Y: l-Lf
I
a, :
I
I
=
-3
+
3r
=
(d,
di
qua
M

r(2;
-3:0)
c6
WCp
ur(I;
3; t).
I
z
=t
ra rttlu
:
,41.M/14,
=60
+0+
dr;drch/o
nhau.Goi
MN litfoqn
vutng g6cchung
cila d,;d,
rh1
Mdt
ct
cobenkinh
nh|
nh{t
trcl
rhe void,d,
titmit
ciu
ahig

tciin
uw
M e d,+
M(4+3r;I-r;-5
-Zt)
;
N e dr+
N(Z+
t,;-3
+3t,;r)
I
tutY .^
=O
l-tqr
-2t'=lZ
lr
=
-I
\m.r,=o
o
\
,r*
rtt'=9o
{r'=t
+M(r;2;-3);N(3;0;1)
M{t
ctu &to-ng
ki;h
MN cJ ftn
r

(2;1;
-t1
c J
u
ah
nin
n
=
J
e
P hndng
rriih
mdt
c d7t t
d :
(x
-
2)' +
(y-
1)t +
(z
+
I)2
=
6
TiQm cAn
xi€n
(A):
y
=

x + m2
.
t,m
y
=1 ;>0,Vx+1:>
(x
-r)'
a
Y4y
m:_Z
0,25
TU
M(1; 5)
e
(A):+
m
=
12.
*2
-2*
+1-m
{t
-1)2
<+A'<0
em<O
>OVx
*Ie
x2
-2x+1-m>0Y
x +1

www.MATHVN.com
www.mathvn.com

×