WWW.ToanCapBa.Net
ĐA THỨC
Đa thức là một trong những khái niệm trung tâm của toán học. Trong chương trình
phổ thông, chúng ta đã làm quen với khái niệm đa thức từ bậc trung học cơ sở, từ
những phép cộng, trừ, nhân đa thức đến phân tích đa thức ra thừa số, dùng sơ đồ
Horner để chia đa thức, giải các phương trình đại số.
Bài giảng này sẽ hệ thống hoá lại những kiến thức cơ bản nhất về đa thức 1 biến,
các dạng toán thường gặp về đa thức. Ở cuối bài sẽ đề cập 1 cách sơ lược nhất về
đa thức nhiều biến.
1. Đa thức và các phép toán trên đa thức
1.1. Định nghĩa. Đa thức trên trường số thực là biểu thức có dạng
P(x) = a
n
x
n
+ a
n-1
x
n-1
+ … + a
1
x + a
0
, trong đó a
i
∈ R và a
n
≠ 0.
a
i
được gọi là các hệ số của đa thức, trong đó a
n
được gọi là hệ số cao nhất và a
0
được gọi là hệ số tự do.
n được gọi là bậc của đa thức và ký kiệu là n = deg(P). Ta quy ước bậc của
đa thức hằng P(x) = a
0
với mọi x là bằng 0 nếu a
0
≠ 0 và bằng nếu a
0
= 0.
Để tiện lợi cho việc viết các công thức, ta quy ước với đa thức P(x) bậc n thì vẫn
có các hệ số a
k
với k > n, nhưng chúng đều bằng 0.
Tập hợp tất cả các đa thức 1 biến trên trường các số thực được ký hiệu là R[x].
Nếu các hệ số được lấy trên tập hợp các số hữu tỷ, các số nguyên thì ta có khái
niệm đa thức với hệ số hữu tỷ, đa thức với hệ số nguyên và tương ứng là các tập
hợp Q[x], Z[x].
1.2. Đa thức bằng nhau
Hai đa thức
∑∑
==
==
n
k
k
k
m
k
k
k
xbxQxaxP
00
)(,)(
bằng nhau khi và chỉ khi m = n và a
k
= b
k
với mọi k=0, 1, 2, …, m.
1.3. Phép cộng, trừ đa thức.
Cho hai đa thức
∑∑
==
==
n
k
k
k
m
k
k
k
xbxQxaxP
00
)(,)(
. Khi đó phép cộng và trừ hai
đa thức P(x) và Q(x) được thực hiện theo từng hệ số của x
k
, tức là
∑
=
±=±
},max{
0
)()()(
nm
k
k
kk
xbaxQxP
Ví dụ: (x
3
+ 3x
2
– x + 2) + (x
2
+ x – 1) = x
3
+ 4x
2
+ 1.
WWW.ToanCapBa.Net 1
WWW.ToanCapBa.Net
1.4. Phép nhân đa thức.
Cho hai đa thức
∑∑
==
==
n
k
k
k
m
k
k
k
xbxQxaxP
00
)(,)(
. Khi đó P(x).Q(x) là một đa
thức có bậc m+n và có các hệ số được xác định bởi
∑
=
−
=
k
i
ikik
bac
0
.
Ví dụ: (x
3
+ x
2
+ 3x + 2)(x
2
+3x+1) = (1.1)x
5
+ (1.3 + 1.1)x
4
+ (1.1 + 1.3 + 3.1)x
3
+
(1.1 + 3.3 + 2.1)x
2
+ (3.1 + 2.3)x + (2.1) = x
5
+ 4x
4
+ 7x
3
+ 12x
2
+ 9x + 1.
1.5. Bậc của tổng, hiệu và tích của các đa thức
Từ các định nghĩa trên đây, dễ dàng suy ra các tính chất sau đây
Định lý 1. Cho P(x), Q(x) là các đa thức bậc m, n tương ứng. Khi đó
a) deg(P±Q) ≤ max{m, n} trong đó nếu deg(P) ≠ deg(Q) thì dấu bằng xảy
ra. Trong trường hợp m = n thì deg(P±Q) có thể nhận bất cứ giá trị nào ≤ m.
b) deg(P.Q) = m + n.
1.6. Phép chia có dư.
Định lý 2. Với hai đa thức P(x) và Q(x) bất kỳ, trong đó deg(Q) ≥ 1, tồn tại duy
nhất các đa thức S(x) và R(x) thoả mãn đồng thời các điều kiện:
i) P(x) = Q(x).S(x) + R(x)
ii) deg(R) < deg(Q)
Chứng minh. Tồn tại. Ta chứng minh bằng quy nạp theo m = deg(P). Nếu deg(P)
< deg(Q) thì ta có thể chọn S(x) ≡ 0 và R(x) = P(x) thoả mãn đồng thời các điều
kiện i) và ii). Giả sử m ≥ n và định lý đã được chứng minh với các đa thức có bậc
nhỏ hơn m. Ta chứng minh định lý đúng với các đa thức bậc m. Giả sử
∑∑
==
==
n
k
k
k
m
k
k
k
xbxQxaxP
00
)(,)(
Xét đa thức
) () (
)()()(
1
1
1
001
1
1
+
−=
++−++++=
−=
−
−
−
−−
−
−
m
n
nm
m
n
n
nm
n
m
m
m
m
m
nm
n
m
x
b
ba
a
bxbx
b
a
axaxaxa
xQx
b
a
xPxH
Do hệ số của x
m
ở hai đa thức bị triệt tiêu nên bậc của H(x) không vượt quá m-1.
Theo giả thiết quy nạp, tồn tại các đa thức S*(x), R*(x) sao cho
H(x) = S*(x).Q(x) + R*(x)
WWW.ToanCapBa.Net 2
WWW.ToanCapBa.Net
Nhưng khi đó
)(*))(*()()()( xRxSx
b
a
xQx
b
a
xHxP
nm
n
m
nm
n
m
++=+=
−−
Vậy đặt S(x) = (a
m
/b
n
)x
m-n
+ S*(x) và R(x) = R*(x) ta được biểu diễn cần tìm cho
P(x).
Duy nhất. Giả sử ta có hai biểu diễn P(x) = S(x).Q(x) + R(x) và P(x) = S*(x).Q(x)
+ R*(x) thoả mãn điều kiện ii). Khi đó Q(x).(S(x)-S*(x)) = R*(x) – R(x). Ta có,
theo điều kiện ii) và định lý 1 thì ded(R*(x) – R(x)) < deg(Q). Mặt khác, nếu S(x)
– S*(x) không đồng nhất bằng 0 thì deg(Q(x).(S(x)-S*(x))) = deg(Q(x)) +
deg(S(x)-S*(x)) ≥ deg(Q). Mâu thuẫn vì hai vế bằng nhau.
Theo ký hiệu của định lý thì S(x) được gọi là thương số và R(x) được gọi là dư số
trong phép chia P(x) cho Q(x).
Phép chứng minh nói trên cũng cho chúng ta thuật toán tìm thương số và dư số
của phép chia hai đa thức, gọi là phép chia dài (long division) hay sơ đồ Horner.
Ví dụ: Thực hiện phép chia 3x
3
– 2x
2
+ 4x + 7 cho x
2
+ 2x
3x
3
– 2x
2
+ 4x + 7 | x
2
+ 2x
3x
3
+ 6x
2
| 3x - 8
- 8x
2
+ 4x + 7
- 8x
2
+ 16
20x + 7
Vậy ta có 3x
3
– 2x
2
+ 4x + 7 chia x
2
+ 2x được 3x – 8, dư 20x + 7.
1.7. Sự chia hết. Ước và bội.
Trong phép chia P(x) cho Q(x), nếu dư số R(x) đồng nhất bằng 0 thì ta nói
rằng đa thức P(x) chia hết cho đa thức Q(x). Như vậy, P(x) chia hết cho Q(x) nếu
tồn tại đa thức S(x) sao cho P(x) = Q(x).S(x). Trong trường hợp này ta cũng nói
Q(x) chia hết P(x), Q(x) là ước của P(x) hoặc P(x) là bội của Q(x). Ký hiệu tương
ứng là Q(x) | P(x) và
).()( xQxP
Cho P(x) và Q(x) là các đa thức khác 0. Ước chung lớn nhất của P(x) và Q(x) là
đa thức D(x) thoả mãn đồng thời các điều kiện sau:
i) D(x) là đa thức đơn khởi, tức là có hệ số cao nhất bằng 1
ii) D(x) là ước chung của P(x) và Q(x), tức là D(x) | P(x) và D(x) | Q(x)
iii) Nếu D’(x) cũng là ước chung của P(x) và Q(x) thì D(x) cũng là ước
của D’(x).
Tương tự, ta có khái niệm bội chung nhỏ nhất của hai đa thức.
WWW.ToanCapBa.Net 3
WWW.ToanCapBa.Net
Cho P(x) và Q(x) là các đa thức khác 0. Bội chung lớn nhất của P(x) và Q(x) là đa
thức M(x) thoả mãn đồng thời các điều kiện sau:
iv) M(x) là đa thức đơn khởi, tức là có hệ số cao nhất bằng 1
v) M(x) là bội chung của P(x) và Q(x), tức là P(x) | M(x) và Q(x) |
M(x)
vi) Nếu M’(x) cũng là bội chung của P(x) và Q(x) thì M’(x) cũng là bội
của M(x).
Ký hiệu UCLN và BCNN của hai đa thức P(x), Q(x) là GCD(P(x), Q(x)),
LCM(P(x), Q(x)) hay đơn giản hơn là (P(x), Q(x)), [P(x), Q(x)].
Hai đa thức P(x), Q(x) được gọi là nguyên tố cùng nhau nếu (P(x), Q(x)) = 1.
1.8. Thuật toán Euclide
Để tìm ước chung lớn nhất của hai đa thức P(x), Q(x), ta sử dụng thuật toán
Euclide sau đây:
Định lý 3. Giả sử có hai đa thức P(x), Q(x), trong đó deg(P) ≥ degQ. Thực hiện
phép chia P(x) cho Q(x) được thương số là S(x) và dư số là R(x). Khi đó
Nếu R(x) = 0 thì (P(x), Q(x)) = q*
-1
Q(x), trong đó q* là hệ số cao nhất của
đa thức Q(x)
Nếu R(x) ≠ 0 thì (P(x), Q(x)) = (Q(x), R(x))
Chứng minh. Nếu R(x) = 0 thì P(x) = Q(x).S(x). Khi đó đa thức q*
-1
Q(x) rõ ràng
thoả mãn tất cả các điều kiện của UCLN.
Nếu R(x) ≠ 0, đặt D(x) = (P(x), Q(x)), D’(x) = (Q(x), R(x)). Ta có D(x) | P(x) –
Q(x).S(x) = R(x), suy ra D(x) là ước chung của Q(x), R(x), theo định nghĩa của
D’(x), ta có D’(x) là ước của D(x). Mặt khác D’(x) | Q(x)S(x) + R(x) = P(x), suy
ra D’(x) là ước chung của P(x), Q(x), theo định nghĩa của D(x), ta có D(x) là ước
của D’(x). Từ đây, do D và D’ đều là các đa thức đơn khởi, ta suy ra D = D’.
Định lý trên giải thích cho thuật toán Euclide để tìm UCLN của hai đa thức theo
như ví dụ dưới đây:
Ví dụ: Tìm ước chung lớn nhất của hai đa thức x
5
– 5x + 4 và x
3
– 3x
2
+ 2.
Ta lần lượt thực hiện các phép chia
x
5
– 5x + 4 cho x
3
– 3x
2
+ 2 được x
2
+ 3x + 9 dư 25x
2
– 11x – 14
x
3
– 3x
2
+ 2 cho 25x
2
– 11x – 14 được (25x – 64)/625, dư (354/625)(x-1)
25x
2
– 11x – 14 cho x-1 được 25x + 14 dư 0
Vậy (x
5
– 5x + 4, x
3
– 3x
2
+ 2) = x – 1.
WWW.ToanCapBa.Net 4
WWW.ToanCapBa.Net
Lưu ý, trong quá trình thực hiện, ta có thể nhân các đa thức với các hằng số khác
0. Ví dụ trong phép chia cuối cùng, thay vì chia 25x
2
– 11x – 14 cho (354/625)(x-
1) ta đã chia cho x – 1.
1.9. Tính chất của phép chia hết
Nhắc lại, hai đa thức P(x), Q(x) được gọi là nguyên tố cùng nhau nếu (P(x), Q(x))
= 1. Ta có định lý thú vị và có nhiều ứng dụng sau về các đa thức nguyên tố cùng
nhau:
Định lý 4. (Bezout) Hai đa thức P(x) và Q(x) nguyên tố cùng nhau khi và chỉ khi
tồn tại các đa thức U(x), V(x) sao cho P(x).U(x) + Q(x).V(x) = 1.
Chứng minh. Giả sử tồn tại các đa thức U(x) và V(x) thoả mãn điều kiện P(x).U(x)
+ Q(x).V(x) = 1. Đặt D(x) = (P(x), Q(x)) thì D(x) | P(x), D(x) | Q(x) suy ra D(x) | 1
= P(x).U(x) + Q(x).V(x). Suy ra D(x) = 1.
Ngược lại, giả sử (P(x), Q(x)) = 1. Ta chứng minh tồn tại các đa thức U(x) và V(x)
sao cho P(x).U(x) + Q(x).V(x) = 1. Ta chứng minh bằng quy nạp theo m =
min{deg(P), deg(Q)}.
Nếu m = 0 thì điều cần chứng minh là hiển nhiên. Chẳng hạn nếu deg(Q) = 0 thì Q
= q là hằng số và ta chỉ cần chọn U(x) = 0, V(x) = q
-1
thì ta được P(x).U(x) +
Q(x).V(x) = 1.
Giả sử ta đã chứng minh định lý đúng đến m. Xét hai đa thức P(x), Q(x) có
min{deg(P), deg(Q)} = m+1. Không mất tính tổng quát, giả sử m+1 = deg(Q).
Thực hiện phép chia P(x) cho Q(x) được thương là S(x) và dư là R(x). Không thể
xảy ra trường hợp R(x) = 0 vì khi đó 1 = (P(x), Q(x)) = q*
-1
Q(x). Vì vậy, ta có
1 = (P(x), Q(x)) = (Q(x), R(x))
Lúc này, do min(deg(Q), deg(R)) = deg(R) < m +1 nên theo giả thiết quy nạp, tồn
tại các đa thức U*(x), V*(x) sao cho Q(x)V*(x) + R(x)U*(x) = 1. Thay R(x) =
P(x) – Q(x).S(x), ta được
Q(x)V*(x) + (P(x) – Q(x)S(x))U*(x) = 1
Hay
P(x)U*(x) + Q(x)(V*(x) – S(x)U*(x)) = 1
Đặt U(x) = U*(x), V(x) = V*(x) – S(x)U*(x) ta được đpcm.
Tính chất của phép chia hết
i) Q | P, Q | R suy ra Q | P + R hay tổng quát hơn Q | P.U + R.V với U, V là các đa
thức bất kỳ.
WWW.ToanCapBa.Net 5
WWW.ToanCapBa.Net
ii) Q | P, P | R suy ra Q | R (tính bắc cầu)
iii) Q | P, P | Q suy ra tồn tại số thực khác 0 a sao cho Q = aP (ta gọi P và Q là các
đa thức đồng dạng)
iv) Nếu Q
1
| P
1
và Q
2
| P
2
thì Q
1
.Q
2
| P
1
.P
2
.
v) Nếu Q | P.R và (P, Q) = 1 thì Q | R.
vi) Nếu Q | P, R | P và (Q, R) = 1 thì Q.R | P
Chứng minh. Các tính chất i-iv) là hiển nhiên xuất phát từ định nghĩa Q | P tồn
tại S sao cho P = Q.S.
Để chứng minh các tính chất v) và vi), ta sẽ áp dụng định Bezout.
v) Từ giả thiết Q | P.R và (P,Q) = 1 suy ra tồn tại S sao cho P.R = Q.S và U, V sao
cho P.U + Q.V = 1
Khi đó R = (P.U+Q.V).R = (P.R)U + Q.V.R = Q.S.U + Q.V.R = Q.(SU+VR) suy
ra Q | R.
vii) Từ giả thiết Q | P, R | P và (Q, R) = 1 suy ra P = Q.S. Vì P = Q.S chia hết cho
R, mà (Q, R) = 1 nên theo v) suy ra S chia hết cho R, tức là S = R.S
1
. Vậy P = Q.S
= (Q.R).S
1
suy ra P chia hết cho Q.R.
1.10. Các ví dụ có lời giải
Bài toán 1. Tìm tất cả các cặp số a, b sao cho x
4
+ 4x
3
+ ax
2
+ bx + 1 là bình
phương của một đa thức.
Giải: Nếu x
4
+ 4x
3
+ ax
2
+ bx + 1 là bình phương của một đa thức thì đa thức đó
phải có bậc 2. Giả sử
x
4
+ 4x
3
+ ax
2
+ bx + 1 = (Ax
2
+ Bx + C)
2
x
4
+ 4x
3
+ ax
2
+ bx + 1 = A
2
x
4
+ 2ABx
3
+ (2AC + B
2
)x
2
+ 2BCx + C
2
Đồng nhất hệ số hai vế, ta được
A
2
= 1, 2AB = 4, 2AC + B
2
= a, 2BC = b, C
2
= 1.
Không mất tính tổng quát, có thể giả sử A = 1, suy ra B = 2. C có thể bằng 1 hoặc
-1. Nếu C = 1 thì a = 6, b = 4. Nếu C = -1 thì a = 2, b = -4.
Vậy có hai cặp số (a, b) thoả mãn yêu cầu bài toán là (6, 4) và (2, -4).
Bài toán 2. Cho đa thức P(x) và hai số a, b phân biệt. Biết rằng P(x) chia cho x-a
dư A, P(x) chia cho x-b dư B. Hãy tìm dư của phép chia P(x) cho (x-a)(x-b).
Giải: Giả sử P(x) = (x-a)(x-b)Q(x) + Cx + D. Lần lượt thay x = a, b, ta được
A = Ca + D, B = Cb + D
Từ đó suy ra C = (A-B)/(a-b), D = A – (A-B)a/(a-b) = (aB – bA)/(a-b).
WWW.ToanCapBa.Net 6
WWW.ToanCapBa.Net
Bài toán 3. Tìm dư trong phép chia x
100
cho (x – 1)
2
.
Giải: Giả sử x
100
= (x-1)
2
Q(x) + Ax + B. Thay x = 1, ta được
1 = A + B.
Lấy đạo hàm hai vế rồi cho x = 1, ta được
100 = A
Từ đó suy ra dư là 100x – 99.
Bài toán 4. Tìm a, b, c biết rằng đa thức P(x) = x
3
+ ax
2
+ bx + c chia hết cho x-2
và chia x
2
– 1 dư 2x.
Giải: Từ các điều kiện đề bài suy ra P(2) = 0, P(1) = 2 và P(-1) = -2, tức là
8 + 4a + 2b + c = 0
1 + a + b + c = 2
–1 + a – b + c = -2
Từ đó suy ra b = 1, a = -10/3, c = 10/3. Từ đó P(x) = x
3
– (10/3)x
2
+ x + 10/3.
Bài toán 5. Chứng minh rằng với mọi giá trị của n, đa thức (x+1)
2n+1
+ x
n+2
chia hết
cho đa thức x
2
+ x + 1.
Giải:
Cách 1. (Quy nạp theo n) Với n = 0, điều phải chứng minh là hiển nhiên. Giả sử ta
đã có (x+1)
2n+1
+ x
n+2
chia hết cho x
2
+ x + 1. Khi đó
(x+1)
2n+3
+ x
n+3
= (x
2
+2x+1)(x+1)
2n+1
+ x
n+3
≡ x(x+1)
2n+1
+ x
n+3
= x((x+1)
2n+1
+ x
n+2
) ≡ 0 (mod (x
2
+x+1)
Cách 2. (Dùng số phức) Đa thức x
2
+ x + 1 có hai nghiệm là
2
31 i±−
=
α
. Để
chứng minh P(x) chia hết cho x
2
+ x + 1 ta chỉ cần chứng minh P(α) = 0. Điều này
tương đương với việc chứng minh
.0
2
31
2
31
212
=
+−
+
+
++ nn
ii
Chuyển các số phức sang dạng lượng giác rồi dùng công thức Moivre, ta có điều
này tương đương với
0
3
2)2(
sin
3
2)2(
cos
3
)12(
sin
3
)12(
cos =
+
+
+
+
+
+
+
ππππ
n
i
nn
i
n
.
Điều này đúng vì (2n+1)π/3 - (n+2)2π/3 = π.
Bài toán 6. Tìm tất cả các giá trị n sao cho x
2n
+ x
n
+ 1 chia hết cho x
2
+ x + 1.
Giải:
WWW.ToanCapBa.Net 7
WWW.ToanCapBa.Net
Cách 1: Ta nhận thấy x
3
≡ 1 mod x
2
+ x + 1. Do đó
x
2(n+3)
+ x
n+3
+ 1 ≡ x
2n
+ x
n
+ 1 (mod x
2
+ x + 1)
Do đó ta chỉ cần xét với n = 0, 1, 2. Rõ ràng
Với n = 0, 3 không chia hết cho x
2
+ x + 1
Với n = 1, x
2
+ x + 1 chia hết cho x
2
+ x + 1
Với n = 2, x
4
+ x
2
+ 1 ≡ x + x
2
+ 1 chia hết cho x
2
+ x + 1
Từ đó suy ra x
2n
+ x
n
+ 1 chia hết cho x
2
+ x + 1 khi và chỉ khi n có dạng 3k+1
hoặc 3k+2.
Cách 2: (Số phức) Tương tự như bài 5, ta có P(x) = x
2n
+ x
n
+ 1 chia hết cho x
2
+ x
+ 1 khi và chỉ khi P(α) = 0. Áp dụng công thức Moivre, ta có điều này tương
đương với
01
3
2
sin
3
2
cos
3
4
sin
3
4
cos =+
+
+
+
ππππ
n
i
nn
i
n
Điều này xảy ra khi n không chia hết cho 3.
Bài toán 7. Chứng minh rằng (x
m
– 1, x
n
– 1) = x
(m,n)
– 1.
Giải: Giả sử d = (m, n) thì rõ ràng x
m
– 1 = (x
d
)
m’
– 1 chia hết cho x
d
– 1 và tương
tự x
n
– 1 chia hết cho x
d
. Suy ra x
d
– 1 là ước chung của x
m
- 1, x
n
– 1. Giả sử D(x)
là một ước chung của x
m
- 1, x
n
– 1. Vì d = (m, n) nên tồn tại các số nguyên dương
u, v sao cho d = mu – nv. Khi đó D(x) là ước của (x
mu
– 1) – (x
nv
-1) = x
nv
(x
d
-1). Vì
(x
m
-1, x
nv
) = 1 nên (D(x), x
nv
) = 1, suy ra D(x) là ước của x
d
– 1, suy ra xd – 1 là
ước chung lớn nhất của x
m
– 1 và x
n
– 1.
1.11. Bài tập
1. Chứng minh rằng mọi đa thức đơn khởi bậc 2n đều có thể viết dưới dạng q
2
+ r
với q, r là các đa thức và deg(r) < n.
2. Tìm dư trong phép chia x
100
– 2x
51
+ 1 cho x
2
– 1.
3. Tìm a, b sao cho (x-1)
2
| ax
4
+ bx
3
+ 1.
4. Cho P(x) là đa thức với hệ số nguyên. Chứng minh rằng không tồn tại các số
nguyên phân biệt a, b, c sao cho P(a) = b, P(b) = c, P(c) = a.
5. Cho P(x) là đa thức với hệ số nguyên. Biết rằng P(2) chia hết cho 5 và P(5) chia
hết cho 2. Chứng minh rằng P(7) chia hết cho 10.
6. (Rumani 1962) Cho α là số thức thoả mãn điều kiện sin(α) ≠ 0. Chứng minh
rằng với mọi giá trị n ≥ 2, đa thức
WWW.ToanCapBa.Net 8
WWW.ToanCapBa.Net
P(x) = x
n
sin(α) – xsin(nα) + sin(n-1)α
chia hết cho đa thức Q(x) = x
2
– 2xcos(α) + 1.
7. (Mỹ 1976) Giả sử P(x), Q(x), R(x) và S(x) thoả mãn đồng nhất thức
P(x
5
) + xQ(x
5
) + x
2
R(x
5
) = (x
4
+x
3
+x
2
+x+1)S(x)
Chứng minh rằng đa thức P(x) chia hết cho đa thức x-1.
8. Với những giá trị nào của n ta có
a) x
2
+ x + 1 | (x-1)
n
– x
n
– 1 b) x
2
+ x + 1 | (x+1)
n
+ x
n
+ 1
2. Đa thức và nghiệm
Nghiệm của đa thức đóng một vai trò quan trọng trong việc nghiên cứu các tính
chất của đa thức. Nhiều tính chất của đa thức được thể hiện qua nghiệm của
chúng. Ngược lại, việc nghiên cứu tính chất các nghiệm của đa thức cũng cũng là
một trong các vấn đề trung tâm của đại số.
2.1. Ví dụ mở đầu
Xét xem số
3
333 ++=
α
là hữu tỷ hay vô tỷ.
Ta có thể giải bài toán này bằng cách chứng minh lần lượt các mệnh đề sau:
1) Nếu a vô tỷ thì
a
vô tỷ
2) Nếu a vô tỷ thì
3
a
vô tỷ
3)
3
vô tỷ
Nhưng ta cũng có thể có một cách tiếp cận khác như sau:
1) Tìm đa thức với hệ số nguyên nhận α làm nghiệm
2) Chứng minh rằng đa thức này không có nghiệm hữu tỷ
Việc tìm đa thức với hệ số nguyên nhận α làm nghiệm được tiến hành như sau
(*).033724812
3)3)3((33)3(333333
36912
223233
3
=+−+−⇒
=−−⇒+=−⇒++=⇒++=
xx
αα
αααα
Vấn đề còn lại là chứng minh (*) không có nghiệm hữu tỷ. Việc này sẽ được thực
hiện ở cuối bài.
2.2. Nghiệm của đa thức, định lý Bezout.
Định nghĩa. Số thực a (trong một số trường hợp, ta xét cả các số phức) được gọi
là nghiệm của đa thức P(x) = a
n
x
n
+ a
n-1
x
n-1
+ …+ a
1
x + a
0
nếu P(a) = 0, tức là
a
n
a
n
+ a
n-1
a
n-1
+ …+ a
1
a + a
0
= 0.
Ta có định lý đơn giản nhưng rất có nhiều ứng dụng sau đây về nghiệm của đa
thức:
WWW.ToanCapBa.Net 9
WWW.ToanCapBa.Net
Định lý 5. a là nghiệm của đa thức P(x) khi và chỉ khi P(x) chia hết cho x – a.
Định lý này là hệ quả của định lý sau:
Định lý 6. Số dư trong phép chia đa thức P(x) cho x – a là P(a).
Cả định lý 5 và định lý 6 đều được gọi là định lý Bezout. Để chứng minh định lý
6, ta chỉ cần chứng minh P(x) – P(a) chia hết cho x – a. Nhưng điều này là hiển
nhiên vì
P(x) – P(a) = a
n
(x
n
-a
n
) + a
n-1
(x
n-1
-a
n-1
) + … + a
1
(x-a)
và
x
k
– a
k
= (x-a)(x
k-1
+ x
k-2
a + …+ a
k-1
)
Từ định lý 5, ta có thể có một định nghĩa khác cho nghiệm của đa thức như sau: a
là nghiệm của đa thức P(x) nếu P(x) = (x-a)Q(x) với Q(x) là một đa thức nào đó.
Với định nghĩa này, ta có thể phát triển thành định nghĩa về nghiệm bội.
Định nghĩa. a được gọi là nghiệm bội r của đa thức P(x) nếu P(x) = (x-a)
r
Q(x) với
Q(a) ≠ 0.
2.3. Định lý Vieta
Định lý 7. Xét đa thức P(x) ∈ R[x]. Nếu x
1
, x
2
, …, x
k
là các nghiệm phân biệt của
P(x) với các bội r
1
, r
2
, …, r
k
tương ứng thì P(x) chia hết cho (x-x
1
)
r1
(x-x
2
)
r2
…(x-
x
k
)
rk
.
Chứng minh: Điều này là hiển nhiên theo định nghĩa và do các đa thức (x-x
i
)
ri
đôi
một nguyên tố cùng nhau.
Hệ quả:
a) Một đa thức bậc n với hệ số thực có không quá n nghiệm thực.
b) Nếu hai đa thức P(x) và Q(x) có bậc nhỏ hơn hay bằng n bằng nhau tại n+1
điểm thì hai đa thức này bằng nhau.
Định lý 8. Xét đa thức P(x) ∈ R[x] bậc n. Giả sử x
1
, x
2
, …, x
k
là các nghiệm phân
biệt của P(x) với các bội r
1
, r
2
, …, r
k
tương ứng. Nếu r
1
+ r
2
+ … + r
k
= n thì
P(x) = a
n
(x-x
1
)
r1
(x-x
2
)
r2
…(x-x
k
)
rk
.
Chứng minh: Dùng định lý 9, ta suy ra P(x) chia hết cho (x-x
1
)
r1
(x-x
2
)
r2
…(x-x
k
)
rk
,
suy ra P(x) = (x-x
1
)
r1
(x-x
2
)
r2
…(x-x
k
)
rk
Q(x). So sánh bậc và hệ số cao nhất, ta suy ra
Q(x) = a
n
.
WWW.ToanCapBa.Net 10
WWW.ToanCapBa.Net
Định lý 9. (Định lý Vieta) Giả sử đa thức P(x) = a
n
x
n
+ a
n-1
x
n-1
+ a
n-2
x
n-2
+ … + a
1
x
+ a
0
có n nghiệm (trong đó có thể có các nghiệm bội) là x
1
, x
2
, …, x
n
thì
P(x) = a
n
(x-x
1
)(x-x
2
)…(x-x
n
)
và như hệ quả, ta có
x
1
+ x
2
+ … + x
n
= -a
n-1
/a
n
;
x
1
x
2
+ x
1
x
3
+ …+ x
1
x
n
+ x
2
x
3
+ …+ x
2
x
n
+ …+x
n-1
x
n
= a
n-2
/a
n
;
…
x
1
x
2
…x
n
= (-1)na
0
/a
n
.
Định lý 10. (Định lý Vieta đảo)
a) Nếu x + y = S, x.y = P thì x, y là 2 nghiệm của phương trình
X
2
– SX + P = 0
b) Nếu x + y + z = S, xy + yz + zx = T, xyz = P thì x, y, z là 2 nghiệm của
phương trình
X
3
– SX
2
+ TX – P = 0
Từ định lý 8 ta suy ra hai hệ quả đơn giản nhưng rất hiệu quả trong giải toán sau:
Hệ quả 1. Một đa thức bậc n có không quá n nghiệm.
Hệ quả 2. Nếu P(x) và Q(x) là các đa thức bậc không quá n, trùng nhau tại n+1
điểm phân biệt thì hai đa thức này trùng nhau.
2.4. Bài tập có lời giải
Bài 1. Cho a, b, c là ba nghiệm của phương trình x
3
– 3x + 1 = 0. Lập phương trình
bậc ba có nghiệm là
a) a
2
, b
2
, c
2
;
c
c
b
b
a
a
b
+
−
+
−
+
−
1
1
,
1
1
,
1
1
)
Lời giải.
Theo định lý Vieta, ta có
a + b + c = 0, ab + bc + ca = -3, abc = -1.
Từ đó ta tính được
a
2
+ b
2
+ c
2
= (a+b+c)
2
– 2(ab+bc+ca) = 0
2
-2(-3) = 6.
a
2
b
2
+b
2
c
2
+ c
2
a
2
= (ab+bc+ca) – 2abc(a+b+c) = (-3)
2
– 2.(-1).0 = 9
a
2
b
2
c
2
= (abc)
2
= 1
Áp dụng định lý Vieta đảo, suy ra a
2
, b
2
, c
2
là ba nghiệm của phương trình
x
3
– 6x
2
+ 9x – 1 = 0.
Tương tự, ta tính được
WWW.ToanCapBa.Net 11
WWW.ToanCapBa.Net
.3
3
9
1
3)(3
)1)(1)(1(
)1)(1)(1()1)(1)(1()1)(1)(1(
1
1
1
1
1
1
−=
−
=
+++++++
−++−+++
=
+++
−++++−++++−
=
+
−
+
+
−
+
+
−
abccabcabcba
abccabcabcba
cba
cbacbacba
c
c
b
b
a
a
.1
3
3
1
3)()(3
1
)1)(1)(1()1)(1)(1()1)(1)(1(
1
1
.
1
1
1
1
.
1
1
1
1
.
1
1
−=
−
=
+++++++
+++−++−
=
+++++++
−+−+−−+++−−
=
=
+
−
+
−
+
+
−
+
−
+
+
−
+
−
abccabcabcba
abccabcabcba
abccabcabcba
cbacbacba
a
a
c
c
c
c
b
b
b
b
a
a
.
3
1
3
1
)(1
)()(1
1
1
.
1
1
.
1
1
=
−
−
=
+++++++
−+++++−
=
+
−
+
−
+
−
abccabcabcba
abccabcabcba
c
c
b
b
a
a
Từ đó suy ra
c
c
b
b
a
a
+
−
+
−
+
−
1
1
,
1
1
,
1
1
là 3 nghiệm của phương trình
x
3
+ 3x
2
– x – 1/3 = 0.
Bài 2. Rút gọn biểu thức
))(())(())((
222
bcac
c
abcb
b
caba
a
A
−−
+
−−
+
−−
=
Lời giải.
Xét đa thức
2
222
))((
))((
))((
))((
))((
))((
)( x
bcac
bxaxc
abcb
axcxb
caba
cxbxa
xF −
−−
−−
+
−−
−−
+
−−
−−
=
Ta có F(a) = F(b) = F(c) = 0. Nhưng F(x) là đa thức bậc nhỏ hơn hay bằng 2. Do
đó F(x) phải đồng nhất 0.
Từ đó suy ra hệ số của x
2
của F(x) bằng 0. Hệ số này bằng
.1
))(())(())((
222
−
−−
+
−−
+
−− bcac
c
abcb
b
caba
a
Suy ra A = 1.
Bài 3. Tìm tất cả các đa thức P(x) thoả mãn đồng nhất thức xP(x-1) = (x-26)P(x).
Lời giải. Thay x = 0 vào đồng nhất thức, ta suy ra P(0) = 0. Suy ra P(x) chia hết
cho x, tức là P(x) = xP
1
(x). Thay vào đồng nhất thức, ta được
x(x-1)P
1
(x-1) = (x-26)xP
1
(x)
suy ra
(x-1)P
1
(x-1) = (x-26)P
1
(x) (*)
Lại thay x = 1, ta được P
1
(1) = 0, suy ra P
1
(x) chia hết cho x-1, tức là P
1
(x) = (x-
1)P
2
(x), thay vào (*), ta được
(x-1)(x-2)P
2
(x-1) = (x-26)(x-1)P
2
(x)
WWW.ToanCapBa.Net 12
WWW.ToanCapBa.Net
Suy ra
(x-2)P
2
(x-1) = (x-26)P
2
(x) …
Cứ tiếp tục lý luận như thế, ta đi đến
P(x) = x(x-1)…(x-25)Q(x)
Và Q(x-1) = Q(x).
Đặt Q(0) = a thì ta có Q(x) = a với x = 1, 2, 3, … suy ra Q(x) = a với mọi x.
Vậy P(x) = ax(x-1)…(x-25) là tất cả các nghiệm của bài toán.
Bài 4. Xét phương trình x
2
– a
n-1
x
n-1
– a
n-2
x
n-2
- … - a
1
x – a
0
= 0 với a
i
là các số thực
dương. Chứng minh rằng phương trình này có không quá 1 nghiệm dương.
Lời giải. Viết phương trình đã cho dưới dạng
1
0
2
21
n
nn
x
a
x
a
x
a
+++=
−−
Vế trái là một hàm số giảm trên (0, +∞ ) nên phương trình trên có không quá 1
nghiệm dương.
Bài 5. Với giá trị nào của A và B thì đa thức P(x) = Ax
n+1
+ Bx
n
+ 1 có x = 1 là
nghiệm bội ít nhất là bậc 2?
Lời giải. Trước hết ta phải có P(1) = 0, tức là A + B + 1 = 0, suy ra B = – A – 1.
Khi đó P(x) = Ax
n
(x-1) – x
n
+ 1 = (x-1)(Ax
n
– x
n-1
– x
n-2
- … - 1) = (x-1)Q(x). Để 1
là nghiệm bội ít nhất là bậc 2 thì Q(x) chia hết cho x-1, tức là Q(1) = 0, suy ra A =
n. Vậy a = n, b = -(n+1).
2.5. Bài tập tự giải
Bài 1. Biết rằng các nghiệm của phương trình x
2
+ ax + b = 0 và x
2
+ cx + d = 0
đều thuộc (-1, 1). Chứng minh rằng các nghiệm của phương trình 2x
2
+ (a+c)x +
(b+d) = 0 cũng thuộc (-1, 1).
Bài 2. Chứng minh rằng đa thức P(x) = 1 + x + x
2
/2! + … + x
n
/n! không có
nghiệm bội.
Bài 3. Rút gọn các biểu thức sau
))()(())()(())()(())()((
2222
cdbdad
d
dcbcac
c
abdbcb
b
dacaba
a
A
−−−
+
−−−
+
−−−
+
−−−
=
))(())(())((
333
bcac
c
abcb
b
caba
a
B
−−
+
−−
+
−−
=
Bài 4. Cho a < b < c là ba nghiệm của phương trình x
3
– 3x + 1 = 0. Chứng minh
rằng
WWW.ToanCapBa.Net 13
WWW.ToanCapBa.Net
a
2
– c = b
2
– a = c
2
– b = 2.
Bài 5. Giải hệ phương trình
=++
=++
=++
3333
2222
azyx
azyx
azyx
Bài 6. Tìm mối liên hệ giữa các hệ số của phương trình ax
3
+ bx
2
+ cx + d = 0 biết
rằng tích của hai nghiệm của phương trình này bằng tổng của chúng.
Bài 7. Chứng minh các khẳng định dưới đây
(a) Định lý về nghiệm nguyên. Cho f(x) = x
n
+ a
n-1
x
n-1
+ … + a
1
x + a
0
với a
n-1
,
…, a
1
, a
0
là các số nguyên và f(p) = 0 với p nguyên. Khi đó a
0
chia hết cho p.
(b) Định lý về nghiệm hữu tỷ. Cho f(x) = x
n
+ a
n-1
x
n-1
+ … + a
1
x + a
0
với a
n-1
,
…, a
1
, a
0
là các số nguyên và f(p/q) = 0 với p/q là phân số tối giản. Khi đó a
0
chia hết cho p và a
n
chia hết cho q.
(c) Trong các ký hiệu của câu (b), với mọi số nguyên k số f(k) chia hết cho
p – kq.
Bài 8. Cho P(x) = a
n
x
n
+ a
n-1
x
n-1
+ … + a
1
x + a
0
∈ R[x]. Đặt
M = max{|a
n-1
/a
n
|, |a
n-2
/a
n
|, …, |a
1
/a
n
|, |a
0
/a
n
|}
Khi đó mọi nghiệm α của P(x) thoả mãn bất đẳng thức |α| < M + 1. Hãy chứng
minh.
3. Đa thức bất khả quy
3.1. Đa thức với hệ số nguyên
Đa thức với hệ số nguyên là đa thức có dạng P(x) = a
n
x
n
+ a
n-1
x
n-1
+ …+ a
1
x + a
0
với ai là
các số nguyên. Ta ký hiệu tập hợp tất cả các đa thức với hệ số nguyên là Z[x].
Ta có các kết quả cơ bản sau đây về đa thức với hệ số nguyên.
(1) Nếu P(x) có nghiệm nguyên x = a thì phân tích được P(x) = (x-a)Q(x) với Q(x) là đa
thức với hệ số nguyên.
(2) Nếu a, b nguyên và a ≠ b thì P(a) – P(b) chia hết cho a – b.
(3) Nếu x = p/q là một nghiệm của P(x) (với (p, q) = 1) thì p là ước của a
0
và q là ước của
a
n
. Đặc biệt nếu a
n
= ± 1 thì nghiệm hữu tỷ là nghiệm nguyên.
(4) Nếu x = m +
n
là nghiệm của P(x) với m, n nguyên, n không chính phương thì x’ =
m -
n
cũng là nghiệm của P(x).
WWW.ToanCapBa.Net 14
WWW.ToanCapBa.Net
(5) Nếu x = m +
n
với m, n nguyên, n không chính phương thì P(x) = M’ + N’
n
với
M’, N’ nguyên.
Đa thức với hệ số nguyên sẽ nhận giá trị nguyên với mọi giá trị x nguyên. Điều ngược lại
không đúng, có những đa thức nhận giá trị nguyên với mọi x nguyên nhưng các hệ số của
nó không nguyên.
Ví dụ. Các đa thức (x
2
-x)/2, (x
3
-x)/6 nhận giá trị nguyên với mọi x nguyên.
Đa thức với hệ số hữu tỷ nhưng nhận giá trị nguyên với mọi x nguyên được gọi là đa thức
nguyên.
Một đa thức với hệ số hữu tỷ P(x) bất kỳ có thể biểu diễn dưới dạng
)(xQ
b
a
với a, b là các số nguyên và Q(x) là đa thức với hệ số nguyên.
3.2. Đa thức bất khả quy
Định nghĩa. Cho P(x) là đa thức với hệ số nguyên. Ta gọi P(x) là bất khả quy trên Z[x]
nếu P(x) không phân tích được thành tích hai đa thức thuộc Z[x] với bậc lớn hơn hay
bằng 1.
Tương tự định nghĩa đa thức bất khả quy trên Q[x].
Định lý 3.1 (Tiêu chuẩn Eisenstein)
Cho P(x) = a
n
x
n
+ a
n-1
x
n-1
+ …+a
1
x + a
0
. Nếu tồn tại số nguyên tố p sao cho
i) an không chia hết cho p
ii) a
0
, a
1
, …, a
n-1
chia hết cho p
iii) a
0
không chia hết cho p
2
thì đa thức P(x) bất khả quy.
Định lý 3.2 (Quan hệ bất khả quy trên Z[x] và Q[x])
Nếu đa thức P(x) ∈ Z[x] bất khả quy trên Z[x] thì cũng bất khả quy trên Q[x].
Bổ đề Gauss. Ta gọi đa thức P ∈ Z[x] là nguyên bản nếu các hệ số của nó nguyên tố
cùng nhau. Ta có bổ đề Gauss: Tích của hai đa thức nguyên bản là nguyên bản.
Chứng minh bổ đề. Cho hai đa thức nguyên bản
P(x) = a
n
x
n
+ a
n-1
x
n-1
+ … + a
1
x + a
0
Q(x) = b
m
x
m
+ b
m-1
x
m-1
+ …+ b
1
x + b
0
thì
P(x).Q(x) = c
m+n
x
m+n
+ c
m+n-1
x
m+n-1
+ …+c
1
x + c
0
Giả sử tích trên không nguyên bản thì tồn tại một số nguyên tố p là ước chung của các hệ
số c
0
, c
1
, …, c
m+n
. Vì P nguyên bản nên gọi i là số nhỏ nhất mà ai không chia hết cho p và
j là số nhỏ nhất sao cho bj không chia hết cho p. Khi đó xét x
i+j
ta thấy hệ số tương ứng
không chia hết cho p, vô lý. Vậy tích trên nguyên bản.
WWW.ToanCapBa.Net 15
WWW.ToanCapBa.Net
Chứng minh định lý. Cho P(x) bất khả quy trên Z[x]. Giả sử P(x) khả quy trên Q[x]:
P(x) = P
1
(x).P
2
(x) với P
1
, P
2
là các đa thức bậc nhỏ hơn bậc của P và có hệ số hữu tỷ.
Đặt
)()(),()(
2
2
2
21
1
1
1
xQ
b
a
xPxQ
b
a
xP ==
với (a
i
, b
i
) = 1 và Q
i
nguyên bản (i=1, 2).
Khi đó
)()()()()(
2121
21
21
xQxQ
q
p
xQxQ
bb
aa
xP ==
với (p, q) = 1. Do P(x) ∈ Z[x] nên từ
đây suy ra các hệ số của Q
1
(x)Q
2
(x) đều chia hết cho q, suy ra Q
1
(x)Q
2
(x) không nguyên
bản, trái với bổ đề Gauss. Mâu thuẫn. Vậy P(x) bất khả quy trên Q[x].
3.3. Một số tính chất của đa thức bất khả quy
3.4. Một số bài tập có lời giải
Bài 1. Cho tam thức bậc hai P(x) = ax
2
+ bx + c với a, b, c là các số hữu tỷ. Chứng minh
rằng P(x) nguyên với mọi x nguyên khi và chỉ khi c, a + b và 2a nguyên.
Bài 2. a) Tìm tất cả các số nguyên a sao cho (x-a)(x-10) + 1 có thể phân tích được thành
tích dạng (x+b)(x+c) với b, c là các số nguyên.
b) Tìm tất cả các số nguyên khác 0 và đôi một khác nhau a, b, c sao cho đa thức
x(x-a)(x-b)(x-c) + 1
có thể biểu diễn dưới dạng tích của hai đa thức với hệ số nguyên.
Bài 3. Chứng minh các đa thức sau là bất khả quy
a) x
3
+ 5x
2
+ 35
b) x
4
– x
3
+ 2x + 1
Bài 4. Cho p là số nguyên tố. Chứng minh rằng đa thức x
p-1
+ x
p-2
+ … + x + 1 bất khả
quy.
Bài 5. Cho n số a
i
thuộc Z. Chứng minh
a) (x-a
1
)(x-a
2
)…(x-a
n
) – 1 bất khả quy
b) (x-a
1
)
2
(x-a
2
)
2
…(x-a
n
)
2
+ 1 bất khả quy
3.4. Bài tập
Bài 1. Đa thức P(x) bậc n có hệ số hữu tỷ là đa thức nguyên khi và chỉ khi nó nhận giá trị
nguyên tại n+1 điểm nguyên liên tiếp. Chứng minh.
Bài 2. Tìm tất cả các giá trị n sao cho tồn tại n số nguyên phân biệt a
1
, a
2
, …, a
n
để (x-a
1
)
(x-a
2
)…(x-a
n
) + 1 khả quy.
Bài 3. (Tiêu chuẩn Eisenstein mở rộng) Cho đa thức P(x) = a
n
x
n
+ a
n-1
x
n-1
+ …+ a
1
x + a
0
.
Giả sử tồn tại số nguyên tố p sao cho
i) a
n
không chia hết cho p
WWW.ToanCapBa.Net 16
WWW.ToanCapBa.Net
ii) a
0
không chia hết cho p
2
iii) a
0
, a
1
, …, a
n-k
chia hết cho p
Khi đó nếu P(x) = H(x).G(x) thì một trong hai đa thức H(x), G(x) có bậc nhỏ hơn k.
Bài 4. Tìm tất cả các giá trị n nguyên dương sao cho đa thức x
n
+ 4 khả quy trên Z[x].
Bài 5. Chứng minh rằng với mọi số nguyên dương n, đa thức x
n
+ 5x
n-1
+ 3 bất khả quy.
Bài 6. Tìm hệ số tự do của đa thức P(x) với hệ số nguyên, biết rằng trị tuyệt đối của nó
nhỏ hơn 1000 và P(19) = P(94) = 1994.
4. Công thức nội suy Lagrange
4.1. Các ví dụ mở đầu
Ví dụ 1. Tìm tất cả các đa thức P(x) thoả mãn điều kiện: P(1) = 1, P(2) = 2, P(3) = 4.
Lời giải. Rõ ràng nếu P và Q là hai đa thức thoả mãn điều kiện đề bài thì P(x) – Q(x) sẽ
bằng 0 tại các điểm 1, 2, 3 và từ đó, ta có P(x) – Q(x) = (x-1)(x-2)(x-3)H(x). Ngược lại,
nếu P(x) là đa thức thoả mãn điều kiện đề bài thì các đa thức Q(x) = P(x) + (x-1)(x-2)(x-
3)H(x) cũng thoả mãn điều kiện đề bài với mọi H(x). Từ đó có thể thấy rằng có vô số các
đa thức thoả mãn điều kiện đề bài.
Ta đặt ra câu hỏi: Trong các đa thức thoả mãn điều kiện đề bài, hãy tìm đa thức có bậc
nhỏ nhất. Rõ ràng đa thức này không thể là hằng số, cũng không thể là bậc nhất. Ta thử
tìm bậc tiếp theo là bậc 2.
Giả sử P(x) = ax
2
+ bx + c là đa thức thoả mãn điều kiện đề bài. Khi đó
P(1) = 1 suy ra a + b + c = 1
P(2) = 2 suy ra 4a + 2b + c = 2
P(3) = 3 suy ra 9a + 3b + c = 4
Giải hệ này ra, ta được nghiệm duy nhất (a, b, c) = (1/2, -1/2, 1), ta được P(x) = (1/2)x
2
–
(1/2)x + 1 là đa thức bậc nhỏ nhất thoả mãn điều kiện. Và theo như lý luận ở trên, mọi
nghiệm của bài toán sẽ có dạng
Q(x) = P(x) + (x-1)(x-2)(x-3)H(x) với H(x) là một đa thức tuỳ ý.
Ví dụ 2. Tìm đa thức bậc nhỏ nhất thoả mãn điều kiện P(-2) = 0, P(-1) = 1, P(0) = 1, P(1)
= 2, P(2) = 3.
Lời giải. Từ ý tưởng phương pháp hệ số bất định và hệ phương trình bậc nhất ở trên. Ta
thấy rằng chắn chắn sẽ tồn tại đa thức bậc không quá 4 thoả mãn điều kiện đề bài. Xét
P(x) = ax
4
+ bx
3
+ cx
2
+ dx + e. Từ điều kiện đề bài suy ra hệ
16a – 8b + 4c – 2d + e = 0
a – b + c – d + e = 1
e = 1
WWW.ToanCapBa.Net 17
WWW.ToanCapBa.Net
a + b + c + d + e = 2
16a + 8b + 4c + 2d + e = 3
Giải hệ này ta được a = -1/8, b = 1/12, c = 5/8, d = 5/12, e = 1.
4.2. Công thức nội suy Lagrange
Từ các ví dụ cụ thể nêu trên, ta có thể dự đoán rằng với mọi các bộ n+1 số phân biệt (a
0
,
a
1
, , a
n
) và bộ n+1 số bất kỳ b
0
, b
1
, , b
n
sẽ tồn tại một đa thức P(x) bậc không vượt quá
n thoả mãn điều kiện
P(a
i
) = b
i
với mọi i=0, 1, 2, , n. (*)
Ngoài ra, do tất cả các đa thức Q(x) thoả mãn (*) sẽ phải có dạng Q(x) = P(x) + (x-a
0
)(x-
a
1
) (x-a
n
)H(x) với H(x) là một đa thức nào đó nên các nghiệm khác của (*) đều có bậc ≥
n+1.
Vì thế ta có thể đề xuất định lý sau:
Định lý. Cho bộ n+1 số thực phân biệt (a
0
, a
1
, , a
n
) và bộ n+1 số bất kỳ (b
0
, b
1
, , b
n
).
Khi đó tồn tại duy nhất một đa thức P(x) có bậc không vượt quá n thoả mãn điều kiện
P(a
i
) = b
i
với mọi i=0, 1, 2, , n.
Sự duy nhất được chứng minh khá dễ dàng theo như lý luận ở trên. Tuy nhiên, việc
chứng minh tồn tại cho trường hợp tổng quát là không đơn giản, vì điều này tương đương
với việc chứng minh một hệ phương trình n+1 phương trình, n+1 ẩn số có nghiệm (duy
nhất). Rất thú vị là ta tìm được cách chứng minh định lý này một cách xây dựng, tức là
tìm ra được biểu thức tường minh của đa thức P(x) mà không cần phải giải hệ phương
trình hệ số bất định nêu trên.
Ý tưởng chứng minh này như sau. Ta đi tìm các đa thức P
0
(x), P
1
(x) …, P
n
(x) bận n thoả
mãn điều kiện sau
P
i
(a
j
) = δ
ij
,
Trong đó
≠
=
=
ji
ji
ij
0
1
δ
Khi đó đa thức
∑
=
=
n
i
ii
xPbxP
0
)()(
sẽ thoả mãn điều kiện vì
∑∑
==
===
n
i
jiji
n
i
jiij
bbaPbaP
00
.)()(
δ
Vấn đề còn lại là đi tìm các đa thức P
i
(x). Vì P
i
(a
j
) = 0 với mọi j ≠ i nên
P
i
(x) = C
i
(x-a
0
)…(x-a
i-1
)(x-a
i+1
)…(x-a
n
)
Vì P
i
(a
i
) = 1 nên
)) ()() ((
1
110 niiiiii
i
aaaaaaaa
C
−−−−
=
+−
WWW.ToanCapBa.Net 18
WWW.ToanCapBa.Net
Như thế ta tìm được
(**)
)) ()() ((
)) ()() ((
)(
110
110
niiiiii
nii
i
aaaaaaaa
axaxaxax
xP
−−−−
−−−−
=
+−
+−
là các đa thức thoả mãn hệ điều kiện P
i
(a
j
) = δ
ij
.
Công thức nội suy Lagrange. Cho bộ n+1 số thực phân biệt (a
0
, a
1
, , a
n
) và bộ n+1 số
bất kỳ (b
0
, b
1
, , b
n
). Khi đó đa thức
∑
=
=
n
i
ii
xPbxP
0
)()(
là đa thức duy nhất có bậc không vượt quá n thoả mãn điều kiện P(a
i
) = b
i
với mọi i=0, 1,
2, , n. Các đa thức P
i
(x) là các đa thức bậc n được định nghĩa bởi (**).
4.3. Ứng dụng của công thức nội suy Langrange
Bài toán nội suy là một trong các bài toán cơ bản của toán lý thuyết và toán ứng dụng.
Trong thực tế, chúng ta không thể đo được giá trị của một hàm số tại mọi điểm, mà chỉ đo
được tại một số điểm. Các công thức nội suy cho phép chúng ta, bằng phép đo tại một số
điểm, « dựng » lại một đa thức xấp xỉ cho hàm số thực tế. Công thức nội suy Lagrange, vì
thế có nhiều ứng dụng trong vật lý, trắc địa, kinh tế học, khí tượng thuỷ văn, dự đoán dự
báo … Tuy nhiên, ta sẽ không đi sâu về các vấn đề này. Dưới đây ta xem xét một số ứng
dụng của công thức nội suy Lagrange trong các bài toán phổ thông.
4.4. Các bài tập có lời giải
Bài 1. Rút gọn biểu thức
))(())(())((
222
bcac
c
abcb
b
caba
a
A
−−
+
−−
+
−−
=
Lời giải. Áp dụng công thức nội suy Lagrange cho hàm số P(x) = x
2
với các điểm a, b, c
và giá trị tương ứng là a
2
, b
2
, c
2
ta có
))((
))((
))((
))((
))((
))((
)(
222
bcac
bxaxc
cbab
cxaxb
caba
cxbxa
xP
−−
−−
+
−−
−−
+
−−
−−
=
So sánh hệ số của x
2
ở hai vế, ta được A = 1.
Bài 2. Cho đa thức P(x) bậc n thoả mãn điều kiện P(k) = k/(k+1) với mọi k=0, 1, 2, …, n.
Hãy tìm P(n+1).
Lời giải. Theo công thức nội suy Lagrange thì
∑
=
−−−
−−−+−−
+
=
n
k
nkkk
nxkxkxxx
k
k
xP
0
)) (1.(1) 1(
)) (1)(1) (1(
.
1
)(
Từ đó
WWW.ToanCapBa.Net 19
WWW.ToanCapBa.Net
∑
∑∑
∑
=
+
+
−
=
−
=
=
−
+
=
+−+
+
−=
+−−−−
−+−+−+
+
=
−−−
−+−+
+
=
n
k
k
n
kn
n
k
kn
n
k
n
k
kC
n
knk
n
k
knnkkk
knknknn
k
k
nkkk
knknn
k
k
xP
0
1
2
00
0
)1(
2
1
)!1()!1(
)!1(
)1(
)1)() (1.(1) 1(
)1) ()(1)(2) (1(
.
1
)) (1.(1) 1(
)1) ()(2) (1(
.
1
)(
Cách 2. Xét đa thức (x+1)P(x) – x có bậc n và có n+1 nghiệm x = 0, 1, 2, …, n. Do đó, ta
có
(x+1)P(x) – x = ax(x-1)(x-2)…(x-n)
với a là 1 hằng số.
Thay x = - 1, ta được 1 = a.(-1)(-2)…(-n-1) = a(-1)
n+1
(n+1)!
Suy ra a = (-1)
n+1
/(n+1)!.
Từ đó (n+2)P(n+1) – (n+1) = n!(-1)
n+1
/(n+1)! = (-1)
n+1
/(n+1)
Suy ra P(n+1) = ((n+1)
2
+ (-1)
n+1
)/(n+2).
Bài 3. Cho tam thức bậc 2 P(x) = ax
2
+ bx + c thoả mãn điều kiện |P(x)| ≤ 1 với mọi | x |
≤ 1. Chứng minh rằng |a| + |b| + |c| ≤ 3.
Lời giải. Thực hiện phép nội suy tại 3 điểm -1, 0, 1, ta có
)11)(01(
)1(
)1(
)10)(10(
)1)(1(
)0(
)11)(01(
)1(
)1()(
++
+
+
−+
−+
+
−−−−
−
−=
xx
P
xx
P
xx
PxP
Suy ra
)0(
2
)1()1(
2
)0(2)1()1(
)(
2
Px
PP
x
PPP
xP +
−−
+
−−+
=
Từ đó
)0(,
2
)1()1(
,
2
)0(2)1()1(
Pc
PP
b
PPP
a =
−−
=
−−+
=
Suy ra
|
.3|)0(|2|})1(||,)1(max{||)0(|2
2
)1()1(
2
)1()1(
|)0(|
2
)1()1(
2
)0(2)1()1(
||||||
≤+−≤+
−−
+
−+
≤
+
−−
+
−−+
=++
PPPP
PPPP
P
PPPPP
cba
4.5. Bài tập tự giải
Bài 1. Rút gọn biểu thức
))(())(())((
444
bcac
c
cbab
b
caba
a
A
−−
+
−−
+
−−
=
Bài 2. Cho M(y) là một đa thức bậc n sao cho M(y) = 2
y
với y = 1, 2, …, n+1. Hãy tìm
M(n+2).
WWW.ToanCapBa.Net 20
WWW.ToanCapBa.Net
Bài 3. Cho đa thức P(x) = x
10
+ a
9
x
9
+ … + a
1
x + a
0
. Biết rằng P(-1) = P(1), P(-2) = P(2),
…, P(-5) = P(5). Chứng minh rằng P(-x) = P(x) với mọi x thuộc R.
Bài 4. Cho x
0
< x
1
< x
2
< …< x
n
là các số nguyên và P(x) là đa thức bậc n có hệ số cao
nhất bằng 1. Chứng minh rằng tồn tại i ∈ {0, 1, …, n} sao cho |P(x
i
)| ≥ n!/2
n
.
Bài 5. Một chiếc tàu với vận tốc không đổi đi ngang qua một hòn đảo. Thuyền trưởng cứ
mỗi giờ lại đo khoảng cách từ tàu đến đảo. Vào lúc 12, 14 và 15 giờ tàu cách đảo các
khoảng cách tương ứng là 7, 5 và 11 km. Hỏi vào lúc 13 giờ tàu cách đảo bao nhiêu km.
Và lúc 16 giờ, tàu sẽ cách đảo bao nhiêu km?
Bài 6. Trên mặt phẳng cho 100 điểm. Biết rằng với bốn điểm bất kỳ trong chúng đều có
một parabol bậc 2 đi qua. Chứng minh rằng tất cả các điểm đã cho đều nằm trên một
parabol bậc 2.
WWW.ToanCapBa.Net 21