Tải bản đầy đủ (.doc) (130 trang)

CÁC đề THI đại học về PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (852.77 KB, 130 trang )






 !"
#$%&'(
 !"#")
))
 !)
#$%&'*
$%&&(
(
 !*
#$%&'"+
'($)",
"
 !"-
#$%&'(
* +,()
(,
#$%&'(*
-,.,/012 (-
(-
#$%&'((
345"60"7+.+
+.
#$%&'+.,
8,"& 8)+.*
+.*
#$%&'++


982)++*
++-
:82,";<="++
+
#$%&'+
>?;38@AB;339>;CDE;3

5,
/
2 2
sin x cos x 1+ =
/
tanx.cotx 1=
/
sinx
tanx
cosx
=
/
cosx
cotx
sinx
=
/
01
2
2
1
1 tan x
c x

+ =
/
2
2
1
1 cot x
sin x
+ =
5,0F55,=5,0F
/
sin2x 2sinx.cosx=
/
2 2
2 2
cos x sin x
cos2x
2cos x 1 1 2sin x
é
-
ê
=
ê
- = -
ê
ë
/
01
2
1 c 2x
sin x

2
-
=
/
01
01
2
1 c 2x
c x
2
+
=
/
3
sin3x 3sinx 4sin x= -
/
3
cos3x 4cos x 3cosx= -
5,#0
/
( )
sin a b sina.cosb cosa.sinb± = ±
/
( )
01c a b cosa.cosb sina.sinb± = m
/
( )
tana tanb
tan a b
1 tana.tanb

+
+ =
-
/
( )
tana tanb
tan a b
1 tana.tanb
-
- =
+
/
2 1 tanx
tan x
4 1 tanx
æ ö
+
÷
ç
÷
+ =
ç
÷
ç
÷
ç
-
è ø
/
2 1 tanx

tan x
4 1 tanx
æ ö
-
÷
ç
÷
- =
ç
÷
ç
÷
ç
+
è ø
5,GHHI
/
a b a b
cosa cosb 2cos .cos
2 2
+ -
+ =
/
a b a b
cosa cosb 2sin .sin
2 2
+ -
- = -
/
a b a b

sina sinb 2sin .cos
2 2
+ -
+ =
/
a b a b
sina sinb 2cos .sin
2 2
+ -
- =
/
( )
sin a b
tana tanb
cosa.cosb
+
+ =
/
( )
sin a b
tana tanb
cosa.cosb
-
- =
5,GHIH
/
( ) ( )
cos a b cos a b
cosa.cosb
2

+ + -
=
/
( ) ( )
sin a b sin a b
sina.cosb
2
+ + -
=
/
( ) ( )
cos a b cos a b
sina.sinb
2
- - +
=
#& 5,5<J4
/
2 2
sinx cosx 2sin x 2cos x
4 4
æ ö æ ö
÷ ÷
ç ç
÷ ÷
+ = + = -
ç ç
÷ ÷
ç ç
÷ ÷

ç ç
è ø è ø
/
2 2
sinx cosx 2sin x 2cos x
4 4
æ ö æ ö
÷ ÷
ç ç
÷ ÷
- = - = +
ç ç
÷ ÷
ç ç
÷ ÷
ç ç
è ø è ø
/
4 4 2
1 cos4x
cos x sin x 1 s
3 1
in 2x
2 4
+
+ = - =
/
6 6 2
3 cos4x
cos x sin x 1 s

5 3
in 2x
4 8
+
+ = - =

#& 0K3

45%6'7'89:#;
sinx
cosx

= a


= a


3
1 1- Ê a Ê
<

= :#;791>
tan
0?
cot
@7%1>0?A!B;CD
E?E5%6'EF:#;GEH<

I:#;9

tanx
@E5%6'3
( )
cosx 0 x k k
2
p
ạ ạ + p ẻ Â
<

I:#;9
cot x
@E5%6'3
( )
sinx 0 x k kạ ạ p ẻ Â
<

I:#;9
tanx

cot x
@E5%6'3
( )
x k. k
2
p
ạ ẻ Â
<

=;E' 6F#9J10KE5%6'<L9MNO#019%EP&EF
6F#9E5%6'3


=F#9#QD!R9&#H89
x
0!F%E5%6'<SD%6D0@#H
C&ETEU;'@D%19;0V'<

WNEM#X@Y9!F%Z[%89E5%6'%89
'<SD%[%&#N9%;90V'@D%6#N;9
'<
!F%Z%\7#]EM#X3^SD%%0?7

AM
7
1>E0
k2
n
p
a +


0
0
k.360
hay a
n
ổ ử



+






ố ứ

k ,n
+
ẻ ẻÂ Ơ
;7
n
EF
M
#]EM#X
E5%9%^<
_`+3SD%1E

AM k2
3
p
= + p
;7OEF
M
VH#`
3
p
J9[
k 0=
K<

_`3SD%1E

AM k
6
p
= + p
;7EF
M
VH#`
6
p

7
6
p
J9[
k 0,k 1= =
K<
_`)3SD%1E

2
AM k.
4 3
p p
= +
;7)EF
M
VH#`
11
;

4 12
p p

19
12
p
@
( )
k 0;1;2=
<
_`,3SD%1E

k2
AM k.
4 2 4 4
p p p p
= + = +
;7,EF
M
VH#`
4
p
@
3
4
p
@
5
4
p

a
7
4
p

JH#`
k 0,1,2,3=
K<
_`3Lb9%
x k
6
p
= - + p

x k
3
p
= + p
F%Z%
x k
6
p
= - + p
#]EM#X;7EFVH#`3
6
p
-

5
6

p

!"#$%
$&'(((&
)%)*"+,
-
F%Z%
x k
3
p
= + p
#]EM#X;7
EFVH#`3
3
p

4
3
p
<
Lb9%c,EF;d
%b3
x k
3 2
p p
= +

4>:#;
2
2

1 1
cos x cosx
2 2
1 1
sin x sinx
2 2
é é
ê ê
= = ±
ê ê
Û
ê ê
ê ê
= = ±
ê ê
ë ë

96] 
#QD;6E77,'@66D101E5%6'#CV@9]V!
>%C<SY93
2
2
2
2
1
cos x
2cos x 1 0 cos2x 0
2
1 cos2x 0
2sin x 1 0

sin x
2
é
ê
é
=
é
- = =
ê
ê
ê
Û Û
ê
ê
ê
=
- =
ê
ê
ê
ë
=
ë
ê
ë
<L:QE>:#;
2
2
sin x 1 sinx 1
cosx 1

cos x 1
é
é
= = ±
ê
ê
Û
ê
ê
= ±
=
ê
ê
ë
ë
96] D@]!DEbQ90
2 2
sin x cos x 1+ =
<eUE73
2 2
2 2
sin x 1 cos x 0 cosx 0
sinx 0
cos x 1 sin x 0
é é
é
= = =
ê ê
ê
Û Û

ê ê
ê
=
= =
ê ê
ê
ë
ë ë

fgV0P%U3LL& MNJOLL

4P&7FGhP%UiiE: @Zii#07VE79#X
O#0P>D@'%j% C6 :#;<

& @Y9018997E>9%;!R9%@
( )
cos cos- a = a
@X%
7XV;!Rii\ii`73
( ) ( ) ( )
 sin sin , tan tan , cot tan- a = - a - a = - a - a = - a

MNPY918997!N9%;!R9%@
( )
sin sinp- a = a
@X%
7XV;!Rii\ii`73
( ) ( ) ( )
 cos cos , tan tan , cot tanp- a = - a p- a = - a p- a = - a


JO@Y9979%J7b!R(.
.
K;17&!R01769
V@3
  sin cos , cos sin , tan cot , cot tan
2 2 2 2
æ ö æ ö æ ö æ ö
p p p p
÷ ÷ ÷ ÷
ç ç ç ç
÷ ÷ ÷ ÷
- a = a - a = a - a = a - a = a
ç ç ç ç
÷ ÷ ÷ ÷
ç ç ç ç
÷ ÷ ÷ ÷
ç ç ç ç
è ø è ø è ø è ø

L9k&gED`l19%EP&EFC&E'%j% 89iiP%Uii&3
m :#;3
sinu cosv=
no#@p:#;:! @9q!D 1900:#;
sinu sinv=
@&X:#;
sinu cosv=
;190r
P%# MpEP&`s0@!p3
sinu cosv sinu sin v
2

æ ö
p
÷
ç
÷
= Û = -
ç
÷
ç
÷
ç
è ø
,
πt)
πt*
,πt)
\πt*
u
( )
u v k2 u v k2 , k
2 2
p p
= - + p = + + p ẻ Â
<
v%9`&@TD%#0!?:#;V
2
sinx cos x
3
ổ ử
p




= -





ố ứ

;!V[11d6X C&UU9<

wO1>%79&N63

( )
( )
sin x k2 sinx
cos x k2 cosx

ù
+ p =
ù
ù

ù
+ p =
ù
ù



( )
( )
( )

sin x k2 sinx
k
cos x k2 cosx

ù
+p + p = -
ù
ù


ù
+p + p = -
ù
ù

Â
<
8AQ;3RS;8AB;339>QT;
'=U
u v k2
sinu sinv
u v k2

= + p


=

= p- + p


4?!'3
sinx 0 x k
sinx 1 x k2
2
sinx 1 x k2
2

ù
ù
= ị = p
ù
ù
ù
ù
p
ù
= ị = + p

ù
ù
ù
p
ù
ù
= - ị = - + p

ù
ù

'=U
u v k2
cosu cosv
u v k2

= + p

=

= - + p


4?!'3
cosx 0 x k
2
cosx 1 x k2
cosx 1 x k2

ù
p
ù
= ị = + p
ù
ù
ù
ù
= ị = p


ù
ù
= - ị = p + p
ù
ù
ù
ù

'=U
tanu tanv u v k
ék : u,v k
2
= = + p
p
ạ + p
4?!'3
tanx 0 x k
tanx 1 x k
4

ù
= = p
ù
ù
ù

p
ù
= = + p

ù
ù
ù

'=U
cotu cotv u v k
ék : u,v k
= = + p
ạ p
4?!'3
cotx 0 x k
2
cotx 1 x k
4

ù
p
ù
= = + p
ù
ù
ù

ù
p
ù
= = + p
ù
ù
ù


V9W>';3
X<m :#;3
( )
cos3x 4cos2x 3cosx 4 0 , x 0;14
ộ ự
- + - = * " ẻ
ờ ỳ
ở ỷ
Y<m :#;3
( ) ( ) ( )
2cosx 1 2sinx cosx sin2x sinx- + = - *
Z<m :#;3
( )
cos3x cos2x cosx 1 0+ - - = *
[<m :#;3
( )
sinx cosx 1 sin2x cos2x 0+ + + + = *
\<m :#;3
( ) ( )
2sinx 1 cos2x sin2x 1 cosx+ + = + *
]<m :#;3
( )

1 1 7
4sin x
sinx 4
3
sin x
2

æ ö
p
÷
ç
÷
+ = - *
ç
÷
ç
æ ö
÷
ç
p
è ø
÷
ç
÷
-
ç
÷
ç
÷
ç
è ø
^<m :#;3
( )

4 4
7
sin x cos x cot x cot x

8 3 6
æ ö æ ö
p p
÷ ÷
ç ç
÷ ÷
+ = + - *
ç ç
÷ ÷
ç ç
÷ ÷
ç ç
è ø è ø
_<m :#;3
( )

4 4
4
sin 2x cos 2x
cos 4x
tan x tan x
4 4
+
= *
æ ö æ ö
p p
÷ ÷
ç ç
÷ ÷
- +

ç ç
÷ ÷
ç ç
÷ ÷
ç ç
è ø è ø
`<m :#;3
( )

3 x 1 3x
sin sin 1
10 2 2 10 2
æ ö æ ö
p p
÷ ÷
ç ç
÷ ÷
- = +
ç ç
÷ ÷
ç ç
÷ ÷
ç ç
è ø è ø
Xa<m :#;3
( )
sin 3x sin2xsin x 1
4 4
æ ö æ ö
p p

÷ ÷
ç ç
÷ ÷
- = +
ç ç
÷ ÷
ç ç
÷ ÷
ç ç
è ø è ø
XX<
( )

3
8cos x cos3x 1
3
æ ö
p
÷
ç
÷
+ =
ç
÷
ç
÷
ç
è ø
XY<m :#;3
( )


3
2sin x 2sinx 1
4
æ ö
p
÷
ç
÷
+ =
ç
÷
ç
÷
ç
è ø
XZ<m :#;3
( )

3
sin x 2sinx 1
4
æ ö
p
÷
ç
÷
- =
ç
÷

ç
÷
ç
è ø
X[<m :#;3
( )
cosx cos2x cos3x cos4x 0+ + + = *
X\<m :#;3
( )

2 2 2
3
sin x sin 2x sin 3x
2
+ + = *
<
X]<m :#;3
( )

2 2 2
sin x sin 2x sin 3x 2+ + = *
<
X^<m :#;3
( )

2 2 2 2
sin x sin 3x cos 2x cos 4x+ = + *
X_<m :#;3
( )


2 2 2 2
sin 3x cos 4x sin 5x cos 6x- = - *
X`<m :#;3
( )
1 
2 2
5x 9x
cos3x sin7x 2 2cos
4 2 2
æ ö
p
÷
ç
÷
+ = + - *
ç
÷
ç
÷
ç
è ø
Ya<m :#;3
( )

2 2 2
sin x cos 2x cos 3x= + *
YX<m :#;3
( )

2

2sin 2x sin7x 1 sinx+ - = *
YY<m :#;3
( )
sinx sin2x sin3x 1 cosx cos2x+ + = + + *
YZ<m :#;3
( )

3 3 3
sin xcos3x cos xsin3x sin 4x+ = *
Y[<m :#;3
( )

2 3
cos10x 2cos 4x 6cos3xcosx cosx 8cosxcos 3x+ + = + *
Y\<m :#;3
( )

3 3 2
4sin x 3cos x 3sinx sin xcosx 0+ - - = *
Y]<m :#;3
( ) ( ) ( )

2
2sinx 1 3cos4x 2sinx 4 4cos x 3+ + - + = *
Y^<m :#;3
( )
( )

6 6 8 8
sin x cos x 2 sin x cos x+ = + *

Y_<m :#;3
( )
( )

8 8 10 10
5
sin x cos x 2 sin x cos x cos2x
4
+ = + + *
*
Y`<m :#;3
( )
( )

3 3 5 5
sin x cos x 2 sin x cos x+ = + *
Za<m :#;3
( )

4 2 2 4
3cos x 4cos xsin x sin x 0- + = *
ZX<m :#;3
( )

3 3
2 3 2
cos3xcos x sin3xsin x
8
-
- = *

ZY<m :#;3
( )

1
cosxcos2xcos4xcos8x
16
= *
ZZ<m :#;3
( )

3
4sin3xcos2x 1 6sinx 8sin x= + - *
Z[<m :#;3
( )

1
cosx cos2x cos3x cos4x cos5x
2
+ + + + = - *
Z\<m :#;3
( )

sin2x 2cosx sinx 1
0
tanx 3
+ - -
= *
+
Z]<m :#;3
( )


2
1 sin2x cos2x
2sinxsin2x
1 cot x
+ +
= *
+
Z^<m :#;3
( ) ( )
tanx cotx 2 sin2x cos2x+ = + *
Z_<m :#;3
( )

2
tan x tanxtan3x 2- = *
Z`<m :#;3
( )

2 2 2
11
tan x cot x cot 2x
3
+ + = *
[a<m :#;3
( )

2 2 2
x x
sin tan x cos 0

2 4 2
æ ö
p
÷
ç
÷
- - = *
ç
÷
ç
÷
ç
è ø
[X<m :#;3
( ) ( )

2
sin2x cotx tan2x 4cos x+ = *
[Y<m :#;3
( ) ( )

2 2
cot x tan x
16 1 cos4x
cos2x
-
= + *
[Z<m :#;3
( )


1
2tanx cot2x 2sin2x
2sin2x
+ = + *
[[<m :#;3
( )
( ) ( )

3 sinx tanx
2 1 cosx 0
tanx sinx
+
- + = *
-
[\<m :#;3
( ) ( )
( )
( ) ( )

2 2
2 2
1 cosx 1 cosx
1
tan xsinx 1 sinx tan x
2
4 1 sinx
- + +
- = + + *
-
[]<m :#;3

( )
cos3xtan5x sin7x= *
[^<m :#;3
( )

1 1
sin2x sinx 2cot x
2sinx sin2x
+ - - = *
[_<m :#;3
( ) ( )

4 4
sin x cos x 1
tanx cot2x
sin2x 2
+
= + *
[`<m :#;3
( )

2 2 2 2
tan x.cot 2x.cot3x tan x cot 2x cot3x= - + *
\a<m :#;3
( )

x
cot x sinx 1 tanxtan 4
2
æ ö

÷
ç
÷
+ + = *
ç
÷
ç
÷
ç
è ø
8Ab;3'c;39T98AQ;3RS;8AB;339>QT;

d3Lx'G%C'!9%
x,2x,3x
@U9]pED'E9U5NO
%<SE95%
x
9&%
2x
r!V7F# MP%lE7Q90j%9
'19%3^L#0:#;cV!9%
x,2x,3x
@9]E95%
#%9
2x
D%#0!F%791

GJ0?01

GK<X691


GJ0?
01

GK@]E95%
x
^<
96 0
( )
( ) ( )
3 2 3 2
4cos x 3cosx 4 2cos x 1 3cosx 4 0 4cos x 8cos x 0* - - - + - = - =
( )
( )
( )
( )



2
cosx 0 N
4cos x cosx 2 0 x k , k
cosx 2 L
2

=
p

- = = + p ẻ


=


Â
<

0,5 k 3,9
3 5 7
Do x 0;14 ,k 0 k 14 x ; ; ;
k
2 2 2 2 2

ỡ ỹ
ù
- Ê Êằ
ù ù
p p p p p
ù
ù ù
ộ ự
ẻ ẻ Ê + p Ê ị ẻ
ớ ớ ý
ờ ỳ
ở ỷ
ù ù ù

ù ù ù
ợ ỵ

Â

Â
<
96 0
( ) ( ) ( )
2cosx 1 2sinx cosx 2sinxcosx sinx* - + = -
( ) ( ) ( )
2cosx 1 2sinx cosx sinx 2cosx 1 0 - + - - =
( ) ( ) ( ) ( )
2cosx 1 2sinx cosx sinx 0 2cosx 1 sinx cosx 0
ộ ự
- + - = - + =
ờ ỳ
ở ỷ
( )

x k2
2cosx 1 0
cosx cos
3
k;l
3
sinx cosx 0
tanx 1
x l
4

p

p


= + p

- =

=







+ = p


= -

= - + p




Â
<
d3Lx'G%C'%
3x

2x
@U9Y9&ED'E9U5NO
%G!RP!9PE8901

96 0
( )
3 2 3 2
4cos x 3cosx 2cos x 1 cosx 1 0 2cos x cos x 2cosx 1 0* - + - - - = + - - =
( ) ( ) ( )
( )

2 2
cos x 2cosx 1 2cosx 1 0 2cosx 1 cos x 1 0 + - + = + - =
"
X<m :#;3
( )
cos3x 4cos2x 3cosx 4 0 , x 0;14
ộ ự
- + - = * " ẻ
ờ ỳ
ở ỷ
Ie01f&g=h4 '."YaaY
Y<m :#;3
( ) ( ) ( )
2cosx 1 2sinx cosx sin2x sinx- + = - *
Ie01f&g=h4 '."Yaa[
Z<m :#;3
( )
cos3x cos2x cosx 1 0+ - - = *
Ie01f&g=h4 '."Yaa]
[<m :#;3
( )
sinx cosx 1 sin2x cos2x 0+ + + + = *
Ie01f&g=h4 ."Yaa\

( ) ( )
 
2
sinx 0 x k
2cosx 1 sin x 0 k;l
1 2
cosx x l2
2 3
é é
= = p
ê ê
ê ê
Û - + = Û Û Î
p
ê ê
= - = ± + p
ê ê
ë ë
¢
<
 96 0
( ) ( )
2
sinx cosx 2sinxcosx 2cos x 0* Û + + + =
( ) ( )
 sinx cosx 2cosx sinx cosx 0Û + + + =
( ) ( )
 sinx cosx 1 2cosx 0Û + + =
( )
 

sinx cosx tanx 1
x k
4
k;l
1 2
2
cosx cosx cos
x l2
2 3
3
é
p
é é
= - = -
ê
= - + p
ê ê
ê
ê ê
Û Û Û Î
ê
p
ê ê
p
= - =
ê
= ± + p
ê ê
ê
ë ë

ë
¢
<
d3Lx'G%C'89%
2x
%
x
9YED'%&F%
2x
5%
x
!RPE89101@xE7G%C'Pg%p9D
( )
( )
2
sinx 1 2cos x 1 2sinxcosx 1 cosx* Û + - + = +
( ) ( )

2
2sinxcos x 2sinxcosx 1 cosx 2sinxcosx cosx 1 1 cosx 0Û + = + Û + - + =
( ) ( ) ( )
 
2
1
x k2
cosx
3
cosx 1 sin2x 1 0 k,l
2
sin2x 1

x l
4
é
p
é
ê
= ± + p
ê
= -
ê
ê
Û + - = Û Û Î
ê
ê
p
ê
=
= + p
ê
ê
ë
ë
¢
<
d3Lx'G%C'9%
3
x
2
p
-


7
x
4
p
-
U91%&YED'E99%
69%&5NO%%
x
<4FEE5%E7@97FN
O%0?NP%U^01E>\1!N\s0ii<L9Q'9y
pE7j%99 19%EP&
 96 0
X<fgO%3
( )
sin a b sina.cosb cosa.sinb± = ±
]<m :#;3
( )

1 1 7
4sin x
sinx 4
3
sin x
2
æ ö
p
÷
ç
÷

+ = - *
ç
÷
ç
æ ö
÷
ç
p
è ø
÷
ç
÷
-
ç
÷
ç
÷
ç
è ø
Ie01f&g=h4 ."Yaa_
\<m :#;3
( ) ( )
sinx 1 cos2x sin2x 1 cosx+ + = + *
Ie01f&g=h4 '."Yaa_
( )
1 1 7 7
4 sin cosx sinxcos
sinx 3 3 4 4
sinxcos sin cosx
2 2

ổ ử
p p



* + = -





p p
ố ứ
-
( )

1 1 2
4. sinx cosx
sinx cosx 2
ộ ự
ờ ỳ
+ = - +
ờ ỳ
ờ ỳ
ở ỷ
45%6'3
sinxcosx 0 sin2x 0ạ ạ
<
( )


sinx cosx
2 2 sinx cosx
sinxcosx
+
= - +
( ) ( )
sinx cosx 2 2sinxcosx sinx cosx 0 + + + =
( )
( )
sinx cosx 1 2sin2x 0 + + =
( )


x k
4
tanx 1
sinx cosx 0
x l k,l,m
2
8
1 2sin2x 0
sin2x
5
2
x m
8

p

= - + p



= -


+ =

p



= - + p ẻ



+ =

ờ= -



p

= + pờ


Â
<
Y<fg^01E>\1!N\s0ii
L973

( )
3
sin x sin 2 x cosx
2 2
7 1
sin x sin 2 x sin x sinx cosx
4 4 4
2

ộ ự
ổ ử ổ ử
ù
p p
ù
ữ ữ
ỗ ỗ
ờ ỳ
ữ ữ
ù - = - p- - =
ỗ ỗ
ữ ữ
ù
ờ ỳ
ỗ ỗ
ữ ữ
ỗ ỗ
ù
ố ứ ố ứ
ờ ỳ
ù

ở ỷ

ộ ự
ổ ử ổ ử ổ ử
ù
p p p
ữ ữ ữ
ù
ỗ ỗ ỗ
ờ ỳ
ữ ữ ữ
- = p - + = - + = - +
ù
ỗ ỗ ỗ
ữ ữ ữ
ù
ờ ỳ
ỗ ỗ ỗ
ữ ữ ữ
ỗ ỗ ỗ
ố ứ ố ứ ố ứ
ù
ờ ỳ
ở ỷ
ù

( ) ( )
1 1 1
4. sinx cosx
sinx cosx

2
ộ ự
ờ ỳ
* + = - +
ờ ỳ
ở ỷ
<m :Q +<
d3Lxb9%
x x
3 6 2
p p p
+ + - =
U9]pEDP%iis0ii@&3
cot x cot x cot x cot x cot x tan x 1
3 6 3 2 3 3 3
ộ ự
ổ ử ổ ử ổ ử ổ ử ổ ử ổ ử
p p p p p p p
ữ ữ ữ ữ ữ ữ
ỗ ỗ ỗ ỗ ỗ ỗ
ờ ỳ
ữ ữ ữ ữ ữ ữ
+ - = + - + = + + =
ỗ ỗ ỗ ỗ ỗ ỗ
ữ ữ ữ ữ ữ ữ
ờ ỳ
ỗ ỗ ỗ ỗ ỗ ỗ
ữ ữ ữ ữ ữ ữ
ỗ ỗ ỗ ỗ ỗ ỗ
ố ứ ố ứ ố ứ ố ứ ố ứ ố ứ

ờ ỳ
ở ỷ
<
'XV89U9N3
4 4 2
1
sin x cos x 1 sin 2x
2
+ = -
<SD%
67Gs&@9D!DEb9
cos
cot
sin
=
@#cj%Ec;!0
#p]#CV@9`ED'E>D%'E5%6'<
96 0
4=3
sin x 0
1
3
sin x sin x 0 cos 2x 0 cos 2x 0
3 6 2 6 6
sin x 0
6

ổ ử
ù
p


ù


+ ạ
ù



ù
ổ ử ổ ử ổ ử ổ ử


p p p p
ố ứ
ù
ữ ữ ữ ữ
ù
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
+ - ạ - ạ - ạ
ỗ ỗ ỗ ỗ

ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ổ ử
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ù
p

ố ứ ố ứ ố ứ ố ứ


ù

- ạ

ù


ù


ố ứ
ù
ù

<
+.
^<m :#;3
( )

4 4
7
sin x cos x cot x cot x
8 3 6
ổ ử ổ ử
p p
ữ ữ
ỗ ỗ

ữ ữ
+ = + - *
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ
ố ứ ố ứ
Ie01f&g=h35D)i8."X```
( ) ( )

2 2
1 7 1 1 k
1 sin 2x sin 2x 1 cos4x x , k
2 8 4 2 12 2
p p
* - = = - = = + ẻ Â
<
96 0
4=3
cos x 0
1
4
cos x cos x 0 cos2x cos 0 cos2x 0
4 4 2 2
cos x 0
4

ổ ử
ù

p

ù


- ạ
ù



ù
ổ ử ổ ử ổ ử


p p p
ố ứ
ù
ữ ữ ữ
ù
ỗ ỗ ỗ
ữ ữ ữ
- + ạ + ạ ạ
ỗ ỗ ỗ

ữ ữ ữ
ỗ ỗ ỗ
ổ ử
ữ ữ ữ
ỗ ỗ ỗ
ù

p
ố ứ ố ứ ố ứ


ù

+ ạ

ù


ù


ố ứ
ù
ù

<
L973
tan x tan x tan x tan x tan x cot x 1
4 4 4 2 4 4 4
ộ ự
ổ ử ổ ử ổ ử ổ ử ổ ử ổ ử
p p p p p p p
ữ ữ ữ ữ ữ ữ
ỗ ỗ ỗ ỗ ỗ ỗ
ờ ỳ
ữ ữ ữ ữ ữ ữ
- + = - - + = - - =

ỗ ỗ ỗ ỗ ỗ ỗ
ữ ữ ữ ữ ữ ữ
ờ ỳ
ỗ ỗ ỗ ỗ ỗ ỗ
ữ ữ ữ ữ ữ ữ
ỗ ỗ ỗ ỗ ỗ ỗ
ố ứ ố ứ ố ứ ố ứ ố ứ ố ứ
ờ ỳ
ở ỷ
<
( )
( )
2 4 2 4 4 2
1 1
1 sin 4x cos 4x 1 1 cos 4x cos 4x 2cos x cos 4x 1 0
2 2
* - = - - = - - =
( )
( )



2
2 2
2
2
t 1 N
2t t 1 0
1
cos 4x 1 sin 4x 0 sin4x 0

t L
t cos 4x 0
2
t cos 4x 0


ù
=
ù

ù

ù
ù

- - =
ùù
ù ù

= = =
ớ ớ
= -

ù ù
=

ù ù
ù

ù

ù
=
ù
ù

( )
( )
( )



sin2x 0 N
k
x , k
cos2x 0 L
2

ù
=
p
ù
ù
= ẻ

ù
=
ù
ù

Â

<
e%y@97FQ'!DEb%1>!ROh0919%
tan tanx tan tanx
1 tanx 1 tanx
4 4
tan x .tan x . . 1
4 4 1 tanx 1 tanx
1 tan tanx 1 tan tanx
4 4
p p
- +
ổ ử ổ ử
p p - +
ữ ữ
ỗ ỗ
ữ ữ
- + = = =
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ
p p + -
ố ứ ố ứ
+ -
<
d3S;0:#;&@9YNO%h01zz@0?Gsb
%89U@zz<ExOD@71d67EED6Dj% <L9k&Gh
99%
3 x

10 2
p
-

3x
10 2
p
+
7>]';9&6rL&3
3x 3x 9 3x 3 x
sin sin sin sin3
10 2 10 2 10 2 10 2
ộ ự
ổ ử ổ ử ổ ử ổ ử
p p p p
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ờ ỳ
ữ ữ ữ ữ
+ = p- + = - = -
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
ờ ỳ
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ố ứ ố ứ ố ứ ố ứ
ờ ỳ
ở ỷ
<LxE7@91d

E?
3 x
t
10 2
p
= -
1gP!9>%C<
96 0
_<m :#;3
( )

4 4
4
sin 2x cos 2x
cos 4x
tan x tan x
4 4
+
= *
ổ ử ổ ử
p p
ữ ữ
ỗ ỗ
ữ ữ
- +
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ

ố ứ ố ứ
Ie01f&g=hjF1'7."X``^
`<m :#;3
( )

3 x 1 3x
sin sin 1
10 2 2 10 2
ổ ử ổ ử
p p
ữ ữ
ỗ ỗ
ữ ữ
- = +
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ
ố ứ ố ứ
Ie01f&g=hk1."YaaX
L973
3x 3x 9 3x 3 x
sin sin sin sin3
10 2 10 2 10 2 10 2
ộ ự
ổ ử ổ ử ổ ử ổ ử
p p p p
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ

ờ ỳ
ữ ữ ữ ữ
+ = p- + = - = -
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
ờ ỳ
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ố ứ ố ứ ố ứ ố ứ
ờ ỳ
ở ỷ
<
( ) ( )

3 x 1 3 x
1 sin sin3 2
10 2 2 10 2
ổ ử ổ ử
p p
ữ ữ
ỗ ỗ
ữ ữ
- = -
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ
ố ứ ố ứ

<
4?
3 x
t
10 2
p
= -
<_
( )
( ) ( )
3 2
1 1
2 sint sin3t sint 3sint 4sin t sint 1 sin t 0
2 2
= = - - =
( )

3 x 3
t k
k x k2
sint 0
10 2 5
k,l
cost 0 3 x 2
t l
l x l2
2
10 2 2 5
ộ ộ
p p


= p
ờ ờ
- = p = - p

=

ờ ờ



ờ ờ
p


= p p p
= + p
ờ ờ


- = + p = - p

ờ ờ

ở ở
Â
<
96 0
L973
3

sin 3x sin 3x sin 3x sin 3x sin3 x
4 4 4 4 4
ộ ự
ổ ử ổ ử ổ ử ộ ự ổ ử
p p p p p
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ờ ỳ
ờ ỳ
ữ ữ ữ ữ
- = - - = - p- - = - + = - +
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
ờ ỳ
ỗ ỗ ỗ ỗ
ờ ỳ
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ố ứ ố ứ ố ứ ố ứ
ờ ỳ
ở ỷ
ở ỷ
4?
t x x t
4 4
p p
= + ị = -
<eUE7
( )
1 sin3t sin 2t .sint

2
ổ ử
p



- = -





ố ứ
3
2 2 2
sint 0 sint 0
4sin t 3sint cos2tsint 0
4sin t 3 1 2sin t 0 sin t 1
ộ ộ
= =
ờ ờ
- + =
ờ ờ
- + - = =
ờ ờ
ở ở
( )

t k
x k

sint 0
4
x m , k,l,m
cost 0
4 2
t l
x l
2
4

p

= p

= - + p

=

p p



= - + ẻ

p


= p
= + p




= + p




Â
<
96 0
L973
( )
cos3x cos 3x cos 3 x
3
ộ ự
ổ ử
p


ờ ỳ

= - p + = - +


ờ ỳ



ố ứ
ờ ỳ

ở ỷ
<
I:#;3
( ) ( )

3
1 8cos x cos 3 x 2
3 3
ộ ự
ổ ử ổ ử
p p
ữ ữ
ỗ ỗ
ờ ỳ
ữ ữ
+ = - +
ỗ ỗ
ữ ữ
ờ ỳ
ỗ ỗ
ữ ữ
ỗ ỗ
ố ứ ố ứ
ờ ỳ
ở ỷ
<
4?
t x
3
p

= +
<eUE73
( )
3 3 3
2 8cos t cos3t 8cos t 4cos t 3cost = - = - +
( )
( )

3 2
12cos t 3cost 0 cos3t 4cos t 1 0 cos3t 2cos2t 1 0 - = - = + =
+
XX<m :#;3
( )

3
8cos x cos3x 1
3
ổ ử
p



+ =





ố ứ
Ie01f&g=hl0 38;#."X```

Xa<m :#;3
( )
sin 3x sin2xsin x 1
4 4
ổ ử ổ ử
p p
ữ ữ
ỗ ỗ
ữ ữ
- = +
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ
ố ứ ố ứ
Ie01f&8hD20IDm5."X```
( )

t k
x k
2
cos3t 0
6
t l x l k;l;m
1
3
cos2t
2
2

x m
t m
3
3

p


= + p p


= + p


=


p



= + p = p ẻ




= -


p




p
= + p

= - + pờ




Â
<
96 0
X<
4?
t x x t
4 4
p p
= + ị = -
<eUE73
( )
3 3
1 sin t 2sin t sin t sint cost
4
ổ ử
p




= - = -





ố ứ
( )
( ) ( )

3 3 2 2
sin t sint cost sin t sin t cos t sint cost = - = + - ã
( )

2 2
cost sin t sintcost cos t 0 - + - =
( )
( )
( )



cost 0 N
1
cost sin2t 1 0 t k x k , k
sin2t 2 L
2 2 4

ổ ử
=

p p




- = = + p = + p ẻ






=
ố ứ


Â
<
d3L#0
( )
ã
@Ek1g6Y%s
2 2
1 sin t cos t= +
<_&#0
:#;@C%'%D0EF!DsDrP%# M#CE:
3^=!891016Ec!:6s9%9!@9]s
2 2
1 sin t cos t= +
EF:#;#p]E: :^<

Y<
( ) ( )
3
3
1 1
1 2 . 2sin x 2sinx 2 sinx cosx 2sinx
4
2 2
ộ ự
ộ ự
ổ ử
p


ờ ỳ
ờ ỳ

+ = + =


ờ ỳ
ỗ ờ ỳ


ố ứ
ờ ỳ
ở ỷ
ở ỷ
( ) ( ) ( )


3 2
sinx cosx 4sinx sinx cosx sinx cosx 4sinx + = + + =
( ) ( )
sinx cosx 1 2sinxcosx 4sinx + + =

2 2
3sinx 2cos xsinx 2sin xcosx cosx 0 - + + + =
( ) ( )

2 2
sinx 3 2cos x cosx 2sin x 1 0 - + + + =
( ) ( )

2 2
sinx 2sin x 1 cosx 2sin x 1 0 - + + + =
( )
( )
( )


2
2
0 2sin x 1 0 VN
2sin x 1 cosx sinx 0
cosx sinx 0

= + >

+ - =


- =


( )
tanx 1 x k , k
4
p
= = + p ẻ Â
<
Z<
( ) ( )
3
3
1 1
1 2 . 2sin x 2sinx 2 sinx cosx 2sinx
4
2 2
ộ ự
ộ ự
ổ ử
p


ờ ỳ
ờ ỳ

+ = + =


ờ ỳ

ỗ ờ ỳ


ố ứ
ờ ỳ
ở ỷ
ở ỷ
( ) ( )

3
sinx cosx 4sinx 2 + =
XY<m :#;3
( )

3
2sin x 2sinx 1
4
ổ ử
p



+ =





ố ứ
Ie01f&FD2I01e5."X``_

_;
( )
cosx 0 hay sinx 1= =
6 '89:#;
( )
2
]99D89
:#;
( )
2
0
3
cos x
@9E3
( ) ( )
( )
3
2
2 tanx 1 4tanx. 1 tan x + = +
m :#;h09G9E'3
( )
tanx 1 x k , k
4
p
= = + p ẻ Â
<
96 0
X<
4?
t x x t

4 4
p p
= - ị = +
<eUE73
( )
( )
3 3
1 sin t 2sin t 4 sin t sint cost = + = +
( )
( )

3 2 2
sin t sint cost sin t cos t = + +
( )

3 3 2 2 3
sin t sin t sintcos t costsin t cos t cost sintcost 1 0 = + + + + =
( )
( )


cost 0
3
t k x k k , k
sin2t 2 L
2 4 4

=
p p p


= + p = + p - + p ẻ

= -


Â
<
YZJ:Q`+)K<VE[Q
d307%69%h0O!C01J0?10?
101KVbJ0?'%K<L9]s1>V&?1900'%
J0?bK%89U!R9%@#0#M&EFy
( )
x 4x 5x+ =

( )
2x 3x 5x+ =
<LV190 s&rey0#CE: @
U9^x91>%^EF7#90@E9!05V:#;
`1><
96 0
( ) ( ) ( )
5x 3x 5x x
cosx cos4x cos2x cos3x 0 2cos cos 2cos cos 0
2 2 2 2
* + + + = + =

5x 3x x 5x x
2cos cos cos 0 4cos cosxcos 0
2 2 2 2 2
ổ ử




+ = =





ố ứ
( )

5x k2
5x k x
cos 0
2 2 5 5
2
cosx 0 x l x l k;l;m
2 2
x
x x 2m
cos 0
m
2
2 2
ộ ộ
p p p

ờ ờ
= + p = +


ờ ờ
=

ờ ờ
p p

ờ ờ
= = + p = + p ẻ

ờ ờ

ờ ờ

ờ ờ
p = p + p
=

= + p
ờ ờ


ờ ờ
ở ở
Â
<
+,
X[<m :#;3
( )
cosx cos2x cos3x cos4x 0+ + + = *


X\<m :#;3
( )

2 2 2
3
sin x sin 2x sin 3x
2
+ + = *
<
Ie01f&(M="8no4 ."Yaaa
XZ<m :#;3
( )

3
sin x 2sinx 1
4
ổ ử
p



- =





ố ứ
Ie01f&g=hl0 3)i8."X``_

d3_:#;7Vg!9h0101@9MN
V!EF!0#p]E: :<
 96 0
( ) ( ) ( ) ( ) ( )
1 1 1 3
1 cos2x 1 cos4x 1 cos6x cos2x cos6x cos4x 0
2 2 2 2
* Û - + - + - = Û + + =
( )
 2cos4xcos2x cos4x 0 cos4x 2cos2x 1 0Û + = Û + =
( )
 
k
cos4x 0
4x k x
2 8 4
k,l
2
2
cos2x cos
2x l2 x l
3
3 3
é é
p p p
é
=
ê ê
= + p = +
ê

ê ê
ê
Û Û Û Î
ê ê
p
ê
p p
=
ê ê
= ± + p = ± + p
ê
ê ê
ë
ë ë
¢
<
 96 0
( ) ( ) ( ) ( )
1 1 1
1 cos2x 1 cos4x 1 cos6x 2
2 2 2
* Û - + - + - =
( ) ( ) ( )

1 1
cos2x cos4x cos6x cos2x cos6x cos4x 1 0
2 2
Û - + + = Û + + + =
( )


2
2cos4xcos2x 2cos 2x 0 2cos2x cos4x cos2x 0Û + = Û + =
( )
 
x k
2
cosx 0
4cos2xcos3xcosx 0 cos2x 0 x l k,l,m
4 2
cos3x 0
x m
6 3
é
p
ê
= + p
ê
é
=
ê
ê
p p
ê
ê
Û = Û = Û = + Î
ê
ê
ê
ê
=

ê
ê
p p
ë
= +
ê
ê
ë
¢
<
 96 0
( ) ( ) ( ) ( ) ( )
1 1 1 1
1 cos2x 1 cos6x 1 cos4x 1 cos8x
2 2 2 2
* Û - + - = + + +
( )
 cos2x cos6x cos4x cos8x 2cos4xcos2x 2cos6xcos2xÛ - + = + Û - =
( )
 2cos2x cos6x cos4x 0 4cos2xcos5xcosx 0Û + = Û =
( )

      
cosx 0
m
cos2x 0 x k x l x ; k,l,m
2 4 2 10 5
cos5x 0
é
=

ê
æ ö æ ö æ ö
p p p p p
ê
÷ ÷ ÷
ç ç ç
÷ ÷ ÷
Û = Û = + p Ú = + Ú = + Î
ç ç ç
ê
÷ ÷ ÷
ç ç ç
÷ ÷ ÷
ç ç ç
è ø è ø è ø
ê
=
ê
ë
¢
<
X]<m :#;3
( )

2 2 2
sin x sin 2x sin 3x 2+ + = *
<
Ie01f&g=hM="pq0)i84 ."YaaX
X^<m :#;3
( )


2 2 2 2
sin x sin 3x cos 2x cos 4x+ = + *
Ie01f&g=hpGl0 'F."X```
X_<m :#;3
( )

2 2 2 2
sin 3x cos 4x sin 5x cos 6x- = - *
Ie01f&g=h4 ."YaaY
 96 0
( ) ( ) ( ) ( ) ( )
1 1 1 1
1 cos6x 1 cos8x 1 cos10x 1 cos12x
2 2 2 2
* Û - - + = - - +
 cos6x cos8x cos10x cos12x 2cos7xcosx 2cos11xcosxÛ + = + Û =
( ) ( )
 
x k
2
cosx 0
l
cosx cos7x cos11x 0 x k,l,m
cos7x cos11x
2
m
x
9
é

p
ê
= + p
ê
ê
é
=
p
ê
ê
Û - = Û Û = - Î
ê
ê
=
ê
ê
ë
ê
p
=
ê
ê
ë
¢
<
 96 0
( )
G Gcos3x sin7x 1 cos 5x 1 cos9 cos3x sin7x sin5x cos9
2
æ ö

p
÷
ç
÷
* Û + = - + - - Û + = -
ç
÷
ç
÷
ç
è ø
 cos3x cos9x sin7x sin5x 0 2cos6xcos3x 2cos6xsinx 0Û + + - = Û + =
( ) ( )

x k
12 6
cos6x 0
cos6x cos3x sinx 0 x l k,l,m
cos3x cos x
4
2
m
x
8 2
é
p p
ê
= +
ê
é

=
ê
ê
p
ê
ê
æ ö
Û + = Û Û = + p Î
p
ê
÷
çê
÷
= +
ç
ê
÷
ê
ç
÷
ç
è ø
ê
p p
ê
ë
= - +
ê
ê
ë

¢
<
 96 0
( ) ( ) ( )
1 cos2x 1 cos4x 1 cos6x
cos2x cos4x 1 cos6x 0
2 2 2
- + +
* Û = + Û + + + =
( )

2
2cos3xcosx 2cos 3x 0 2cos3x cosx cos3x 0Û + = Û + =
( )
 
k
x
k
6 3
cosx 0
x
l
6 3
4cos3xcos2xcosx 0 cos2x 0 x k,l,m
l
4 2
x
cos3x 0
4 2
x m

2
é
p p
ê
= +
é
ê
é
p p
=
ê
ê
ê
= +
p p
ê
ê
ê
Û = Û = Û = + Û Î
ê
ê
ê
p p
ê
ê
ê
= +
=
ê
ê

ê
p
ë
ë
= + p
ê
ê
ë
¢
<
+*
X`<m :#;3
( )
1 
2 2
5x 9x
cos3x sin7x 2 2cos
4 2 2
æ ö
p
÷
ç
÷
+ = + - *
ç
÷
ç
÷
ç
è ø

Ie01f&g=hf'Jf."YaaX
Ya<m :#;3
( )

2 2 2
sin x cos 2x cos 3x= + *
Ie01f&g=hl0 38;#."X``_
YX<m :#;3
( )

2
2sin 2x sin7x 1 sinx+ - = *
Ie01f&g=h."4 ."Yaa^
d3Lx'G%C'%
( ) ( ) ( )
x , 2x , 7x
Gs
7x x
4x
2
+
=
@97FEH
7
( )
sin7x sinx-
@
( )
2
2sin 2x 1-

V9%@EF19%6N
b`V!RG%C'Pg%%>NE99E
:#;`1>E: :<
 96 0
( ) ( )
( )
2
sin7x sinx 1 2sin 2x 0 2cos4xsin3x cos4x 0* Û - - - = Û - =
( ) ( )
 
k2
cos4x 0
x
18 3
cos4x 2sin3x 1 0 k,l
1
5 l2
sin3x
x
2
18 3
é
p p
é
=
ê
= +
ê
ê
ê

Û - = Û Û Î
ê
ê
p p
=
ê
= +
ê
ê
ë
ë
¢
<
 96 0
( ) ( ) ( )
sinx sin3x sin2x 1 cos2x cosx* Û + + = + +
( ) ( )

2
2sin2xcosx sin2x 2cos x cosx sin2x 2cosx 1 cosx 2cosx 1 0Û + = + Û + - + =
( ) ( ) ( ) ( )
 2cosx 1 sin2x cosx 0 2cosx 1 2sinxcosx cosx 0Û + - = Û + - =
( ) ( ) ( )



  
x k
2
cosx 0

x l2
1
6
cosx 2sinx 1 2cosx 1 0 sinx k,l,m,n
5
2
x m2
1
6
cosx
2
2
x n2
3
é
p
ê
= + p
é
ê
ê
ê
=
é
p
ê
ê
ê
= + p
ê

ê
ê
ê
ê
Û - + = Û = Û Î
ê
ê
ê
p
ê
ê
ê
= + p
ê
ê
ê
ë
= -
ê
ê
p
ë
ê
= ± + p
ê
ë
¢
<
 96 0
( )

( ) ( )
3 3 3 3 3
sin x 4cos x 3cosx cos x 3sinx 4sin x sin 4x* Û - + - =

3 3 3 3 3 3 3
4sin xcos x 3sin x3cosx 3cos xsinx 4cos xsin x sin 4xÛ - + - =
( )

2 2 3
3sinxcosx cos x sin x sin 4xÛ - =

3 3
3 3
sin2xcos2x sin 4x sin4x sin 4x
2 4
Û = Û =
( )
  
3
k
3sin4x 4sin 4x 0 sin12x 0 12x k x , k
12
p
Û - = Û = Û = p Û = Î ¢
<
 96 0
YY<m :#;3
( )
sinx sin2x sin3x 1 cosx cos2x+ + = + + *
YZ<m :#;3

( )

3 3 3
sin xcos3x cos xsin3x sin 4x+ = *
Ie01f&g=h;=."X```
Y[<m :#;3
( )

2 3
cos10x 2cos 4x 6cos3xcosx cosx 8cosxcos 3x+ + = + *
( ) ( )
( )
3
cos10x 1 cos8x cosx 2cosx 4cos 3x 3cos3x* Û + + = + -
( )
 cos10x cos8x 1 cosx 2cosxcos9xÛ + + = +
 2cos9xcosx 1 cosx 2cosxcos9xÛ + = +
( )
 cosx 1 x k2 , kÛ = Û = p Î ¢
<
 96 0
( )
( ) ( )
2 2 2
sinx 4sin x 3 cosx sin x 3cos x 0* Û - - - =
( ) ( )

2 2 2
sinx 4sin x 3 cosx sin x 3 1 sin x 0
é ù

Û - - - - =
ê ú
ë û
( )
( )

2
4sin x 3 sinx cosx 0Û - - =
( ) ( )
 2 1 cos2x 3 sinx cosx 0
é ù
Û - - - =
ê ú
ë û
( )

2
1 2 2
x k
cos2x cos 2x k2
3
k;l
2 3 3
sinx cosx tanx 1
x l
4
é
p
é é
p p

ê
= ± + p
ê ê
= - = = ± + p
ê
ê ê
Û Û Û Î
ê
ê ê
p
ê
= =
= + p
ê ê
ê
ë ë
ë
¢
<
 96 0
( ) ( ) ( )
( )
2
2sinx 1 3cos4x 2sinx 4 4 1 sin x 3 0* Û + + - + - - =
( ) ( ) ( ) ( )
 2sinx 1 3cos4x 2sinx 4 1 2sinx 1 2sinx 0Û + + - + - + =
( ) ( )
 2sinx 1 3cos4x 2sinx 4 1 2sinx 0Û + + - + - =
( ) ( )
 3 cos4x 1 2sinx 1 0Û - + =

( )
 
k
x
4x k2
2
cos4x 1
x l2 x l2 k;l;m
1
6 6
sin2x
2
7 7
x m2 x m2
6 6
é
p
é
ê
=
ê
= p
ê
ê
é
=
ê
ê
ê
p p

ê
ê
ê
Û Û = - + p Û = - + p Î
ê
ê
ê
= -
ê
ê
ê
ê
ë
p p
ê
= + p = + p
ê
ê
ê
ë
ë
¢
<
 96 0
( )
( ) ( )
6 8 6 8 6 2 6 2
sin x 2sin x cos x 2cos x 0 sin x 1 2sin x cos x 2cos x 1 0* Û - + - = Û - - - =
( )


6 6 6 6
sin xcos2x cos xcos2x 0 cos2x sin x cos x 0Û - = Û - =
+"
Y\<m :#;3
( )

3 3 2
4sin x 3cos x 3sinx sin xcosx 0+ - - = *
Y]<m :#;3
( ) ( ) ( )

2
2sinx 1 3cos4x 2sinx 4 4cos x 3+ + - + = *
Y^<m :#;3
( )
( )

6 6 8 8
sin x cos x 2 sin x cos x+ = + *
Ie01f&g=hl0 l08;#p ."X```
( )

6 6
k
x
cos2x 0
cos2x 0
k
4 2
x , k

tanx 1
sin x cos x
4 2
x k
4
é
p p
ê
é
= +
é
=
=
p p
ê
ê
ê
Û Û Û Û = + Î
ê
ê
ê
= ± p
=
ê
ê
ê
ë
ë = ± + p
ê
ë

¢
<
 96 0
( )
( ) ( )
10 8 8 10
5
2cos x cos x sin x 2sin x cos2x 0
4
* Û - - - + =
( ) ( )

8 2 8 2
5
cos x 2cos x 1 sin x 1 2cos x cos2x 0
4
Û - - - + =

8 8 8 8
5 5
cos x.cos2x sin xcos2x cos2x 0 cos2x cos x sin x 0
4 4
æ ö
÷
ç
÷
Û - + = Û - + =
ç
÷
ç

÷
ç
è ø
( )
( )


8 8
8 8
cos2x 0
2x k
k
2
x , k
5
5
4 2
cos x sin x 0
sin x cos x 1 VN
4
4
é
p
é
=
ê
= + p
ê
p p
ê

ê
Û Û Û = + Î
ê
ê
- + =
ê
= + >
ê
ê
ë
ë
¢
<
 96 0
X
( )
( ) ( )
3 5 5 3
sin x 2sin x 2cos x cos x 0* Û - - + =
( ) ( )

3 2 3 2 3 3
sin x 1 2sin x cos x 2cos x 1 0 sin xcos2x cos xcos2x 0Û - - - = Û - =
( )
( )
  
3 3
3
cos2x 0
m

cos2x sin x cos x 0 x , m
tan x 1
4 2
é
=
p p
ê
Û - = Û Û = + Î
ê
=
ê
ë
¢
<
Y
( )
( ) ( )
3 3 2 2 5 5
sin x cos x sin x cos x 2sin x 2cos x 0* Û + + - - =
( ) ( )

3 2 5 5 3 2
sin xcos x sin x cos x cos sin x 0Û - - - =
( ) ( ) ( )

3 2 2 3 2 2 3 3
sin x cos x sin x cos x cos x sin x 0 cos2x sin x cos x 0Û - - - = Û - =
( )
  
3 3 3

cos2x 0 cos2x 0
m
x , m
sin x cos x 0 tan x 1
4 2
é é
= =
p p
ê ê
Û Û Û = + Î
ê ê
- = =
ê ê
ë ë
¢
<
 96 0
Za<m :#;3
( )

4 2 2 4
3cos x 4cos xsin x sin x 0- + = *
Ie01f&g=hl0 l0)i8X``_X```X
Y_<m :#;3
( )
( )

8 8 10 10
5
sin x cos x 2 sin x cos x cos2x

4
+ = + + *
Ie01f&g=h;=)i84 'Yaaa
Y`<m :#;3
( )
( )

3 3 5 5
sin x cos x 2 sin x cos x+ = + *
Ie01f&g=hl0 8;#4 'X``_
( )
2 2
2
1 cos2x 1 cos2x
3 sin 2x 0
2 2
ổ ử ổ ử
+ -
ữ ữ
ỗ ỗ
ữ ữ
* - + =
ỗ ỗ
ữ ữ
ỗ ỗ
ữ ữ
ỗ ỗ
ố ứ ố ứ
( ) ( ) ( )


2 2 2
3 1 2cos2x cos 2x 4 1 cos 2x 1 2cos2x cos 2x 0 + + - - + - + =
( )

2
8cos 2x 4cos2x 0 4cos2x 2cos2x 1 0 + = + =
( )

k
cos2x 0
x k
4 2 4
k,m
1
cos2x
x m
2
3

p p p

=

= + + p







p
= -

= + p




Â
<
4
W0
cosx 0 hay sinx 1= =
6'89:#;
( )
*
99D89
( )
*
0
4
cos x
@9E3
( )
2
2 4
2
t 4t 3 0
3 4tan x tan x 0
t tan x 0


ù
- + =
ù
ù
* - + =

ù
=
ù
ù

( )

2
2
2
t 1
x k
tanx 1
tan x 1
4
t 3
k,m
tan x 3
tanx 3
x m
t tan x
3




ù
p
=
ù




= + p
=
ù
=

ù ờ


=







ù
p
=
=




ù
= + p


ù
=

ù


Â
<
96 0
d3L9C&#0:#;79
cos3x

sin3x
@D%91g
P!9EF69#Z{EED6Dj% %>N@7:E>V<
`;D@pEP&96s0s0P`EF`b7G%C
'1>
1
2
R> E1>

2 3 2
8

-
V!]D 89:#;<
( ) ( ) ( )
2 2
2 3 2
cos3xcosx cos x sin3xsinx sin x
8
-
* - =
( ) ( )

2 2
1 1 2 3 2
cos4x cos2x cos x cos2x cos4x sin x
2 2 8
-
+ - - =

2 2 2 2
2 3 2
cos4xcos x cos2xcos x cos2xsin x cos4xsin x
4
-
+ - + =
( ) ( )

2 2 2 2
2 3 2
cos4x cos x sin x cos2x cos x sin x
4

-
+ + - =
( )

2
2 3 2 1 2 3 2
cos4x cos 2x cos4x 1 cos4x
4 2 4
- -
+ = + + =
( ) ( )

2 k
4cos2x 2 1 cos4x 2 3 2 cos4x x , k
2 16 2
p p
+ + = - = - = + ẻ Â
<
.
ZX<m :#;3
( )

3 3
2 3 2
cos3xcos x sin3xsin x
8
-
- = *
ZY<m :#;3
( )


1
cosxcos2xcos4xcos8x
16
= *
Ie01f&g=hpGl0 'F."X``_
96 0
d3L#0!0G%C'!>%
x,2x,4x,8x
69%@U9]pED'
E9U5NO%<4F'&91d1%&YED'N
2 2
cos2x 2cos x 1 1 2sin x= - = -
@7;66 j%90C&@!pD
:#;1d#p:#;!90@' 1dP&676A<SEFy
#R@%&CE9%@9EDPE89
sin
@
!RP]9D89
( )
*
0
sinx
<4FE #0sP@9]6F
#9Gh
sinx 0=
7 '9&6#6P<
/SC&3
( )
sinx 0 x k hay cosx 1 cos2x cos4x cos8x 1= = p = = = =

]
( )
1
1
16
* =
J'K]
sinx 0 x k= = p
6'89
( )
*
/SP D89:#;
( )
*
0
16sinx 0ạ
@9E3
( )
16sinxcosxcos2xcos4xcos8x sinx 8sin2xcos2xcos4xcos8x sinx
sinx 0 sinx 0
ỡ ỡ
ù ù
= =
ù ù
*
ớ ớ
ù ù
ạ ạ
ù ù
ợ ợ


4sin4xcos4xcos8x sinx 2sin8xcos8x sinx sin16x sinx
sinx 0 sinx 0 sinx 0
ỡ ỡ ỡ
ù ù ù
= = =
ù ù ù

ớ ớ ớ
ù ù ù
ạ ạ ạ
ù ù ù
ợ ợ ợ

k2
x
k2
x
15
15
l
x
l
x
17 17
17 17
x m


ù

p
ù


=
ù
p
ù


=
ù


ù
ù
p p




= +
ù
p p


ù
= +

ù


ù

ù
ạ p
ù
ù


( )

17p 1
k 15n; l ; k,l,m,n,p
2
-
ạ ạ ẻ Â
<
96 0
( )
( )
3
4sin3xcos2x 1 2 3sinx 4sin x 4sin3xcos2x 1 2sin3x* = + - = +
( )
( )
( )

2
2sin3x 2cos2x 1 1 2sin3x 4cos x 3 1 - = - = o
W0
( )

cosx 0 x k , k
2
p
= = + p ẻ Â
6':#;
( )
o
@]P9D
( )
o
0
cosx 0ạ
@9E3
( )
( )
3
2sin3x 4cos x 3cosx cosx 2sin3xcos3x cosx - = =o
( )

l2
x
14 7
sin6x cosx cosx cos 6x l,k
m2
2
x
10 5

p p


= +
ổ ử
p




= = - ẻ






p p
ố ứ

= +


Â
<
96 0
/=
( )
x k2 , k= p ẻ Â
;
( ) ( )
1
5

2
* = - ị *
67'
( )
x k2 , k= p ẻ Â
<
ZZ<m :#;3
( )

3
4sin3xcos2x 1 6sinx 8sin x= + - *
Z[<m :#;3
( )

1
cosx cos2x cos3x cos4x cos5x
2
+ + + + = - *
/=
( )
x
x k2 , k sin 0
2
ạ p ẻ ị ạÂ
<SP9D89
( )
*
0
x
2sin 0

2

@9E3
( )
x x x x x x
2sin cosx 2sin cos2x 2sin cos3x 2sin cos4x 2sin cos5x sin
2 2 2 2 2 2
* + + + + = -

3x x 5x 3x 7x 5x 9x 7x 11x 9x x
sin sin sin sin sin sin sin sin sin sin sin
2 2 2 2 2 2 2 2 2 2 2
- + - + - + - + - =-
<
( )

11x 11x 2m
sin 0 m x , m 11, m
2 2 11
p
= = p = ạ ẻ Â
<
96 0
d3= :#;7990?0@7|p%9&A!T@
z9 E?E5%6'EF:#;GEH<4?!'E>!07
99J0?0K@9k&9&DU!R
sin cos
,
cos sin
ổ ử









ố ứ
RE`^E:
79^qXV9#H101<
L91dN19%EP&EF6F#9Gh7'9&6
L9&#HG;E0E5%6'Gh7l96<SD%l9;
'C&@D%6l9;0V<
0?!F%Z[%E5%6'[%'#]NOEM
#X<L91d0V!l[%89'67#N[%
89E5%6'<
0?10E5%6'#0j%#; :#;<
/45%6'3
tanx 3
cosx 0

ù
ạ -
ù
ù

ù

ù

ù

( ) ( ) ( )
sin2x 2cosx sinx 1 0 2cosx sinx 1 sinx 1 0* + - - = + - + =
( ) ( ) ( )

1
x k2
cosx
3
sinx 1 2cosx 1 0 k,l
2
sinx 1
x l2
2

p


= + p

=


+ - = ẻ


p

= -

= - + p




Â
<
/f0E5%6'@['89:#;
( )
x k2 , k
3
p
= + p ẻ Â
<
96 0
/45%6'3
sinx 0ạ
( )
2 2
sin x(1 sin2x cos2x) 2 2sin xcosx 1 sin2x cos2x 2 2cosx* + + = + + =
( )

2
2cos x 2cosxsinx 2 2cosx 0 2cosx cosx sinx 2 0 + - = + - =

Z\<m :#;3
( )

sin2x 2cosx sinx 1
0

tanx 3
+ - -
= *
+
Ie01f&g=h4 '."YaXX
Z]<m :#;3
( )

2
1 sin2x cos2x
2sinxsin2x
1 cot x
+ +
= *
+
Ie01f&g=h4 ."YaXX
( )

cosx 0
x k
cosx 0
2
k,l
cos x 1
cosx sinx 2
x l2
4
4



p
=


= + p

=



ổ ử

p





p

- =
+ =






= + p





ố ứ



Â
<
/f0E5%6'@[':#;
( )
x k x l2 , k,l
2 4
p p
= + p = + p ẻ Â
<
96 0
/45%6'3
( )
sinx 0
2sinxcosx 0 sin2x 0 2x k x k , k
cosx 0
2

ù

p
ù
ạ ạ ạ p ạ ẻ


ù

ù

Â
<
( ) ( ) ( )
2 2
sinx cosx sin x cos x
2 sin2x cos2x 2 sin2x cos2x
cosx sinx sinxcosx
+
* + = + = +
( ) ( )

1 1
2 sin2x cos2x sin2x cos2x
sinxcosx sin2x
= + = +
( )

2
sin2x sin2x cos2x 1 sin 2x sin2xcos2x 1 0 + = + - =
( )

2
sin2xcos2x cos 2x 0 cos2x sin2x cos2x 0 - = - =
( )



cos2x 0
x k
4
2cos2xsin 2x 0 k,l
sin 2x 0
4
x l
4
8 2

ộ p
=

= + p

ổ ử
p




ổ ử

- = ẻ

p









p pữ
- =

ố ứ




= +



ố ứ



Â
<
/=DE5%6'@:#;7['3
( )
x k x l , k,l
4 8 2
p p p
= + p = + ẻ Â
<
96 0

/45%6'3
( )

3
cosx 0
k
cos3x 0 x , k
cos3x 4cos x 3cosx 0
6 3

ù

p p
ù
ù
ạ ạ + ẻ

ù
= - ạ
ù
ù

Â
<
( ) ( )
sinx sinx sin3x
tanx tanx tan3x 2 2
cosx cosx cos3x
ổ ử




* + = + =





ố ứ
( )

2
sinx sinxcos3x cosxsin3x 2cos xcos3x + =
( )

2
sinxsin 2x 2cos xcos3x - =

2 2
2sin xcosx 2cos xcos3x - =
( )

2
sin x cosxcos3x do cosx 0 - = ạ
( ) ( )

1 1
1 cos2x cos4x cos2x
2 2
- - = +

( )

l
cos4x 1 x , l
4 2
p p
= - = + ẻ Â
Z^<m :#;3
( ) ( )
tanx cot x 2 sin2x cos2x+ = + *
Ie01f&g=h35D)i8."X``_
Z_<m :#;3
( )

2
tan x tanxtan3x 2+ = *
Ie01f&g=hl0 38;#."X``]
/f0'E5%6'3
+3=
l
x
4 2
p p
= +
;
3 l3 2
cos3x cos 0
4 2 2
ổ ử
p p




= + = ạ





ố ứ
JK<
3F%Z[%E5%6'[%'@9C&67[%
0#N9%<W0E73
l
x
4 2
p p
= +
'
89
:#;<J&C5%M9K<
)3SD%
3 l3
3x k
4 2 2
p p p
= + = + p
;

3 6l 2 4k 2k 3l 0,5+ = + - =

J`;
k,l ẻ Â
K<
_&['89:#;3
( )
l
x , l
4 2
p p
= + ẻ Â
<
96 0
/45%6'3
cosx 0
sinx 0 sin2x 0
sin2x 0

ù

ù
ù
ù
ạ ạ

ù
ù

ù
ù


<
( )
2 2 2 2 2 2 2
1 1 1 11 1 1 1 20
1 1 1
3 3
cos x sin x sin 2x cos x sin x 4sin xcos x
ổ ử ổ ử ổ ử
ữ ữ ữ
ỗ ỗ ỗ
ữ ữ ữ
* - + - + - = + + =
ỗ ỗ ỗ
ữ ữ ữ
ỗ ỗ ỗ
ữ ữ ữ
ỗ ỗ ỗ
ố ứ ố ứ ố ứ
( )

2 2
2
2 2 2
4sin x 4cos x 1 20 5 20 3 1 3
sin 2x 1 cos4x
3 3 4 2 4
4sin xcos x sin 2x
+ +
= = = - =
( )


1 2 k
cos4x cos x , k
2 3 6 2
ổ ử
p p p



= - = = + ẻ





ố ứ
Â
<
/L9&0'0E5%6'@l9<_&['89:#;
( )

k
x , k
6 2
p p
= + ẻ Â
<
96 0
45%6'3
cosx 0 sinx 1ạ ạ

<
( ) ( )
( )
( )
( )
2
2
2 2
1 sinx 1 cos x
1 sin x 1
1 cos x 1 cosx 0 1 cosx 0
2 2 2
cos x 1 sin x
ộ ự
- -
ổ ử
p


ờ ỳ

* - - - + = - + =


ờ ỳ



-
ố ứ

ờ ỳ
ở ỷ
( ) ( )

2
1 cos x 1 cosx
1 cosx 0 1 cosx 1 0
1 sinx 1 sinx
ổ ử
- -



- + = + - =





+ +
ố ứ
,
t,
t*
t
)t,
t*
-t*
t,
)t

-t,
++t*
Z`<m :#;3
( )

2 2 2
11
tan x cot x cot 2x
3
+ + = *
[a<m :#;3
( )

2 2 2
x x
sin tan x cos 0
2 4 2
ổ ử
p



- - = *





ố ứ
Ie01f&g=h4 '."YaaZ

( ) ( )
( )
( )
( )



x k2
cosx 1 N
1 cosx cosx sinx 0 k;l
tanx 1 N
x l2
4

= p + p

= -



+ - - = ẻ
p


= -
= - + p





Â
<
96 0
45%6'3
2
cosx 1
sinx 0
sinx 0
2
cos2x 0
2cos x 1 0
cosx
2

ù



ù
ù
ù


ù
ù
ù
ù ù

ớ ớ ớ
ù ù ù


- ạ

ù ù ù

ù

ù
ù

L973
cosx sin2x cos2xcosx sin2xsinx cosx
cot x tan2x
sinx cos2x sinxcos2x sinxcos2x
+
+ = + = =
<
eUE73
( )
2
2 2 2
sin2xcosx 2cos x 2
4cos x 4cos x 0 cos x 4 0
sinxcos2x cos2x cos2x
ổ ử



* = - = - =






ố ứ
( )
( )
( )



cosx 0
cosx 0 N
x k
2
k;l
1
1
2
cos2x N
x l
cos2x
2
6

p


=


=
= + p









p
=

=

= + p





Â
<
96 0
45%6'3
sin2x 0
sin4x 0
cos2x 0


ù

ù


ù

ù

<
L973
2 2 4 4
2 2
2 2 2 2 2
cos x sin x cos x sin x 4cos2x
cot x tan x
sin x cos x sin xcos x sin 2x
-
- = - = =
<
( ) ( ) ( ) ( ) ( )
2
2
4
16 1 cos4x 1 4 1 cos4x sin 2x 1 2 1 cos4x 1 cos4x
sin 2x
* = + = + = + -
( )

2 2 2

1
1 2 1 cos 4x 1 2sin 4x sin 4x
2
= - = =
JS0
sin4x 0ạ
K
( ) ( )

1 1 k
1 cos8x cos8x 0 x , k
2 2 16 8
p p
- = = = + ẻ Â
<
96 0
45%6'3
sin2x 0 sin2x 0
cosx 0 cos2x 1
ỡ ỡ
ù ù
ạ ạ
ù ù

ớ ớ
ù ù
ạ ạ
ù ù
ợ ợ
( )

2 2
2sinx cos2x 1
2sin2x 4sin x cos2x 2sin 2x 1
cosx sin2x sin2x
* + = + + = +
[X<m :#;3
( ) ( )

2
sin2x cotx tan2x 4cos x+ = *
Ie01fMg=hrg/$."Yaaa
[Y<m :#;3
( ) ( )

2 2
cot x tan x
16 1 cos4x
cos2x
-
= + *
[Z<m :#;3
( )

1
2tanx cot2x 2sin2x
sin2x
+ = + *
Ie01f&g=hl0 3)i8."X``_X```

×