Tải bản đầy đủ (.pdf) (40 trang)

Modern Developments in X-Ray and Neutron Optics Episode 1 docx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.02 MB, 40 trang )

Springer Series in
optical sciences 137
founded by H.K.V. Lotsch
Editor-in-Chief: W. T. Rhodes, Atlanta
Editorial Board: A. Adibi, Atlanta
T. Asakura, Sapporo
T. W. H
¨
ansch, Garching
T. Kamiya, Tokyo
F. Krausz, Garching
B. Monemar, Link
¨
oping
M. Ohtsu, Tokyo
H. Venghaus, Berlin
H. Web er, Berlin
H. Weinfurter, M
¨
unchen
Springer Series in
optical sciences
The Springer Series in Optical Sciences, under the leadership of Editor-in-Chief William T. Rhodes, Georgia
Institute of Technology, USA,provides an expanding selection of research monographs in all major areas of
optics: lasers and quantum optics, ultrafast phenomena, optical spectroscopy techniques, optoelectronics,
quantum information, information optics, applied laser technology, industrial applications, and other
topics of contemporary interest.
With this broad coverage of topics, the series is of use to all research scientists and engineers who need
up-to-date reference books.
The editors encourage prospective authors to correspond with them in advance of submitting a manu-


script. Submission of manuscripts should be made to the Editor-in-Chief or one of the Editors. See also
www.springer.com/series/624
Editor-in-Chief
William T. Rhodes
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250, USA
E-mail:
Editorial Board
Ali Adibi
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250, USA
E-mail:
Toshimitsu Asakura
Hokkai-Gakuen University
Faculty of Engineering
1-1, Minami-26, Nishi 11, Chuo-ku
Sapporo, Hokkaido 064-0926, Japan
E-mail:
Theodor W. H
¨
ansch
Max-Planck-Institut f
¨
ur Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching, Germany
E-mail:
Takeshi Kamiya

Ministry of Education, Culture, Sports
Science and Technology
National Institution for Academic Degrees
3-29-1 Otsuka, Bunkyo-ku
Tokyo 112-0012, Japan
E-mail:
Ferenc Krausz
Ludwig-Maximilians-Universit
¨
at M
¨
unchen
Lehrstuhl f
¨
ur Experimentelle Physik
Am Coulombwall 1
85748 Garching, Germany
and
Max-Planck-Institut f
¨
ur Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching, Germany
E-mail:
Bo Monemar
Department of Physics
and Measurement Technology
Materials Science Division
Link
¨

oping University
58183 Link
¨
oping, Sweden
E-mail:
Motoichi Ohtsu
University of Tokyo
Department of Electronic Engineer ing
7-3-1 Hongo, Bun kyo-ku
Tokyo 113-8959, Japan
E-mail:
Herbert Venghaus
Fraunhofer Institut f
¨
ur Nachrichtentechnik
Heinrich-Hertz-Institut
Einsteinufer 37
10587 Berlin, Germany
E-mail:
Horst Weber
Te chnische Universit
¨
at Berlin
Optisches Institut
Straße des 17. Juni 135
10623 Berlin, Germany
E-mail:
Harald Weinfurter
Ludwig-Maximilians-Universit
¨

at M
¨
unchen
Sektion Physik
Schellingstraße 4/III
80799 M
¨
unchen, Germany
E-mail:
A. Erko M. Idir
T. Kr ist A.G. Michette
(Eds.)
Modern Developments
in X-Ray
and Neutron Optics
1 3
With 299 Figures
Professor Dr. Alexei Erko
BESSY GmbH
Albert-Einstein-Str. 15, 12489 Berlin, Germany
E-mail:
Dr. Mourad Idir
Synchrotron Soleil L’orme des Merisiers Saint Aubin
BP 48, 91192 Gif-sur-Yvette cedex, France
E-mail:
Dr. Thomas Krist
Hahn-Meitner Institut Berlin GmbH
Glienicker STr. 100, 14109 Berlin, Germany
E-mail:
University of London, King’s College London, Department of Physics

Ce
ntre for X-Ray Science
Strand, London WC2R 2LS, UK
E-mail:
ISSN 0342-4111
ISBN 978-3-540-74560-0 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
par ts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable
to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media.
springer.com
© Springer-Verlag Berlin Heidelberg 2008
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt f rom the relevant protective laws and
regulations and therefore free for general use.
Cover: eStudio Calamar Steinen
Printed on acid-free paper SPIN: 11901648 5 4 3 2 1 0
Library of Congress Control Number : 2007940819
Professor Alan G. Michette
Typesetting: SPi, Pondicherry, India
56/3180/SPi
Preface
This book is based on the joint research activities of specialists in X-ray and
neutron optics from 11 countries, working together under the framework of
the European Programme for Cooperation in Science and Technology (COST,
Action P7), initiated by Dr. Pierre Dhez in 2002–2006, and describes modern
developments in reflective, refractive and diffractive optics for short wave-

length radiation as well as recent theoretical approaches to modelling and
ray-tracing the X-ray and neutron optical systems. The chapters are written
by the leading specialists from European laboratories, universities and large
facilities. In addition to new ideas and concepts, the contents provide practical
information on recently invented devices and methods.
The main objective of the book is to broaden the knowledge base in the
field of X-ray and neutron interactions with solid surfaces and interfaces, by
developing modelling, fabrication and characterization methods for advanced
innovative optical elements for applications in this wavelength range. This aim
follows from the following precepts:
– Increased knowledge is necessary to develop new types of optical elements
adapted to the desired energy range, as well as to improve the efficiency
and versatility of existing optics.
– Enhanced optical performances will allow a significant increase in the range
of applications possible with current and future X-ray and neutron sources.
– Better cooperation between national groups of researchers in the design
and application of X-ray and neutron optics will lead to improvements in
many key areas fundamental to societal and economic developments.
Behind each of these precepts is the knowledge that similar optical com-
ponents are required in many X-ray and neutron systems, although the optics
may have originally been developed primarily for X-rays (e.g., zone plates)
or for neutrons (e.g., multilayer supermirrors). Bringing together expertise
from both fields has led to efficient, cost-effective and enhanced solutions to
common problems.
VI Preface
The editors are very grateful to Prof. Dr. h.c. Wolfgang Eberhardt, BESSY
scientific director, for his continuous support of the COST P7 Action on X-ray
and neutron optics and for his great help in the preparation of this book. The
editors also wish to thank Prof. Dr. William B. Peatman for his critical anal-
ysis of the original manuscripts. Their support has contributed significantly

to the publication of this book. Finally, the editors want to express their
thanks to BESSY and the Hahn-Meitner-Institute, Berlin (HMI) for financial
support, as well as Prof. Dr. Norbert Langhoff and Dr. Reiner Wedell for
their help.
Berlin, Paris and London, A. Erko
February 2008 M. Idir
Th. Krist
A.G. Michette
Contents
1 X-Ray and Neutron Optical Systems
A. Erko, M. Idir, Th. Krist, and A.G. Michette 1
1.1 X-Ray Optics 1
1.2 Metrology 3
1.3 NeutronOptics 4
Part I Theoretical Approaches and Calculations
2 The BESSY Raytrace Program RAY
F. Sch¨afers 9
2.1 Introduction 9
2.2 Beamline Design and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Statistics: BasicLawsofRAY 12
2.3.1 All Rays have Equal Probability. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 All Rays are Independent, but (Particles and Waves) . . . . 14
2.4 TreatmentofLightSources 15
2.5 InteractionofRayswith OpticalElements 17
2.5.1 CoordinateSystems 17
2.5.2 GeometricalTreatmentofRays 18
2.5.3 Intersectionwith OpticalElements 19
2.5.4 Misalignment 20
2.5.5 Second-OrderSurfaces 20
2.5.6 Higher-OrderSurfaces 23

2.5.7 Intersection Point 25
2.5.8 SlopeErrors,SurfaceProfiles 25
2.5.9 RaysLeavingtheOpticalElement 26
2.5.10ImagePlanes 28
VIII Contents
2.5.11DeterminationofFocus Position 28
2.5.12DataEvaluation,StorageandDisplay 28
2.6 ReflectivityandPolarisation 29
2.7 CrystalOptics(withM.Krumrey) 33
2.8 Outlook: Time Evolution of Rays (with R. Follath, T. Zeschke) . . . 35
References 39
3 Neutron Beam Phase Space Mapping
J. F¨uzi 43
3.1 MeasurementPrinciple 44
3.2 MeasurementResults 46
3.3 NeutronGuide QualityAssessment 49
3.4 TransferFunction ofaVelocitySelector 52
3.5 ModeratorBrightnessEvaluation 53
3.6 Conclusions 55
References 55
4 Raytrace of Neutron Optical Systems with RESTRAX
J.
ˇ
Saroun and J. Kulda 57
4.1 Introduction 57
4.2 Aboutthe RESTRAXCode 58
4.2.1 InstrumentModel 58
4.2.2 SamplingStrategy 59
4.2.3 OptimizationofInstrumentParameters 60
4.3 SimulationofNeutronOpticsComponents 61

4.3.1 NeutronSource 61
4.3.2 DiffractiveOptics 62
4.3.3 ReflectiveOptics 64
4.4 SimulationsofEntireInstruments 66
4.4.1 ResolutionFunctions 66
References 67
5 Wavefront Propagation
M. Bowler, J. Bahrdt, and O. Chubar 69
5.1 Introduction 69
5.2 OverviewofSRW 70
5.2.1 Accurate Computation
of the Frequency-Domain Electric Field
of Spontaneous Emission by Relativistic Electrons . . . . . . . . . 71
5.2.2 Propagation of Synchrotron Radiation Wavefronts:
From Scalar Diffraction Theory to Fourier Optics . . . . . . . . . . 73
5.2.3 Implementation 75
5.3 OverviewofPHASE 76
5.3.1 SingleOpticalElement 77
5.3.2 CombinationofSeveralOptical Elements 79
5.3.3 TimeDependentSimulations 81
Contents IX
5.4 Test Cases for Wavefront Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1 GaussianTests: StigmaticFocus 82
5.4.2 GaussianTests:AstigmaticFocus 84
5.5 BeamlineModeling 86
5.5.1 Modelingthe THzBeamlineonERLP 86
5.6 Summary 89
References 89
6 Theoretical Analysis of X-Ray Waveguides
S. Lagomarsino, I. Bukreeva, A. Cedola, D. Pelliccia, and W. Jark 91

6.1 Introduction 91
6.2 ResonanceBeamCoupling 93
6.3 Front Coupling Waveguide with Preliminary Reflection . . . . . . . . . . 100
6.3.1 PlaneWaveIncomingRadiation 101
6.3.2 Radiation from an Incoherent Source at Short Distance . . . . 102
6.3.3 MaterialandAbsorptionConsiderations 103
6.4 Direct FrontCoupling 104
6.4.1 DiffractionfromaDielectricCorner 105
6.4.2 DiffractioninaDielectric FCWaveguide 106
6.5 Conclusions 109
References 110
7 Focusing Optics for Neutrons
F. Ott 113
7.1 Introduction 113
7.2 CharacteristicsofNeutronBeams 114
7.3 Passive Focusing: Collimating Focusing . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4 CrystalFocusing 117
7.4.1 FocusingMonochromator 117
7.4.2 BentPerfectCrystalMonochromators 118
7.5 RefractiveOptics 118
7.5.1 Solid-State Lenses 118
7.5.2 MagneticLenses 121
7.5.3 ReflectiveOptics 122
7.5.4 BaseElements 122
7.5.5 Focusing Guides (Tapered: Elliptic: Parabolic) . . . . . . . . . . . . 123
7.5.6 Ballistic Guides: Neutron Beam Delivery
overLargeDistances 125
7.5.7 ReflectiveLenses 127
7.5.8 Capillary Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6 DiffractiveOptics 129

7.6.1 FresnelZonePlates 129
7.6.2 GradientSupermirrors:GoebelMirrors 131
7.7 ModelingPrograms 131
7.8 Meritofthe DifferentFocusing Techniques 131
XContents
7.9 Possible Applications of Neutron Focusing
andConclusion 132
References 134
8 Volume Effects in Zone Plates
G. Schneider, S. Rehbein, and S. Werner 137
8.1 Introduction 137
8.2 TransmissionZonePlateObjectives 139
8.3 Coupled-Wave Theory for Zone Plates with High Aspect-Ratios . . . 141
8.4 Matrix Solutionofthe ScalarWaveEquation 148
8.4.1 The Influence of the Line-to-Space Ratio . . . . . . . . . . . . . . . . . 151
8.4.2 Applying High-Orders of Diffraction for X-ray Imaging . . . . . 154
8.5 The Influence of Interdiffusion and Roughness . . . . . . . . . . . . . . . . . . 157
8.6 Numerical Results for Zone Plates with High Aspect-Ratios . . . . . . 161
8.7 NonrectangularProfileZoneStructures 164
8.8 RigorousElectrodynamicTheory of ZonePlates 165
8.9 Proposed Fabrication Process for Volume Zone Plates . . . . . . . . . . . . 168
References 171
Part II Nano-Optics Metrology
9 Slope Error and Surface Roughness
F. Siewert 175
9.1 ThePrincipleofSlope Measurements 177
References 178
10 The Long Trace Profilers
A. Rommeveaux, M. Thomasset, and D. Cocco 181
10.1 Introduction 181

10.2 The LongTraceProfiler 181
10.3 Major Modifications of the Original Long Trace Profiler Design . . . 185
References 190
11 The Nanometer Optical Component Measuring Machine
F. Siewert, H. Lammert, and T. Zeschke 193
11.1 EngineeringConceptionand Design 193
11.2 TechnicalParameters 195
11.3 MeasurementAccuracyofthe NOM 196
11.4 SurfaceMapping 198
References 200
12 Shape Optimization of High Performance X-Ray Optics
F. Siewert, H. Lammert, T. Zeschke, T. H¨ansel, A. Nickel,
and A. Schindler 201
12.1 Introduction 201
Contents XI
12.2 High Accuracy Metrology and Shape Optimization . . . . . . . . . . . . . . 201
12.3 High Accuracy Optical Elements and Beamline Performance . . . . . . 204
References 205
13 Measurement of Groove Density of Diffraction Gratings
D. Cocco and M. Thomasset 207
13.1 Introduction 207
13.2 GrooveDensityVariationMeasurement 207
References 211
14 The COST P7 Round Robin for Slope Measuring Profilers
A. Rommeveaux, M. Thomasset, D. Cocco, and F. Siewert 213
14.1 Introduction 213
14.2 Round-Robin Mirrors Description and Measurement Setup . . . . . . . 214
14.3 MeasurementResults 214
14.4 Conclusions 218
References 218

15 Hartmann and Shack–Hartmann Wavefront Sensors
for Sub-nanometric Metrology
P. Merc`ere, M. Idir, J. Floriot, and X. Levecq 219
15.1 Introduction 219
15.2 Generalities and Principle of Hartmann
andShack–HartmannWavefrontSensing Techniques 221
15.3 Shack–Hartmann Long Trace Profiler:
ANew Generation of2D LTP 222
15.3.1Principleofthe SH-LTP 222
15.3.2 2D Long Trace Profile of a Plane Reference Mirror . . . . . . . . 223
15.3.3 2D Long Trace Profile of a Toroidal Mirror . . . . . . . . . . . . . . . 223
15.3.4Conclusion 224
15.4 X-Ray Wavefront Measurements and X-Ray Active Optics . . . . . . . 225
15.4.1 Hartmann Wavefront Measurement at 13.4 nm
with λ
EUV
/120rmsAccuracy 226
15.4.2 Wavefront Closed-Loop Correction for X-Ray
MicrofocusingActive Optics 228
15.4.3Conclusion 231
References 232
16 Extraction of Multilayer Coating Parameters
from X-Ray Reflectivity Data
D. Spiga 233
16.1 Introduction 233
16.2 A Review of X-Ray Multilayer Coatings Properties . . . . . . . . . . . . . . 234
16.3 Determination of the Layer Thickness Distribution
in aMultilayerCoating 237
16.3.1TEMSectionAnalysis 237
XII Contents

16.3.2X-RayReflectivityAnalysis 238
16.3.3 Stack Structure Investigation by Means of PPM . . . . . . . . . . . 242
16.3.4 Fitting a Multilayer with Several Free Parameters . . . . . . . . . 248
16.4 Conclusions 249
References 251
Part III Refection/Refraction Optics
17 Hard X-Ray Microoptics
A. Snigirev and I. Snigireva 255
17.1 Introduction 255
17.2 X-Ray Microscopy 256
17.3 X-Ray Optics 260
17.3.1Reflective Optics 260
17.3.2FresnelZonePlates 266
17.3.3RefractiveOptics 271
17.4 ConcludingRemarks 276
References 279
18 Capillary Optics for X-Rays
A. Bjeoumikhov and S. Bjeoumikhova 287
18.1 Introduction 287
18.2 Physical Basics of Capillary Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
18.2.1OpticalElementsBasedonSingleReflections 288
18.2.2OpticalElementsBasedonMultiple Reflections 289
18.3 Application Examples for Capillary Optics . . . . . . . . . . . . . . . . . . . . . 295
18.3.1 X-Ray Fluorescence Analysis with Lateral Resolution . . . . . . 295
18.3.2X-RayDiffractometry 299
18.4 Capillary Optics for Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . 302
18.5 ConcludingRemarks 305
References 305
19 Reflective Optical Arrays
S. Lagomarsino, I. Bukreeva, A. Surpi, A.G. Michette,

S.J. Pfauntsch, and A.K. Powell 307
19.1 Introduction 307
19.2 Nested MirrorSystems 308
19.2.1ComputerSimulations 309
19.2.2MirrorFabricationProcedures 310
19.3 MicrostructuredOpticalArrays 312
19.3.1ComputerSimulations 313
19.3.2 Manufacture of Microstructured Optical Arrays . . . . . . . . . . . 315
19.4 Conclusions 315
References 316
Contents XIII
20 Reflective Optical Structures
and Imaging Detector Systems
L. Pina 319
20.1 Introduction 319
20.2 Design 321
20.3 MFO 323
20.4 Experiments 324
20.4.1ExperimentsinVIS Region 324
20.4.2ExperimentsinEUV Region 325
20.4.3FutureExperiments withMFO 328
20.5 Conclusions 328
References 329
21 CLESSIDRA: Focusing Hard X-Rays Efficiently
with Small Prism Arrays
W. Jark, F. P´erenn`es,M.Matteucci,andL.DeCaro 331
21.1 Introduction 331
21.2 Historical Development of X-Ray Transmission Lenses . . . . . . . . . . . 333
21.3 Optimization of X-Ray Lenses with Reduced Absorption . . . . . . . . . 336
21.3.1Focusing SpatiallyIncoherentRadiation 338

21.3.2FocusingSpatiallyCoherentRadiation 338
21.4 DiscussionofExperimentalData 342
21.4.1Parametersofthe ClessidraLens 342
21.4.2Propertiesofthe RadiationSource 343
21.4.3BeamDiffraction in theClessidra Structure 343
21.4.4Refraction Efficiencyinthe ClessidraStructure 346
21.5 Conclusion 349
References 349
Part IV Multilayer Optics Developments
22 Neutron Supermirror Development
Th. Krist, A. Teichert, R. Kov´acs-Mezei, and L. Rosta 355
22.1 Introduction 355
22.2 Development and Investigation of Ni/Ti Multilayer Supermirrors
for NeutronGuides 356
22.2.1NeutronGuides 356
22.2.2 Relation Between Crystalline Structure of Layers
in aMultilayerStructureand itsReflectivity 357
22.2.3 Stability of Supermirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
22.2.4 Development of m =4SupermirrorTechnology 364
22.2.5 Increase of Homogeneity Over Large Substrate Sizes . . . . . . . 364
22.3 PolarizingSupermirrors 365
22.3.1NeutronPolarization 365
XIV Contents
22.3.2NeutronPolarizers 366
22.3.3IncreaseoftheCriticalAngle 367
References 369
23 Stress Reduction in Multilayers Used for X-Ray
and Neutron Optics
Th. Krist, A. Teichert, E. Meltchakov, V. Vidal, E. Zoethout,
S. M¨ullender, and F. Bijkerk 371

23.1 Introduction 371
23.2 Origin,Description, andMeasurementofStress 372
23.3 FeCo/SiPolarizingNeutronSupermirrors 376
23.3.1Experimental 376
23.3.2LayerThicknessVariation 377
23.3.3 Substrate Bias Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
23.4 Stress Mitigation in Mo/Si Multilayers for EUV Lithography . . . . . 383
23.4.1Experimental 384
23.4.2Results 384
References 388
24 Multilayers with Ultra-Short Periods
M. Jergel, E. Majkov´a, Ch. Borel, Ch. Morawe, and I. Ma
ˇ
tko 389
24.1 Introduction 389
24.2 SampleChoiceandPreparation 392
24.3 SampleMeasurementsandCharacterization 393
24.4 Resultsand Discussion 395
24.5 ConclusionsandOutlook 402
References 404
25 Specially Designed Multilayers
J.I. Larruquert, A.G. Michette, Ch. Morawe, Ch. Borel, and B. Vidal 407
25.1 Introduction 407
25.1.1PeriodicMultilayers 408
25.2 OptimizedMultilayers 408
25.2.1LaterallyGradedMultilayers 409
25.2.2Depth-GradedMultilayers 410
25.2.3Doubly GradedMultilayers 414
25.3 MultilayerswithStronglyAbsorbingMaterials 417
25.3.1 Sub-Quarter-Wave Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . . 417

25.3.2 Applications of SQWM
withStronglyAbsorbingMaterials 421
25.3.3 Extension of the Mechanism of Reflectivity Enhancement
toModeratelyAbsorbingMaterials 422
25.4 NewLayer-by-LayerMultilayerDesignMethods 426
25.4.1 Two Algorithms for Multilayer Optimization . . . . . . . . . . . . . . 427
25.4.2 Layer-by-Layer Design of Multilayers with Barrier Layers . . . 430
Contents XV
25.4.3 Multilayers with Continuous Refractive Index Variation . . . . 432
25.4.4 Multilayer Design for Nonnormal Incidence
andPartiallyPolarizedRadiation 434
25.5 Conclusions 434
References 435
Part V Diffraction Optics
26 Diffractive-Refractive Optics:
X-ray Crystal Monochromators
with Profiled Diffracting Surfaces
J. Hrd´yandJ.Hrd´a 439
26.1 Introduction 439
26.1.1AsymmetricDiffraction 440
26.1.2InclinedDiffraction 442
26.2 Bragg Diffraction on a Transverse Groove
(MeridionalFocusing) 443
26.3 Harmonics Free Channel-Cut Crystal Monochromator
withProfiledSurface 445
26.4 Bragg Diffraction on a Longitudinal Groove (Sagittal Focusing) . . . 447
26.5 Laue Diffraction on a Profiled Surface (Sagittal Focusing) . . . . . . . . 454
26.6 Conclusion 457
References 457
27 Neutron Multiple Reflections Excited

in Cylindrically Bent Perfect Crystals and Their Possible
use for High-Resolution Neutron Scattering
P. Mikula, M. Vr´ana, and V. Wagner 459
27.1 Introduction 459
27.2 Multiple Bragg Reflections in Elastically Bent Perfect Crystals . . . . 460
27.3 Calculation 462
27.4 Searchfor StrongMultiple BraggReflection Effects 463
27.5 PowderDiffractionExperimentalTest 466
27.6 NeutronRadiographyExperimentalTest 467
References 470
28 Volume Modulated Diffraction X-Ray Optics
A. Erko, A. Firsov, D.V. Roshchoupkin, and I. Schelokov 471
28.1 Introduction 471
28.2 Static Volume GratingProperties 472
28.2.1 Sagittal Bragg–Fresnel Gratings . . . . . . . . . . . . . . . . . . . . . . . . . 473
28.2.2 Meridional Bragg–Fresnel Gratings . . . . . . . . . . . . . . . . . . . . . . 477
28.2.3EtchedMeridionalGratings 479
28.3 Dynamic Diffraction Gratings based on Surface Acoustic Waves . . . 484
28.3.1The SAW Device 484
XVI Contents
28.3.2 Total External Reflection Mirror Modulated by SAW . . . . . . 485
28.3.3MultilayerMirrorModulatedbySAW 488
28.3.4CrystalsModulatedby SAW 494
References 498
29 High Resolution 1D and 2D Crystal Optics Based
on Asymmetric Diffractors
D. Koryt´ar,C.Ferrari,P.Mikul´ık,F.Germini,P.Vagoviˇc,
and T. Baumbach 501
29.1 Introduction 501
29.2 ScatteringGeometriesandCrystalDiffractors 502

29.3 BasicResultsofDynamical Theory 504
29.4 PenetrationandInformationDepths 505
29.5 Multiple Successive Diffractors in Coplanar
andNoncoplanarArrangements 506
29.6 Couplingof MultipleSuccessiveDiffractors 507
29.7 Coplanar1DCrystalOptics 509
29.7.1 V-Shape 2-Bounce Channel-Cut Monochromators . . . . . . . . . 509
29.7.2 Monolithic 4-Bounce Monochromator for CoK
α1
Radiation . 510
29.8 Noncoplanar2DCrystalOptics 511
29.9 Conclusions 511
References 512
30 Thermal Effects under Synchrotron
Radiation Power Absorption
V.
´
Aˇc, P. Perichta, D. Koryt´ar, and P. Mikul´ık 513
30.1 Introduction 513
30.2 AHeatTransferand MaterialStressFEModel 514
30.2.1 Radiation Heat Absorption in the Matter . . . . . . . . . . . . . . . . . 514
30.2.2HeatTransferandTemperatureField 514
30.2.3MechanicalDeformations 515
30.2.4MaterialParameters 516
30.3 SimulationofMonochromatorDesigns 516
30.3.1 Silicon Target and Simulation Conditions . . . . . . . . . . . . . . . . . 516
30.3.2 Temperature Field and Surface Mechanical Deformations . . . 518
30.3.3 Dependence of Surface Mechanical Deformations
ontheTargetCoolingGeometry 518
30.3.4CoolingTemperature 520

30.3.5CoolingChannelsVariations 520
30.3.6CoolingBlockArrangement 521
30.3.7 Dynamic Thermal Properties of Silicon . . . . . . . . . . . . . . . . . . . 522
30.4 X-RayDiffractionSpotDeformation 522
References 524
Index 525
Contributors
Vladim´ır
´
Aˇc
Alexander Dubˇcek
University of Trenˇc´ın
ˇ
Studentsk´a2,Trenˇc´ın
SK 91150, Slovakia

Johannes Bahrdt
BESSY GmbH
Albert-Einstein-Straße 15
12489 Berlin, Germany

Tilo Baumbach
Forschungszentrum
Karlsruhe GmbH, ISS
Postfach 3640
D-76021 Karlsruhe
Germany

Fred Bijkerk
FOM Institute for Plasma

Physics
Rijnhuizen P.O. Box 1207
3430 BE Nieuwegein
The Netherlands

Aniouar Bjeoumikhov
IfG-Institute for Scientific
Instruments GmbH
Rudower Chaussee 29/31 (OWZ)
12489 Berlin, Germany
and
Institute for Computer Science
and Problems of Regional
Management (RAS)
Inessa Armand Street 32A
360000 Nalchik, Russia

Semfira Bjeoumikhova
Bundesanstalt f¨ur Materialforschung
und -pr¨ufung (BAM)
Unter den Eichen 87, 12205 Berlin
Germany

Christine Borel
Multilayer Laboratory
European Synchrotron
Radiation Facility
6, rue Jules Horowitz
BP220, 38043 Grenoble Cedex
France


XVIII Contributors
Marion Bowler
STFC Daresbury Laboratory
Warrington
WA4 4AD UK

Inna Bukreeva
Istituto Fotonica e Nanotecnologie
(IFN) - CNR
V. Cineto Romano 42
00156 Roma, Italy
and
RAS – P.N. Lebedev
Physics Institute
Leninsky pr. 53
119991 Moscow, Russia

Alessia Cedola
Istituto Fotonica e Nanotecnologie
(IFN) - CNR
V. Cineto Romano 42
00156 Roma, Italy

Oleg Chubar
SOLEIL Synchrotron
L’Orme des Merisiers – Saint Aubin
BP 48, 91192 GIF-sur-YVETTE
CEDEX, France
oleg.chubar@synchrotron-

soleil.fr
Daniele Cocco
Sincrotrone Trieste ScpA
S.S. 14, km 163.5 in Area Science
Park, I-34012 Trieste
Italy
Daniele.cocco@elettra.
trieste.it
Liberato De Caro
Istituto di Cristallografia-CNR
via Amendola 122/O
70125 Bari, Italy

Alexei Erko
BESSY GmbH
Albert Einstein Str. 15
12489 Berlin, Germany

Claudio Ferrari
Institute CNR-IMEM
Parco Area delle Scienze 37/A
I-43010 Fontanini (PR) Italy

Alexander Firsov
BESSY GmbH
Albert Einstein Str. 15
12489 Berlin, Germany

Johan Floriot
Imagine Optic

18 rue Charles de Gaulle
91400 Orsay, France

Rolf Follath
BESSY GmbH
Albert-Einstein-Strasse 15
12489 Berlin, Germany

J´anos F¨uzi
Research Institute for Solid State
Physics and Optics
Konkoly-Thege ´ut 29-33
H-1121 Budapest, Hungary

Fabrizio Germini
Institute CNR-IMEM
Parco Area delle Scienze 37/A
I-43010 Fontanini (PR) Italy

Contributors XIX
Thomas H¨ansel
Leibniz-Institut f¨ur
Oberfl¨achenmodifizierung e.V IOM
Permoserstr. 15
04318 Leipzig, Germany

Jarom´ıra Hrd´a
Institute of Physics
of the ASCR, v.v.i.
Na Slovance 2, 18221 Praha 8

Czech Republic
and
Charles University in Prague Faculty
of Science
Institute of Hydrogeology
Engineering Geology
and Applied Geophysics
Albertov 6, 12843 Praha 2
Czech Republic

Jarom´ır Hrd´y
Institute of Physics
of the ASCR, v.v.i.
Na Slovance 2 182 21 Praha 8
Czech Republic

Mourad Idir
Synchrotron SOLEIL
L’Orme des Merisiers –
Saint Aubin, BP 48
91192 Gif- sur-Yvette Cedex
France
Mourad.idir@synchrotron-
soleil.fr
Werner Jark
Sincrotrone Trieste S.c.p.A.
S.S. 14 km 163.5 in Area
Science Park
34012 Basovizza (TS)
Italy


Matej Jergel
Institute of Physics
Slovak Academy of Sciences
D´ubravsk´a9
845 11 Bratislava, Slovakia

Duˇsan Koryt´ar
Institute of Electrical Engineering
Slovak Academy of Sciences
Vrbovsk´a cesta 110
SK-921 01 Pieˇst’any
Slovak Republic

Rita Kov´acs-Mezei
MIRROTRON Multilayer
Laboratory Ltd.
Konkoly Thege ´ut 29-33
H-1121 Budapest, Hungary

Thomas Krist
Hahn-Meitner-Institut Berlin
Glienicker Str. 100
D-14109 Berlin
Germany

Michael Krumrey
Physikalisch-Technische
Bundesanstalt
X-ray Radiometry, Abbestraße 2-12

10587 Berlin, Germany

Jiˇr´ı Kulda
Institut Laue-Langevin
6, rue Jules Horowitz
38042 Grenoble Cedex 9
France

Stefano Lagomarsino
Istituto Fotonica e Nanotecnologie
(IFN) - CNR
V. Cineto Romano 42
00156 Roma, Italy

XX Contributors
Heiner Lammert
BESSY GmbH
Albert-Einstein-Str. 15
12489 Berlin, Germany

Juan I. Larruquert
Instituto de F´ısica Aplicada. CSIC
C/ Serrano 144
28006 Madrid, Spain

Xavier Levecq
Imagine Optic
18 rue Charles de Gaulle
91400 Orsay, France


Eva Majkov´a
Institute of Physics
Slovak Academy of Sciences
D´ubravsk´a9
84511 Bratislava, Slovakia

Igor Matko
Laboratoire des Mat´eriaux
et du G´enie Physique
INP Grenoble – Minatec
3, parvis Louis N´eel BP 257
38016 Grenoble Cedex
France

Marco Matteucci
Sincrotrone Trieste S.c.p.A.
S.S. 14 km 163.5
in Area Science Park
34012 Basovizza (TS)
Italy
marco.matteucci@elettra.
trieste.it
Evgeni Meltchakov
CNRS, L2MP, Case 131
Facult´e des Sciences de St J´erome
13397 Marseille Cedex 20, France

Pascal Merc`ere
Synchrotron SOLEIL
L’Orme des Merisiers –

Saint Aubin, BP 48
91192 Gif- sur-Yvette Cedex
France
pascal.mercere@synchrotron-
soleil.fr
Alan G. Michette
Department of Physics Strand
King’s College London
London
WC2R 2LS, UK

Pavol Mikula
Nuclear Physics Institute
v.v.i. of CAS and Research Centre
ˇ
ReˇzLtd.
250 68
ˇ
Reˇz, Czech Republic

Petr Mikul´ık
Department of Condensed
Matter Physics
Masaryk University
Kotl´aˇrsk´a 2, CZ-6137 Brno
Czech Republic

Christian Morawe
European Synchrotron
Radiation Facility

6, rue Jules Horowitz
BP220, 38043 Grenoble Cedex
France

Stephan M¨ullender
LIT-OCE Carl Zeiss SMT AG
73446 Oberkochen
Germany

Contributors XXI
Andreas Nickel
Leibniz-Institut f¨ur
Oberfl¨achenmodifizierung e.V IOM
Permoserstr. 15
04318 Leipzig, Germany

Fr´ed´eric Ott
Laboratoire L´eon Brillouin
CEA/CNRS UMR12
Centre d’Etudes de Saclay
91191 Gif sur Yvette
France

Daniele Pelliccia
Institut f¨ur Synchrotronstrahlung
– ANKA Forschungszentrum Karl-
sruhe in der Helmholtz-Gemeinschaft
Herman-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Germany


Fr´ederic P´erenn`es
Sincrotrone Trieste S.c.p.A.
S.S. 14 km 163.5 in Area
Science Park
34012 Basovizza (TS), Italy
and
European Patent Office
PB 5818 Patentlaan 2
2280-HV-Rijswijk (ZH)
The Netherlands

Peter Perichta
Alexander Dubˇcek University
of Trenˇc´ın
ˇ
Studentsk´a2,Trenˇc´ın
SK 91150, Slovakia

Luca Peverini
European Synchrotron
Radiation Facility
6 rue J. Horowitz, BP220
38043 Grenoble Cedex, France

Slawka J. Pfauntsch
Department of Physics Strand
King’s College London
London
WC2R 2LS, UK


Ladislav Pina
Department of Physical Electronics
Faculty of Nuclear Sciences
and Physical Engineering
Czech Technical University in Prague
Brehova 7, 115 19 Prague 1
Czech Republic

A. Keith Powell
Department of Physics Strand
King’s College London
London
WC2R 2LS, UK

Stefan Rehbein
BESSY GmbH
Albert Einstein Str. 15
12489 Berlin
Germany

Dmitry Roshchupkin
Institute of Microelectronics
Technology
Russian Academy of Sciences
142432 Chernogolovka
Moscow District, Russia

XXII Contributors
Amparo Rommeveaux

European Synchrotron
Radiation Facility
6 rue J. Horowitz, BP220
38043 Grenoble Cedex
France

L´aszl´oRosta
Research Institute of Solid State
Physics and Optics
Konkoly Thege ´ut 29-33
H-1121 Budapest, Hungary

Jan
ˇ
Saroun
Nuclear Physics Institute, v.v.i.
ASCR and Research Center
ˇ
Reˇz Ltd. 25068
ˇ
Reˇz
Czech Republic

Franz Sch¨afers
BESSY GmbH
Albert Einstein Str. 15
12489 Berlin, Germany

Igor Schelokov
Institute of Microelectronics

Technology
Russian Academy of Sciences
142432 Chernogolovka
Moscow District, Russia
Axel Schindler
Leibniz-Institut f¨ur
Oberfl¨achenmodifizierung e.V IOM
Permoserstr. 15
04318 Leipzig, Germany

Gerd Schneider
BESSY GmbH
Albert Einstein Str. 15
12489 Berlin, Germany

Frank Siewert
BESSY GmbH
Albert-Einstein-Str. 15
12489 Berlin, Germany

Anatoly Snigirev
European Synchrotron
Radiation Facility
6 rue J. Horowitz, BP220
38043 Grenoble Cedex, France

Irina Snigireva
European Synchrotron
Radiation Facility
6 rue J. Horowitz, BP220

38043 Grenoble Cedex
France

Daniele Spiga
INAF/Osservatorio Astronomico
di Brera Via E. Bianchi 46
23807 Merate (LC) – Italy

Alessandro Surpi
Istituto Fotonica e Nanotecnologie
(IFN) - CNR
V. Cineto Romano 42
00156 Roma, Italy
and
˚
Angstr¨omlaboratoriet
institutionen f¨or teknikvetenskaper
Elektromikroskopi och
Nanoteknologi
L¨agerhyddsv¨agen 1
Box 534 SE-751 21, Upppsala
and
Institutionen f¨or Biologi och
Kemiteknik
M¨alardalens H¨oghskola
Gamla Tullgatan 2
SE-632 20, Eskilstuna

Contributors XXIII
Anke Teichert

Hahn-Meitner-Institut Berlin
Glienicker Str. 100
D-14109 Berlin, Germany

Muriel Thomasset
Synchrotron Soleil
L’Orme des Merisiers
Saint Aubin, BP 48
91192 Gif-sur-Yvette Cedex, France
muriel.thomasset@synchrotron-
soleil.fr
Patrik Vagoviˇc
Institute of Electrical Engineering
Slovak Academy of Sciences
Vrbovsk´a cesta 110, SK-921 01
Pieˇst’any, Slovak Republic

Bernard Vidal
CNRS, L2MP, Case 131
Facult´e des Sciences de St. J´erome
13397 Marseille Cedex 20, France

Vladimir Vidal
CNRS, L2MP, Case 131
Facult´e des Sciences de St. J´erome
13397 Marseille Cedex 20, France
vlad

Miroslav Vr´ana
Nuclear Physics Institute ASCR

25068 Rez, Czech Republic

Volker Wagner
GKSS Research Center GmbH
Max-Planck Strasse 1
21502 Geesthacht
Germany
and
Physics Technische Bundesanstalt
Bundesallee 100
38116 Braunschweig
Germany

Stephan Werner
BESSY GmbH
Albert Einstein Str. 15
12489 Berlin
Germany

Thomas Zeschke
BESSY GmbH
Albert-Einstein-Str. 15
12489 Berlin, Germany

Erwin Zoethout
FOM Institute for Plasma
Physics Rijnhuizen
P.O. Box 1207
3430 BE Nieuwegein
The Netherlands


1
X-Ray and Neutron Optical Systems
A. Erko, M. Idir, Th. Krist, and A.G. Michette
Abstract. Although X-rays and neutrons can provide different information about
samples, there are many similarities in the ways in which beams of them can be
manipulated. The rationale behind bringing experts in the two fields together was
the desire to find common solutions to common problems. The intention of this brief
introduction is to give a flavour of the state-of-the-art in X-ray and neutron optics
as well as an indication of future trends.
1.1 X-Ray Optics
There is a growing need for the determination and characterization of ele-
ments at trace concentrations that can be well below one part per million by
weight. This is true in many fields of human activity, including the environ-
mental sciences and cultural heritage as well as the more obvious physical and
biological sciences. Although for quantitative as well as qualitative investiga-
tions, X-ray microanalysis is an established method for determining elemental
composition, this is now often insufficient, a distribution map of each element
being much more useful. However, this can be achieved only with large flux,
optimal excitation energy,andhigh lateral resolution.Forthesetobesatis-
fied appropriate optical elements must be developed to transport radiation
from source to sample, providing powerful, highly concentrated and possibly
monochromatic X-ray beams. As a result X-ray optics has grown rapidly in
recent years as an important branch of physics and technology.
The phrase “X-ray optics” encompasses a wide range of optical elements
exploiting reflection, diffraction, and refraction – or combinations of these –
utilizing sub-micrometer and sub-nanometer artificial structures and natu-
ral crystals to focus, monochromate or otherwise manipulate X-ray beams.
Historically, natural crystals can be regarded as prototypes of many of the
artificial structures now in use or proposed. The development of multilayer

interference mirrors for the nanometer wavelength range which provides effi-
cient reflection at angles close to normal incidence was a great step forward.

×