Tải bản đầy đủ (.doc) (74 trang)

Nghiên cứu và chế tạo vật liệu bột và màng ZnS Cu,Al

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.94 MB, 74 trang )

Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
MỞ ĐẦU
ZnS là hợp chất bán dẫn thuộc nhóm A
II
B
VI
đã được các nhà khoa học trong
và ngoài nước nghiên cứu từ lâu. Do ZnS có độ rộng vùng cấm lớn (ΔE
g
= 3,7eV) ở
nhiệt độ phòng, vùng cấm thẳng, có độ bền lớn khi ở điện trường mạnh, nhiệt độ
nóng chảy cao,hiệu súât phát quang lớn … nên ZnS được ứng dụng rất nhiều trong
linh kiện quang điện tử như màn hình hiển thị, cửa sổ hồng ngoại, chế tạo pin mặt
trời, điot phát quang…
ZnS là vật liệu lân quang điển hình vì nó có khả năng phát quang tự kích hoạt
(SA). Bột lân quang ZnS có một vùng phát quang mở rộng từ vùng gần tia tử ngoại
(UV) đến gần vùng hồng ngoại (IR). Hơn nữa, độ rộng vùng cấm của ZnS có thể
được thay đổi bằng cách thay đổi nồng độ tạp chất pha vào. Hiệu súât phát quang
thường tăng lên khi pha thêm nguyên tố đất hiếm hay kim loại chuyển tiếp. Đặc biệt
là vật liệu ZnS pha tạp Ag, Cu, Mn, Co, Al… đã và đang được nghiên cứu rộng rãi
do phổ phát xạ của chúng thường nằm trong vùng ánh sáng khả kiến được ứng dụng
trong đời sống hằng ngày.
Bột lân quang ZnS:Cu,Al được ứng dụng nhiều trong lĩnh vực phát điện
quang như dụng cụ phát xạ electron làm việc ở dải tần rộng. Để đáp ứng cho sự phát
triển kĩ thuật nhất là chế tạo linh kiện có hiệu điện thế vận hành thấp, độ phân giải
cao nên ZnS:Cu,Al là vật liệu không thể thay thế để chế tạo màn hình huỳnh quang
điện tử, ống hình tivi...
Việc nghiên cứu tìm ra các phương pháp tiên tiến, hiệu quả để chế tạo bột lân
quang ZnS, chế tạo vật liệu ZnS pha tạp có kích thước nano và nghiên cứu ảnh
hưởng của hiệu ứng lượng tử tới tính chất của vật liệu đã thu hút được nhiều sự quan
tâm của của các nhà khoa học trong những năm gần đây. Bởi vì, các hạt có kích


Trang 1
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
thước nhỏ giảm tới cỡ nm (1nm -100nm), khi đường kính hạt xấp xỉ bằng đường
kính Bohr thì hiệu ứng giam giữ lượng tử cũng bắt đầu đóng vai trò quan trọng
nhiều hơn, ảnh hưởng mạnh đến tính chất của vật liệu làm cho vật liệu nano có khả
năng ứng dụng cao hơn.
Các nghiên cứu về vật liệu ZnS:Cu, Al cùng với các kim loại khác như Mn đã
chỉ rõ sự khác biệt giữa các hạt nano và mẫu khối tương ứng. Với ý nghĩa thực tiễn
quan trọng và dựa trên cơ sở trang thiết bị của tổ bộ môn Vật lí chất rắn-Trường Đại
học Sư phạm Hà Nội, chúng tôi chọn đề tài nghiên cứu cho luận văn thạc sĩ là
”Nghiên cứu và chế tạo vật liệu bột và màng ZnS :Cu,Al ” .
Mục đích của luận văn:
*) Tìm hiểu và chế tạo bột ZnS:Cu, Al bằng phương pháp đồng kết tủa, chế tạo mẫu
màng bằng phương pháp phun tĩnh điện.
*) Nghiên cứu ảnh hưởng của công nghệ chế tạo đến một số tính chất của vật liệu
như: cấu trúc tinh thể, kích thước hạt và đặc biệt là tính chất quang, cụ thể là ảnh
hưởng của nhiệt độ ủ mẫu bột, nhiệt độ đế của mẫu màng.
*) Tìm ra cơ chế làm giảm kích thước hạt đến kích thước nano.
Ngoài phần mở đầu, kết luận và tài liệu tham khảo, nội dung khóa luận này
gồm 3 chương
Chương 1: Tổng quan về vật liệu ZnS:Cu,Al
Chương 2: Tổng quan về các phương pháp chế tạo và nghiên cứu vật liệu
Chương 3: Thực hành chế tạo mẫu bột ZnS:Cu, Al, kết quả và thảo luận.
Trang 2
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
CHƯƠNG I
MỘT SỐ NÉT TỔNG QUAN VỀ VẬT LIỆU ZnS VÀ ZnS PHA TẠP
1.1. Cấu trúc mạng tinh thể của ZnS
ZnS là một trong những hợp chất bán dẫn điển hình thuộc nhóm bán dẫn
A

II
B
VI
. ZnS tồn tại ở nhiều dạng cấu trúc phức tạp nhưng có thể coi ZnS có hai dạng
cấu trúc chính là cấu trúc lục giác (Wurtzite) và cấu trúc lập phương giả kẽm
(sphalerite/Zincblende).
1.1.1. Cấu trúc Wurtzite
Nhóm đối xứng không gian của mạng tinh thể này là C
4
6v
- P6
3mc
. Đây là cấu
trúc bền ở nhiệt độ cao (nhiệt độ chuyển từ giả kẽm sang Wurtzite xảy ra ở 1020
0
C
đến 1150
0
C) [14,17]. Mỗi ô mạng chứa 2 nguyên tử ZnS, trong đó vị trí các nguyên
tử là:
Zn : (0,0,0); (
2
1
,
3
2
,
3
1
)

S : (0,0,u); (
u
+
2
1
,
3
2
,
3
1
) với u
8
3


Trang 3
Ion S
2-
Hình 1.1: Cấu trúc lục giác Wurtzite
Ion Zn
2+
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Mỗi nguyên tử Zn liên kết với 4 nguyên tử S nằm trên 4 đỉnh tứ diện gần đều
Khoảng cách từ nguyên tử Zn đến 4 nguyên tử S: một khoảng bằng u.c còn 3
khoảng kia bằng
2
1
2
2

1
22
3
1














−+
uca
(a, c là những hằng số mạng được xác định là:
a=3.82304A
0
, c= 6.2565A
0
) [1].
Có thể coi mạng lục giác Wurtzite cấu tạo từ 2 mạng lục giác lồng vào nhau:
một mạng chứa anion S, một mạng chứa cation Zn. Xung quanh mỗi nguyên tử có
12 nguyên tử lân cận bậc2:
- 6 nguyên tử ở đỉnh lục giác nằm trong cùng mặt phẳng với nguyên tử ban đầu cách

1 khoảng a
- 6 nguyên tử khác ở đỉnh lăng trụ tam giác cách nguyên tử ban đầu 1 khoảng
2
1
2
4
1
2
3
1






+
ca
Trong cấu hình này tồn tại nhiều cấu hình đa kiểu " như 2H, 4H, 8H, 10H"
như hình 1.2 , các loại hình này cũng như tính chất không gian của nó có ảnh hưởng
trực tiếp tới các tính chất quang phổ học của vật liệu [4].

Trang 4
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
1.1.2. Cấu trúc lập phương giả kẽm
Nhóm đối xứng không gian tương ứng với cấu trúc này là
m
d
FT
34

2

. Đây là
cấu trúc thường gặp ở điều kiện nhiệt độ < 950
0
C và áp suất bình thường. Trong ô
cơ sở có 4 phân tử ZnS, tọa độ các nguyên tử như sau:
S: (0, 0, 0); (0, 1/2, 1/2); (1/2, 0, 1/2); (1/2, 1/2, 0)
Zn: (1/4; 1/4; 1/4); (1/4; 3/4; 3/4); (3/4; 1/4; 3/4); (3/4; 3/4; 1/4)




Mỗi nguyên tử S ( hoặc Zn) còn được bao bọc bởi 12 nguyên tử cùng loại,
chúng ở lân cận bậc 2 nằm trên khoảng cách
a
2
2
. Trong đó có 6 nguyên tử nằm ở
đỉnh của lục giác trên cùng mặt phẳng ban đầu, 6 nguyên tử còn lại tạo thành hình
lăng trụ gồm 3 nguyên tử ở mặt phẳng cao hơn, 3 nguyên tử ở mặt phẳng thấp hơn
mặt phẳng lục giác kể trên. Các lớp ZnS được định hướng theo trục [111]. Do đó
tinh thể lập phương giả kẽm có tính dị hướng, các mặt đối xứng nhau
][hkl

Trang 5
Ion S
2+
Ion Zn
2+

Hình 1.3: Cấu trúc lập phương giả
kẽm Sphalerit
Hình 1.2: Cấu trúc đa kiểu của cấu trúc wurtzite.
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
][ lkh
, các phương ngược nhau
][hkl

][ lkh
có thể có tính chất ngược nhau.
Trong cấu trúc này không tồn tại tâm đối xứng hay tâm đảo.
1.1.3. Mạng tinh thể thực của ZnS
Các hằng số mạng của ô nguyên tố lục giác và hằng số mạng ô nguyên tố lập
phương liên hệ với nhau qua công thức:
ch
aa
2
2
=
,
ch
ac
3
32
=
trong đó
h
a

h

c
là hằng số mạng lục giác,
c
a
là hằng số mạng lập phương.
Vị trí tương đối của nguyên tử trong mạng lập phương và mạng lục giác gần
giống nhau. Sự bao bọc của các nguyên tử Zn (hay S) bởi các nguyên tử lân cận bậc
hai trong hai loại mạng là giống nhau. Sự khác nhau về toạ độ các nguyên tử thể
hiện ở chỗ cấu trúc lục giác đặc trưng bởi phản lăng trụ. Để phát hiện sự khác nhau
trong cấu trúc này cần phải xét đến nguyên tử lân cận bậc ba [18].
Các hằng số mạng phụ thuộc vào độ hoàn thiện của mạng tinh thể. Sự tồn tại
của tạp chất cũng gây nên những sai khác về hằng số mạng so với tính toán lí thuyết.
Những sai hỏng trong tinh thể lục giác có thể tạo ra một vùng nhỏ cấu trúc lập
phương nằm trong tinh thể lục giác. Tinh thể ZnS kết tinh trong các điều kiện khác
nhau có thể tạo ra các dạng cấu trúc khác nhau; đó là các biến thể của cấu trúc lập
phương và cấu trúc lục giác.
1.2. Cấu trúc vùng năng lượng của ZnS
1.2.1. Cấu trúc vùng năng lượng của mạng lập phương giả kẽm
Mạng lập phương giả kẽm có đối xứng tịnh tiến của mạng lập phương tâm
mặt, các vectơ tịnh tiến cơ sở là:

)0,1,1(
2
1
1
aa
=

;
)1,0,1(

2
1
2
aa
=

;
)1,1,0(
2
1
3
aa
=

.
Mạng đảo là mạng lập phương tâm khối với các vectơ cơ sở là:
Trang 6
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

)1,1,1(
2
1
−=
a
b
π

;
)1,1,1(
2

2
−=
a
b
π

;
).1,1,1(
3
2
3
−=
π
b


Vùng Brillouin là 1 khối bát diện cụt như hình 1.4.
Bằng một số phương pháp như phương pháp giả thế, phương pháp sóng
phẳng trực giao người ta đã tính toán được cấu trúc vùng năng lượng của ZnS. Hợp
chất ZnS có vùng cấm thẳng. Đối với mạng lập phương giả kẽm trạng thái
'
25
Γ

chuyển thành
ν
15
Γ
. Nếu tính đến tương tác spin - quỹ đạo thì trạng thái
ν

15
Γ
tại
0
=
k

sẽ suy biến thành 6 trạng thái,
8
Γ
suy biến bậc 4 và trạng thái
7
Γ
suy biến bậc
2 . Sự suy biến tại
0
=
k

được biểu diễn như hình 1.5.
Do mạng lập phương giả kẽm không có đối xứng đảo nên cực đại của vùng
hoá trị lệch khỏi vị trí
k

=0 và làm mất đi sự suy biến vùng các lỗ trống nặng v
1

lỗ trống nhẹ v
2
.

1.2.2. Cấu trúc vùng năng lượng của mạng lục giác Wurtzite.
Mạng lục giác Wurtzite có các vectơ tịnh tiến cơ sở là:
Trang 7
Hình 1.4: Cấu trúc vùng Brillouin của
tinh thể ZnS dạng lập phương giả kẽm
Hình 1.5: Cấu trúc vùng năng lượng
của tinh thể ZnS dạng lập phương giả
kẽm tại lân cận
K
Z
K
y
K
X
k

(0,0,0)
E
( )
16
ΓΓ
8
Γ
5,1
Γ
7
Γ
1
V
2

V
3
V
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

1
a

=
)0,3,1(
2
1

a
;
2
a

=
)0,3,1(
2
1
a
;
)1,0,0(
3
ca
=

.

Các vectơ trong không gian mạng đảo là:

)0,
3
1
,1(
2
1
1
−=
a
b
π

;
)0,
3
1
,1(
2
2
a
b
π
=

;
)1,0,0(
2
3

c
b
π
=

.
Do vậy vùng Brillouin là 1 khối lục lăng trụ bát diện như hình 1.6. Do cấu trúc
tinh thể của mạng lập phương và mạng lục giác khác nhau nên thế năng tác dụng lên
điện tử trong hai mạng tinh thể khác nhau. Tuy nhiên đối với cùng một chất khoảng
cách giữa các nguyên tử trong cùng loại mạng bằng nhau. Liên kết hoá học của các
nguyên tử trong hai loại mạng tinh thể cũng như nhau. Chỉ có sự khác nhau của
trường tinh thể và vùng Brillouin gây ra sự khác biệt trong thế năng tác dụng lên
điện tử. Bằng phương pháp nhiễu loạn điện tử có thể tính được năng lượng của
mạng lục giác.
So với sơ đồ vùng năng lượng của mạng lập phương ta thấy rằng do ảnh
hưởng của nhiễu loạn trường tinh thể mà mức
Γ
8
(j=3/2) và
Γ
7
(j = 1/2) của vùng
hoá trị lập phương bị tách thành 3 mức
Γ
8
(A),
Γ
7
(B),
Γ

7
(C) trong mạng lục giác
(hình 1.7)
Trang 8
E
(0,0,0)
k

7
Γ
)(
9
A
Γ
)(
7
B
Γ
)(
7
C
Γ
Hình 1.6: Cấu trúc vùng Brillouin
của tinh thể ZnS dạng Wurtzite
Hình 1.7: Cấu trúc vùng năng lượng của
tinh thể ZnS ở dạng Wurtzite tại lân cận
K
y
K
X

K
Z
K
M
A
L
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
1.3 Một số kết quả nghiên cứu về tính chất quang của mẫu khối ZnS và mẫu
khối ZnS pha tạp
1.3.1 Phát quang của mẫu khối ZnS
Với các tính chất như năng lượng vùng cấm lớn, tái hợp thẳng, từ lâu ZnS đã
được biết đến là một trong những chất lân quang điển hình với các tính chất phát
quang khác nhau như: quang phát quang (PL) hay điện phát quang (EL). Khác với
các loại vật liệu khác, các sunfua thuộc họ ZnS có thể phát quang khi không pha
tạp- sự phát quang này được gọi là phát quang tự kích hoạt (SA). Với phổ phát
quang của mẫu khối ZnS trong vùng tử ngoại (UV) và ánh sáng khả kiến (Blue),
J.C.Lee và các đồng sự [17] đã khảo sát sự ảnh hưởng của nhiệt độ ủ lên cấu trúc và
tính chất phát quang mẫu khối ZnS có kích thước hạt khoảng
m
µ
30
được ủ trong
chân không. Lee nhận thấy rằng khi nhiệt độ ủ < 950
0
C, ZnS tồn tại ở cấu trúc
sphalerite và phổ phát ra có đỉnh tại 460
nm
và 528
nm
. Đỉnh tại 460

nm
do lỗ trống
V
Zn
hình thành trong cấu trúc sphalerite và cường độ sẽ tăng khi nhiệt độ ủ tăng
CC
00
950750

nghĩa là mật độ lỗ trống V
Zn
hình thành từ các tâm phát quang được
tăng lên. Lúc này một đỉnh mới xuất hiện tại 528
nm
do V
S
hình thành trong cấu
trúc sphalerite. Đỉnh này được tạo do sự chuyển dời tương đối từ

S
V
dải hoá trị
hoặc tổ hợp dono-axepto (D-A) từ
ZnS
VV

. Khi nhiệt độ ủ >1050
0
C, phổ phát ra có
đỉnh tại 460

nm
, 440
nm
, 528
nm
và 515
nm
. Ta nhận thấy đỉnh tại 460
nm
, 528
nm

xuất hiện trong cấu trúc sphalerite và 440
nm
, 515
nm
xuất hiện trong cấu trúc
wurtzite. Khi nhiệt độ tăng
CC
00
11501050

thì cường độ đỉnh tại 440
nm
, 515
nm

cũng tăng. Tác giả giải thích là do mật độ V
S
tăng trong cấu trúc wurtzite và cơ chế

phát quang là do sự chuyển dời tương đối từ

S
V
dải hoá trị hoặc tổ hợp dono -
Trang 9
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
axepto (D-A) từ
ZnS
VV

. Như vậy khi nhiệt độ >1050
0
C ZnS tồn tại đồng thời cấu
trúc sphalerite và wurtzite .

Hình 1.8: Phổ huỳnh quang của ZnS ủ ở các nhiệt độ khác nhau [18]
Nhìn chung, vị trí đỉnh phổ của bức xạ SA phụ thuộc mạnh vào công nghệ
chế tạo và nhiệt độ ủ. Khi nhiệt độ ủ tăng, các đỉnh dịch về phía năng lượng cao
hơn, đồng thời độ rộng của phổ cũng tăng lên [17].
1.3.2 Phát quang của mẫu ZnS pha tạp
Khi pha tạp chất vào tinh thể bán dẫn ZnS làm cho tính chất quang của ZnS
thay đổi trong đó có những tính chất mà ta mong muốn như: hiệu suất phát quang
lớn, thời gian kéo dài, các vùng phát quang nằm trong vùng nhìn thấy và đặc trưng
cho từng loại tạp chất pha vào … Các tạp chất pha vào có thể chia thành hai nhóm:
các nguyên tố thuộc nhóm I (Ag, Au, Cu,…) được gọi là các tạp chất kích hoạt, còn
các nguyên tố thuộc nhóm II (Al, In, Ga,…) được gọi là các tạp chất cộng kích hoạt.
Các tạp chất này và tổ hợp của chúng cùng với các sai hỏng riêng của mạng tinh thể
Trang 10
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

hình thành các tâm phát quang khác nhau trong tinh thể ZnS pha tạp và tùy thuộc
vào nồng độ tương đối và tuyệt đối của chúng.
Trong luận văn này,chúng tôi quan tâm đến tính chất phát quang của ZnS pha
Cu,Al. Theo [10,11,12], ZnS:Cu, Al có dải phát quang màu xanh nhìn thấy đặc
trưng cho tâm phát quang của Cu. Trong đó, hai dải huỳnh quang màu xanh da trời
và màu xanh lục (B - Cu, G - Cu) được quan tâm nghiên cứu rất nhiều. Bản chất
phát quang của bức xạ B - Cu, G - Cu luôn gắn liền với sự tồn tại của các tạp cộng
kích hoạt (như Al). Tuỳ thuộc vào nồng độ tuyệt đối của ion Cu
2+
và nồng độ tỉ đối
giữa chúng với ion cộng kích hoạt mà vị trí cực đại, cường độ tương đối cũng như
độ rộng phổ của các dải huỳnh quang B – Cu, G – Cu có thể thay đổi và dịch chuyển
[8].
1.3.2.1 Phát quang của mẫu khối ZnS:Cu
Trong suốt thập kỷ từ những năm 1950 - 1970, việc nghiên cứu về sự phát
quang của mẫu khối ZnS: Cu đã được triển khai rộng rãi. Đối với mẫu khối ZnS:Cu
người ta đã quan sát được 3 vùng bức xạ: một là vùng tử ngoại (UV), hai là vùng
khả kiếncó 3 bức xạ: ánh sáng xanh da trời (blue) 431-444nm, xanh lá cây(Green)
516-522nm, ánh sáng đỏ (Red) 674nm và ba là vùng hồng ngoại (IR) [9]. Để giải
thích quá trình bức xạ trong các vùng nói trên nhiều mô hình đã được đưa ra để thảo
luận.
Theo [9], ion Cu
2+
được đưa vào trong bán dẫn nền ZnS và ion Cu
2+
(3d
9
)
thay thế vào vị trí của Zn
2+

. Do tương tác với trường tinh thể tứ diện của 4 ion S
2-

trạng thái 3d
9
tách thành hai mức : mức t
2
nằm cao hơn và mức e nằm thấp hơn. Sơ
đồ chuyển mức năng luợng ứng với các bức xạ được mô tả trên hình 1.9
Theo sơ đồ trên, bức xạ hồng ngoại (IR) đã được khảo sát ứng với sự chuyển
mức từ mức t
2
đến mức e. Khi 1 electron bị kích thích từ dải dẫn và bị bắt ở mức
Trang 11
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
dono nông, bức xạ xanh(G) xuất hiện ứng với sự tái hợp của electron này với 1 lỗ
trống ở mức tạp chất của Cu. Bức xạ đó được gọi là bức xạ G – Cu đã được Shionya
cùng các cộng sự nghiên cứu. Bức xạ đỏ (red - Cu) được cho là ứng với sự tái hợp
của 1 electron từ mức dono định xứ sâu với một lỗ trống ở mức tạp chất của Cu.

Trong một vài công bố đã khẳng định rằng điều này là đúng đắn. Từ sơ đồ ta
có thể dự đoán được 2 dải phát ra bằng sự tổ hợp từ mức nông hoặc sâu: một dải do
chuyển mức đến mức e của Cu
2+
và một dải do chuyển mức đến t
2
của Cu
2+
. Tuy
nhiên giản đồ mức năng lượng như hình 1.9 có nhược điểm là trạng thái hoá trị của

ion Cu
2+
đã được tính trước khi tái hợp, sau đó sự tái hợp Cu
+
(3d
10
) được hình
thành mà không có một trạng thái suy biến. Sự phát quang của bức xạ màu xanh lục
hình thành do sự chuyển mức từ một trạng thái có năng lượng cao hơn (một electron
bị bẫy với Cu
2+
) đến một trạng thái có năng lượng thấp hơn (Cu
+
). Trạng thái cuối
cùng là trạng thái không suy biến và vì vậy phát ra duy nhất một dải. Bản chất của
bức xạ màu xanh da trời (B - Cu) chưa được giải thích rõ ràng. Bức xạ xanh da trời
và tia tử ngoại (UV) có thể liên quan đến các sai hỏng mạng và các nút khuyết mà
Trang 12
Hình 1.9: Sơ đồ chuyển mức năng lượng của ZnS:Cu
2+
[9].
Mức dono nông
IR-Cu
Vùng dẫn
G-Cu
R-Cu
t
2
của Cu
2+

e của Cu
2+
Mức dono sâu
Vùng hoá trị
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
chúng ta đã biết đến qua cơ chế phát quang tự kích hoạt của bán dẫn ZnS không pha
tạp.
1.3.2.2 Phát quang của mẫu khối ZnS:Cu,Al
Mẫu khối ZnS:Cu,Al được chế tạo bằng phương pháp đồng kết tủa nung ở
800
0
C có cấu trúc sphalerite và wurtzite, kích thước hạt cỡ 700nm [16]. Phổ huỳnh
quang phát ra có đỉnh màu xanh da trời (Blue) 449nm và xanh lá cây (Green)
525nm. Các nhóm nghiên cứu về đỉnh cực đại của dải xanh thường cho kết quả khác
nhau do chúng đồng tồn tại 2 kiểu cấu trúc, các đỉnh của cấu trúc sphalerite sẽ lệch
với wurtzite về phía sóng dài [17]. Cơ chế phát quang của mẫu khối ZnS:Cu,Al là
do quá trình tái tổ hợp cặp dono-axepto (Al-Cu) và tổ hợp của các tâm tạp dẫn đến
sự hình thành nhiều mức năng lượng hơn trong vùng cấm của mẫu ZnS:Cu,Al. Theo
[16], nồng độ của chất kích hoạt Cu,Al đóng vai trò quan trọng trong việc xác định
cân bằng nhiệt học giữa tâm Cu
+
và các hiệu ứng khác do sai hỏng mạng và ảnh
hưởng trực tiếp đến cường độ các đỉnh phát xạ. Qua nhiều nghiên cứu nếu nồng độ
pha tạp của Cu là
)/(1010
35
ZnCu
−−

sẽ cho huỳnh quang lớn nhất [16].

Bằng phép dập tắt hồng ngoại người ta tính toán các mức năng lượng của tạp
chất Cu,Al trong vùng cấm như sau: dono Al có mức năng lượng liên kết nông nằm
cách đáy vùng dẫn một khoảng 0.1eV [2] còn 2 mức axepto của Cu nằm phía trên
đỉnh vùng hoá trị và cách một khoảng là 0.4 và 1.25eV. Ngoài ra còn có các mức
dono và axepto khác tồn tại trong mẫu như khuyết
ZnS
VV ,
nằm gần đó và tổ hợp
các tâm tạp trên có thể hình thành nhiều mức năng lượng hơn trong vùng cấm của
mẫu khối ZnS:Cu,Al.
1.4. Một số kết quả nghiên cứu về sự phát quang của hạt nano ZnS và ZnS
pha tạp
Trang 13
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Trong những năm gần đây, việc nghiên cứu tính chất quang của bán dẫn pha
tạp có kích thước nano đã thu hút được nhiều sự quan tâm của các nhà nghiên cứu.
Bán dẫn nano cho tính chất quang nhất định và phụ thuộc rất nhiều vào kích thước
hạt. Bên cạnh đặc trưng về kích thước, hiệu ứng bề mặt cũng ảnh hưởng đến tính
chất quang của các hạt nano [16,18]. Theo [8], cường độ phát quang của các hạt
nano ZnS gấp 26 lần cường độ phát quang của các hạt ZnS có kích thước thông
thường. Điều này làm cho bán dẫn nano được ứng dụng nhiều hơn trong các dụng
cụ phát quang hơn là dạng khối.
1.4.1 Phát quang của nano ZnS
Nhờ hiệu ứng lượng tử, dải cấm tăng khi kích thước hạt giảm. Sự dịch chuyển
của dải cấm là do sự dịch chuyển của dải dẫn lên năng lượng cao hơn và dải hóa trị
xuống năng lượng thấp hơn [9]. Dải cấm được tính bằng công thức sau [9,13,20] :
R
e
mmRm
EE

he
g










++=
επε
π
0
2
**2
0
22
4
8.111
2

(1.1)
với R là bán kính của hạt bán dẫn
E
g
là dải cấm của mẫu khối ZnS (3.7eV)


**
,
he
mm
là khối lượng hiệu dụng của electron và lỗ trống.
Đối với nano ZnS, dải cấm (292nm) dịch chuyển về vùng xanh Blue so với
mẫu khối ZnS (350nm) do hiệu ứng lượng tử [9].
Mẫu nano ZnS được chế tạo bằng phương pháp hoá ở nhiệt độ phòng, tồn tại
đồng thời cấu trúc sphalerite và wurtzite, kích thước hạt từ 15nm [18]. Phổ huỳnh
quang cho 3 mẫu ZnS từ 400800nm và có thể phân tích thành 3 vùng: vùng tử
ngoại UV (400 450nm), vùng khả kiến từ 450650nm, vùng hồng ngoại IR trên
650nm.Trong vùng UV, IR mẫu khác nhau cho cùng một dạng phổ nhưng vùng khả
kiến lại khác nhau cho 3 mẫu được chế tạo cùng một công nghệ [18].
Trang 14
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

Hình 1.10: Phổ huỳnh quang của nano ZnS [18]
* Phổ IR: có 5 cặp đỉnh cùng cách nhau 7nm, là kết quả của
chuyển dời giữa các trạng thái định xứ bên trong vùng cấm được tạo ra do tạp chất
và mạng không hoàn hảo.

Hình1.11: Phổ huỳnh quang IR cho 3 mẫu khác nhau [18]
Từ phổ nhận được ta thấy các cặp đỉnh không những được tạo ra do sự
chuyển dời từ những mức năng lượng cùng vị trí mà còn từ những mức năng lượng
các vị trí trong môi trường tinh thể. D.Denzier cùng các đồng sự thừa nhận rằng do
sự tồn tại của sphalerite và wurtzite trong mẫu. Sự chuyển dời của các electron tại vị
trí một ion phụ thuộc vào trường tinh thể địa phương được tạo bởi các ion lân cận.
Trang 15
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Môi trường tinh thể khác nhau dẫn đến sự khác biệt nhỏ trong phân bố trạng thái

electron mà biểu hiện là sự tách mức trong quang phổ. Đây là điều kiện tốt để kiểm
chứng sự đồng tồn tại của 2 cấu trúc. Tuy nhiên việc kiểm chứng này cũng khó thực
hiện trong trường hợp hạt quá nhỏ.
* Phổ khả kiến: theo hình 1.10 ta thấy phổ phát ra có đỉnh tại
590nm, ánh sánh màu cam quan sát được do sự pha tạp Mn vào mẫu, tuỳ thuộc vào
nồng độ Mn pha tạp mà cường độ đỉnh phổ phát ra là khác nhau. Cơ chế phát quang
được giải thích là do sự tái hợp của cặp electron và lỗ trống và sự chuyển dời năng
lượng đến các tâm Mn
2+
.
* Phổ UV: đối với mẫu khối ZnS ta nhận được duy nhất 1 đỉnh
phổ phát ra nhưng với nano ZnS phổ phát ra có 4 đỉnh (fit bằng đường Gauss)

Hình 1.12 : Phổ huỳnh quang đã được fit để xác định chính xác các đỉnh [18]
Qua nhiều nghiên cứu ta giải thích là các trạng thái lỗ trống nằm sâu trong dải
cấm hơn là các trạng thái tạo ra từ các khe nguyên tử và ta nhận được sơ đồ các mức
năng lượng như sau: .
Trang 16
Hình 1.13: Sơ đồ chuyển mức năng lượng của nano ZnS [18].
V
Zn
Vùng dẫn
I
S
I
Zn
V
S
Vùng hoá trị
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

Trong đó, V
S
là trạng thái dono định xứ.
V
Zn
là trạng thái axepto định xứ
I
S
là trạng thái axepto
I
Zn
là trạng thái dono
Sự phát quang trong phổ UV là do sự sai hỏng Zn và S trong mạng tinh thể.
Ta thấy rằng khi một nguyên tử di chuyển ra khỏi một vị trí thì có sự sắp xếp lại của
các nguyên tử lân cận sẽ đến chiếm chỗ. Sự hình thành lại sẽ phụ thuộc vào kích
thước của nguyên tử : trong trường hợp này, ion S có kích thước lớn hơn ion Zn,
khe S bị biến dạng nhiều trong mạng. Mức electron có nguồn gốc từ vị trí này có
năng lượng liên kết nhỏ do bị biến dạng nhiều. Vì vậy trạng thái khe S nằm gần dải
hoá trị hơn trạng thái khe Zn với dải dẫn. Tương tự cho các lỗ trống.
Trong các mẫu chế tạo khác nhau ta luôn quan sát được 4 đỉnh nhưng cường
độ của các đỉnh liên quan đến sự chuyển mức của lỗ trống trong các mẫu khác nhau.
Sự khác nhau này là do ảnh hưởng của công nghệ chế tạo dẫn sự khác nhau về tỉ số
lỗ trống V
S
và V
Zn
.
1.4.2 Phát quang của ZnS pha tạp
1.4.2.1 Phát quang của ZnS:Cu
Bằng phương pháp hóa học, Mingwen Wang và các đồng sự chế tạo được các

hạt nano ZnS:Cu ở nhiệt độ phòng với nồng độ Cu pha tạp khác nhau (tỉ lệ mol từ
Trang 17
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
0.2%  2%) và kích thước hạt thu được tương ứng là 3.7nm 3.2nm. Kích thước
hạt giảm khi tăng nồng độ Cu pha vào [13].

Hình 1.14: Phổ huỳnh quang của các hạt nano ZnS (1) và ZnS :Cu với nồng độ
từ 0.2%

2% [13].
Đối với mẫu pha tạp Cu, phổ mở rộng về phía năng lượng thấp so với mẫu
nano ZnS và có tính bất đối xứng. Từ đó, Wang tin rằng có hơn 1 đỉnh bức xạ ở đó.
Qua đối chiếu với đường cong Gauss, ta nhận thấy có 2 dải bức xạ: một dải có đỉnh
tại 420 - 430nm (B-Cu) giống như đỉnh quan sát của hạt nano ZnS, một dải khác có
đỉnh ở 490 - 510nm (G-Cu) chỉ quan sát ở mẫu pha tạp.
Nguồn gốc của các bức xạ trên có liên quan đến khả năng tái hợp từ các nút
khuyết của mạng ZnS và các tâm Cu
2+
như đã biết ở mẫu khối. Theo [13], cơ chế
phát quang của ZnS:Cu được tác giả giải thích như sau: ion Cu
2+
hình thành các
mức năng lượng bẫy ở sâu trong vùng cấm của ZnS. Khi hấp thụ năng lượng từ bên
ngoài, các điện tử có thể chuyển từ vùng hoá trị lên trên vùng dẫn rồi bị bẫy ở các
mức năng lượng dono nông và sâu hình thành do các khuyết tật hoặc các ion tạp
chất. Từ đây các điện tử được kích hoạt tái hợp với các lỗ trống ở vùng hoá trị hoặc
các lỗ trống đã chuyển tới mức năng lượng bẫy của Cu
2+
. Cùng với các quá trình đó,
photon ánh sáng được bức xạ ra.

Trang 18
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Như vậy, qua các nghiên cứu ban đầu trên các tinh thể nano ZnS:Cu, người ta
mới chỉ hiểu duy nhất dải huỳnh quang ở vùng ánh sáng xanh lục (Green). Trong
khi đó với mẫu khối, ngoài dải huỳnh quang trên, bốn dải khác còn được quan sát
trên phổ. Tuy nhiên trong những nghiên cứu gần đây thì ta quan sát được bức xạ đỏ
trong phổ huỳnh quang nano ZnS:Cu [9].


Phổ huỳnh quang khi đo ở 4K với bước sóng kích thích 350nm chỉ quan sát
thấy một đỉnh tại 470nm thuộc ánh sáng Blue (hình1.15) [9]. Đồng thời phổ kích
thích huỳnh quang tại đỉnh này cũng cho hiệu suất phát quang lớn nhất tại bước
sóng kích thích 350nm. Ngoài ra, bức xạ Blue có thể thu được tại bước sóng kích
thích 320nm, bản chất bức xạ này là do sự tái hợp của điện tử ớ mức dono định xứ
nông nằm ngay dưới vùng dẫn của tạp chất Cu
2+
và lỗ trống trong vùng hoá trị.
Phổ huỳnh quang với ánh sáng kích thích có bước sóng 345nm ta quan sát
đỉnh tại 600nm (ánh sáng đỏ). Bức xạ này thường thấy trong mẫu khối nhưng chưa
thấy ở tinh thể nano ZnS:Cu. Dựa vào mô hình mức năng lượng ở mẫu khối, bức xạ
đỏ được gán cho các chuyển mức giữa mức dono định xứ sâu và mức tạp chất Cu
2+
Khi nhiệt độ tăng lên, bức xạ Blue dịch về phía năng lượng cao hơn và cường
độ phát quang giảm. Độ dịch chuyển là 0.1eV khi tăng nhiệt độ từ 4K 300K. Điều
này ngược với những kết quả thu được ở mẫu khối. Hiện tượng này vẫn chưa được
lí giải rõ ràng.
Trang 19
Hình 1.15: Phổ huỳnh quang và kích
thích huỳnh quang đo ở 4K [9]
Hình 1.16: Phổ huỳnh quang và

kích thích huỳnh quang đo tại
600nm ở nhiệt độ phòng [9]
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Đối với mẫu chế tạo cùng phương pháp của Wang nhưng đã qua xử lí nhiệt,
cường độ của bức xạ đỏ mạnh lên rất nhiều. Điều này được nhóm tác giả [8] lí giải
rằng bức xạ đỏ liên quan tới mức năng lượng ở sâu trong khe vùng của các nút
khuyết S
2-
và của tạp chất Cu nên quá trình xử lí nhiệt sẽ làm tăng nồng độ nút
khuyết S
2-
và ion Cu
2+
dẫn đến kết quả là cường độ của dải phát xạ đỏ tăng lên. Tuy
nhiên, các nghiên cứu cũng cho thấy bức xạ đỏ phụ thuộc mạnh vào phương pháp
chế tạo.
Ngoài ra, các phép đo thời gian sống của sự phát quang cũng được nhiều tác
giả khảo sát. Các kết quả đo cho thấy thời gian sống của bức xạ xanh giảm từ
s
µ
20

ở 4K tới
s
µ
5.0
ở 300K; còn thời gian sống của bức xạ đỏ ở 4K là
s
µ
40

.
1.4.2.2 Phát quang của nano ZnS:Cu,Al
Nano tinh thể ZnS:Cu,Al được tổng hợp bằng một phương pháp mới đó là
phương pháp cấy liên tiếp các ion: Zn
+
, Cu
+
, S
+
, Al
+
vào chất nền trong suốt Al
2
O
3

nhiệt độ 1000
0
C. Các tác giả [12] cũng đã chứng minh rằng đây là một trong những
phương pháp linh hoạt nhất để chế tạo các hợp chất nano bán dẫn pha tạp chất cho
hiệu suất phát quang ổn định hơn các phương pháp tổng hợp hoá học thông thường.
Hai mẫu với nồng độ tạp chất khác nhau (nhưng lượng ion Cu và Al bằng nhau)
được chế tạo: mẫu pha tạp nồng độ thấp và mẫu pha tạp nồng độ cao. Bằng phương
pháp này kích thước hạt thu được cỡ 10nm. Các kết quả cho thấy phổ huỳnh quang
của mẫu là một vùng rộng quan sát được ở xung quanh mức 2,4eV tương ứng với
vùng xanh lục, kết quả tương tự như các quan sát ở mẫu khối. Trên phổ hấp thụ và
kích thích huỳnh quang các cực đại quan sát được xung quanh mức 3,4eV, chuyển
Trang 20
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
mức vùng - vùng của tinh thể nano ở xung quanh 4eV (hình 1.17). Độ rộng của dải

xanh lục tăng theo nhiệt độ.

Hình 1.17:Phổ huỳnh quang (PL), phổ kích thích huỳnh quang (PLE) và phổ
hấp thụ (ABS ) của mẫu pha tạp thấp (a) và pha tạp cao (b) ở 14K
Nguồn gốc vùng phát quang rộng ở tinh thể nano ZnS:Cu,Al là phù hợp với
sự phát quang của nhiều cặp dono - axepto (D - A) trong tinh thể ZnS:Cu,Al. Trong
quá trình tái hợp của cặp D - A, năng lượng phôtôn bức xạ ra phụ thuộc vào khoảng
cách giữa các mức dono và axepto theo công thức:
E = E
g
- ( E
d
+ E
a
) +
ε
r
e
.
2
ε
(1.2)
trong đó: E
g
là năng lượng vùng cấm
E
d
, E
a
là năng lượng mức dono và axepto


ε
là hằng số điện môi tĩnh.
Trong tinh thể nano ZnS:Cu,Al bán kính Bohr của axepto nhỏ hơn không
đáng kể so với bán kính của dono vì vậy xác suất tái hợp của các cặp D - A phụ
thuộc vào khoảng cách mức D - A và bán kính Bohr của dono a
D
P ~ exp









D
a
2R
(1.3)
Trang 21
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Do đó các cặp có khoảng cách R càng lớn ( cặp xa) thì sẽ có xác suất chuyển
dời càng bé nên thời gian sống càng lớn đồng thời năng lượng phôtôn bức xạ nhỏ và
ngược lại [1, 2].
Nhìn chung cơ chế phát quang của tinh thể nano pha tạp là khá phức tạp, bản
chất của các bức xạ vẫn chưa được thống nhất một cách rõ ràng. Đây là lĩnh vực còn
rất mới mẻ và vẫn đang được nhiều nhóm trong nước và trên thế giới nghiên cứu.
1.5 Một số nghiên cứu về cấu trúc và tính chất phát quang của màng mỏng

quang học ZnS và ZnS pha tạp chất
CdS từ lâu được biết là vật liệu hứa hẹn nhất làm màng đệm trên kính của pin
mặt trời với hiệu quả chuyển đổi quang học cao. Tuy nhiên CdS rất độc và tác dụng
không tốt lên môi trường. Vì vậy việc nghiên cứu tìm kiếm vật liệu khác thay thế
cho CdS là mối quan tâm lớn của các nhà khoa học. ZnS là vật liệu được quan tâm
nhất vì: ZnS không độc và an toàn với môi trường, bề rộng vùng cấm lớn, sự chuyển
đổi năng lượng photon cao và sự hấp thụ ánh sáng cao hơn CdS [15].
1.5.1 Phát quang của màng mỏng ZnS
Màng mỏng ZnS được chế tạo bằng phương pháp bốc bay nhiệt trong môi
trường kín ở nhiệt độ 200
0
C  350
0
C [15]. Subbaiah và các đồng sự thấy rằng ZnS
chỉ có cấu trúc sphalerite và màng kết tinh tốt nhất ở 300
0
C. Tỉ lệ S/Zn là 0.98 ở
nhiệt độ này. Màng hình thành ở nhiệt độ thấp thí ít kết tinh trong khi ở nhiệt độ cao
thì lại thiếu hụt S do S bay hơi khá mạnh trong môi trường áp suất cao.
Nghiên cứu quá trình hình thành màng tác giả nhận thấy rằng khi ở nhiệt độ
thấp < 300
0
C có một vài đảo tinh thể xuất hiện trên đế. Khi nhiệt độ tăng hạt lớn dần
và khoảng cách của các đảo là không đáng kể. Các đảo kết hợp lại với nhau hình
thành một màng có dạng đồng nhất. Hình 1.18 , AFM cho thấy màng tinh thể hoá và
phân bố đồng đều trên mặt đế với kích thước hạt cỡ 40nm.
Trang 22
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

Hình 1.18:Hình AFM của màng ZnS tại 300

0
C [15]
Màng ZnS ở 300
0
C cho truyền qua cao trong vùng khả kiến, hệ số hấp thụ
14
10


cm
α
.
2
α
phụ thuộc tuyến tính với năng lượng photon kích thích
ν
h
trên năng
lượng vùng cấm [14, 15, 20]. Hệ thức liên hệ
α
và E
g
chỉ áp dụng cho sự chuyển dời
trực tiếp giữa các dải năng lượng được biểu diễn như sau:
( )
g
EhA
−=
να
2

(1.4)
với A là hệ số không đổi.
Giá trị năng lượng vùng cấm ứng với nhiệt độ 200
0
C 300
0
C là 3.42eV
3.61eV. Kết quả này phù hợp với nhiều báo cáo trước đó.
Phổ huỳnh quang cho 2 đỉnh tại 315nm và 450nm với bước sóng kích thích là
260nm (hình 1.19).
Trang 23
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15

Hình 1.19: Phổ PL của màng nano ZnS trên đế thuỷ tinh trong
thời gian lắng đọng khác nhau: a) 10s , b) 20s , c) 30s [20]
Ta nhận thấy rằng đỉnh phát ra tại 450nm không thay đổi vị trí đỉnh khi thay
đổi thời gian lắng đọng (hay thay đổi kích thước hạt). Phổ phát ra do hình thành lỗ
trống S (V
S
) trong mạng, các V
S
sẽ kết hợp với các electron bị bẩy ở khe nông. Khi
thời gian lắng đọng tăng, V
S
tăng dẫn đến cường độ đỉnh tăng. Còn đỉnh tại 315nm
bị thay đổi vị trí khi thời gian lắng đọng tăng. Điều này cho biết vị trí đỉnh này phụ
thuộc vào kích thước hạt và được tác giả giải thích: đỉnh tại 315nm do sự chuyển
mức giữa dải hoá trị lên dải dẫn trong ZnS, mà độ rộng dải cấm lại phụ thuộc vào
kích thước hạt cho nên vị trí đỉnh thay đổi.
Theo [14] , độ pH cũng ảnh hưởng đến cấu trúc và tính phát quang của màng

ZnS. Độ pH thay đổi từ 10  11.5, ZnS được chế tạo ở nhiệt độ 90
0
C, tác giả thấy
màng không kết tinh tại 11.5 và bắt đầu kết tinh khi giảm pH. ZnS kết tinh tốt nhất
tại pH=10 và có cấu trúc sphalerite và wurtzite, kích thước hạt cỡ 14.8nm, năng
lượng vùng cấm được tính theo công thức (1.4) E
g
=3.78eV và giảm khi pH tăng.
Đo phổ truyền qua ta thấy hệ số truyền qua tăng khi pH tăng và là lớn nhất cỡ
70% trong vùng khả kiến ứng với pH=11.5 (hình 1.20). Điều này được giải thích là:
pH tăng dẫn đến ion OH
-
tăng trong dung dịch và đến phản ứng với Zn tạo thành
Trang 24
Luận văn thạc sĩ Nguyễn Bích Phương – CH k15
Zn(OH)
2
vì vậy không có đủ Zn tạo ZnS trên màng rất chậm, bề dày của màng sẽ
mỏng và hấp thụ thấp, hệ số truyền qua cao trong cùng thời gian lắng đọng.
Hình 1.20 : Phổ truyền qua của màng ZnS lắng đọng trên đế thuỷ tinh với PH
khác nhau: a) 11.5 , b) 10.99 , c) 10.31 , d) 10 [14]
1.5.2 Phát quang của màng ZnS:Cu
Theo [19], màng ZnS:Cu được chế tạo bằng cách pha tạp Cu gián tiếp và trực
tiếp vào mẫu ZnS. Cu pha tạp trực tiếp vào phản ứng tạo ZnS và ủ tại 500
0
C trong
khí nitơ và Cu pha tạp gián tiếp vào mẫu ZnS tinh khiết cao ủ tại 500
0
C trong chân
không.

Phổ phát ra của màng bằng cách pha gián tiếp cho cường độ đỉnh tại 520nm
vùng ánh sáng xanh lá cây(Green) mạnh, có bờ tại 470nm trong vùng ánh sáng lục
(Blue) do tính tự phát của ZnS. Phổ này giống như phổ của mẫu bột nano ZnS:Cu.
Trang 25

×