Tải bản đầy đủ (.doc) (4 trang)

Biểu diễn và phân loại tín hiệu số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (569.08 KB, 4 trang )

Hoặc:
)(*)()().()( nxnnxnx
k
kk
δδ


−∞=
=−=
[1.2-25]
Chứng minh: Luôn có
)().()( kkk nxx −=
δ
với mọi k ∈ (- ∞ , ∞). Vì thế, khi lấy
tổng các mẫu x(k) với k∈ (- ∞ , ∞), nhận được [1.2-24] . Theo tính chất giao hoán
của tích chập, từ [1.2-24] nhận được [1.2-25].
1.3 tín hiệu số
1.3.1 Biểu diễn và phân loại tín hiệu số
1.3.1a Biểu diễn tín hiệu số
Tín hiệu số là hàm của biến thời gian rời rạc x(nT), trong đó n là số nguyên,
còn T là chu kỳ rời rạc. Để thuận tiện cho việc xây dựng các thuật toán xử lý tín
hiệu số, người ta chuẩn hóa biến thời gian rời rạc nT theo chu kỳ T, nghĩa là sử
dụng biến n = (nT/T). Khi đó, tín hiệu số x(nT) được biểu diễn thành dạng dãy số
x(n), do đó có thể sử dụng các biểu diễn của dãy số để biểu diễn tín hiệu số, cũng
như sử dụng các phép toán của dãy số để thực hiện tính toán và xây dựng các thuật
toán xử lý tín hiệu số.
Giống như dãy số x(n), tín hiệu số có thể được biểu diễn dưới các dạng
hàm số, bảng số liệu, đồ thị và dãy số liệu. Người ta thường sử dụng biểu diễn tín
hiệu số dưới dạng dãy số liệu có độ dài hữu hạn để xử lý tín hiệu số bằng các
chương trình phần mềm.
Các phép toán cơ bản được sử dụng trong xử lý tín hiệu số là cộng, nhân,


nhân với hằng số, và phép trễ. Phép dịch sớm có thể được sử dụng ở các hệ xử lý
số bằng phần mềm trong thời gian không thực.
1.3.1b Phân loại tín hiệu số
Có thể phân loại tín hiệu số theo dạng của dãy x(n), như đã được
trình bầy ở 1.2. Một số loại tín hiệu số thường gặp là:
- Tín hiệu số xác định và ngẫu nhiên.
- Tín hiệu số tuần hoàn và không tuần hoàn.
- Tín hiệu số hữu hạn và vô hạn.
- Tín hiệu số là dãy một phía.
- Tín hiệu số là dãy số thực.
- Tín hiệu số là dãy chẵn, và dãy lẻ.
- Tín hiệu số là dãy đối xứng, và dãy phản đối xứng.
Ngoài ra, theo giá trị năng lượng và công suất của tín hiệu số, người ta còn
phân biệt hai loại tín hiệu số sau:
- Tín hiệu số năng lượng là tín hiệu số có năng lượng hữu hạn.
- Tín hiệu số công suất là tín hiệu số có công suất hữu hạn.
1.3.2 Các tham số cơ bản của tín hiệu số
1.3.2a Độ dài của tín hiệu số là khoảng thời gian tồn tại của tín hiệu tính bằng số
mẫu.
Độ dài của tín hiệu số đặc trưng cho khoảng thời gian mà hệ xử lý số phải
xử lý tín hiệu. Tín hiệu số có độ dài hữu hạn hoặc vô hạn được biểu diễn bằng dãy
19
hữu hạn hoặc dãy vô hạn tương ứng. Độ dài hữu hạn của tín hiệu số thường được
ký hiệu là N (hoặc một chữ cái khác).
Tín hiệu số x(n) một phía hữu hạn có độ dài N được xác định với đối số n ∈
[0 , (N - 1)] , và thường được ký hiệu là x(n)
N
.
Tín hiệu số x(n) hai phía có độ dài hữu hạn (2N + 1) được xác định với đối
số n ∈ [-N , N].

Có thể tăng độ dài của tín hiệu số hữu hạn x(n)
N
mà không làm thay đổi nó,
bằng cách thêm vào x(n) các mẫu có giá trị bằng 0 khi n ≥ N.
1.3.2b Giá trị trung bình của tín hiệu số bằng tổng giá trị tất cả các mẫu chia cho
độ dài của tín hiệu.
Giá trị trung bình
)(nx
của tín hiệu số x(n) được tính như sau:
- Đối với tín hiệu số x(n) một phía hữu hạn có độ dài N:


=
=
1
0
)()(
1
N
n
nxnx
N
[1.3-1]
- Đối với tín hiệu số x(n) hai phía hữu hạn có độ dài (2N + 1):

−=
+
=
N
Nn

nxnx
N
)(
)(
)(
12
1
[1.3-2]
- Đối với tín hiệu số x(n) một phía vô hạn:


=
∞→
=
1
0
)()(
1
N
n
N
nxLimnx
N
[1.3-3]
- Đối với tín hiệu số x(n) hai phía vô hạn:

−=
∞→
+
=

N
Nn
N
nxLimnx
N
)(
)(
)(
12
1
[1.3-4]
Theo các biểu thức trên, các tín hiệu số hữu hạn luôn có giá trị trung bình
hữu hạn, còn giá trị trung bình của các tín hiệu số vô hạn có thể là hữu hạn hoặc vô
hạn.
1.3.2c Năng lượng của tín hiệu số bằng tổng bình phương giá trị tất cả các mẫu
của tín hiệu.
Năng lượng E
x
của tín hiệu số x(n) được tính như sau:
- Đối với tín hiệu số x(n) một phía hữu hạn có độ dài N:


=
=
1
0
2
)(
N
n

x
nxE
[1.3-5]
- Đối với tín hiệu số x(n) hai phía hữu hạn có độ dài (2N + 1):

−=
=
N
Nn
x
nxE
2
)(
[1.3-6]
- Đối với tín hiệu số x(n) một phía vô hạn:


=
=
0
2
)(
n
x
nxE
[1.3-7]
- Đối với tín hiệu số x(n) hai phía vô hạn:
20



−∞=
=
n
x
nxE
2
)(
[1.3-8]
Theo các biểu thức trên, các tín hiệu số hữu hạn luôn có năng lượng hữu
hạn và chúng là các tín hiệu năng lượng. Năng lượng của các tín hiệu số vô hạn có
thể là hữu hạn hoặc vô hạn.
1.3.2d Công suất trung bình của tín hiệu số bằng giá trị trung bình của năng
lượng tín hiệu trên một mẫu (bằng trung bình bình phương của tín hiệu).
Công suất trung bình P
x
của tín hiệu số x(n) được tính như sau:
- Đối với tín hiệu số x(n) một phía hữu hạn có độ dài N:


=
===
1
0
22
)()(
1
N
n
x
nxnx

NN
x
E
P
[1.3-9]
- Đối với tín hiệu số x(n) hai phía hữu hạn có độ dài (2N + 1):

−=
=
+
=
+
=
N
Nn
x
x
nxnx
NN
E
P
)()(
)()(
2
2
12
1
12
[1.3-10]
- Đối với tín hiệu số x(n) một phía vô hạn:



=
∞→∞→
===
1
0
2
2
)()(
1
N
n
NN
x
nxnxLimLim
NN
x
E
P
[1.3-11]
- Đối với tín hiệu số x(n) hai phía vô hạn:

−=
∞→∞→
=
+
=
+
=

N
Nn
N
x
N
x
nxnxLimLim
NN
E
P
)()(
)()(
2
2
12
1
12
[1.3-12]
Theo các biểu thức trên, các tín hiệu số hữu hạn luôn có công suất trung
bình hữu hạn và chúng là các tín hiệu công suất. Công suất trung bình của các tín
hiệu số vô hạn có thể là hữu hạn hoặc vô hạn.
Như vậy, tín hiệu số hữu hạn có giá trị trung bình, năng lượng và công suất
hữu hạn, chúng là tín hiệu năng lượng và tín hiệu công suất.
Ví dụ 1.9: Hãy xác định các tham số cơ bản của các tín hiệu số sau:
a.
δ
(n) ; b. u(n) ; c. rect
N
(n) ; d.







= nnx
2
cos)(
π
với n ∈ [-4 , 4]
Giải: a. Các tham số cơ bản của tín hiệu xung đơn vị
δ
(n):
- Tín hiệu số
δ
(n) có độ dài hữu hạn N = 1 .
- Giá trị trung bình theo [1.3-1]:
1)( =n
δ
- Năng lượng theo [1.3-5]:
11
0
0
==

=n
E
δ
- Công suất trung bình theo [1.3-9]:
1

1
1
===
N
E
P
δ
δ
b. Các tham số cơ bản của tín hiệu bậc thang đơn vị u(n):
- Tín hiệu số u(n) có độ dài vô hạn
- Giá trị trung bình theo [1.3-3]:
1
1
1
0
)()( ===
∞→

=
∞→

N
N
N
N
n
N
LimnuLimnu
N
21

- Năng lượng theo [1.3-7]:

∑∑

=

=
===
0
2
0
2
1)(
nn
u
nuE
- Công suất trung bình theo [1.3-11]:
11
11
1
0
2
1
0
2
)( ====
∑∑

=
∞→∞→


=
∞→
NN
n
NN
n
N
u
N
N
NN
P
LimLimnuLim
Vậy u(n) là tín hiệu công suất, không phải tín hiệu năng lượng.
c. Các tham số cơ bản của tín hiệu xung chữ nhật rect
N
(n):
- Tín hiệu số rect
N
(n) có độ dài hữu hạn N
- Giá trị trung bình theo [1.3-1]:
1
1
1
0
)()( ===


=

N
N
N
N
NN
n
nrectnrect
- Năng lượng theo [1.3-5]:
∑∑

=

=
===
1
0
2
1
0
2
1)(
NN
N
nn
x
NE nrect
- Công suất trung bình theo [1.3-9]:
1===
N
N

N
x
E
P
x
d. Các tham số cơ bản của tín hiệu số






= nnx
2
cos)(
π
với n ∈ [-4 , 4]:
- Tín hiệu số x(n) hai phía có độ dài hữu hạn N = 2.4 + 1 = 9
- Giá trị trung bình theo [1.3-2]:



+−+






−+−=







=

−=
)cos(3
2
cos)cos(
2
cos)( 2
2
4
2
9
1
9
1
4
4
ππ
ππ
n
nnx










+






+






+






++







− 4
2
3
2
2
22
0 coscoscoscos)cos(
2
cos
πππππ
[ ]
9
1
101010101
9
1
)( == ++−+++−+nx
- Năng lượng theo [1.3-6]:
5101010101
2
4
4
2
cos =++++++++=







=

−=n
x
nE
π
- Công suất trung bình theo [1.3-10]:
9
5
12
=
+
=
N
x
E
P
x
22

×