Tải bản đầy đủ (.doc) (40 trang)

Đề thi tuyển sinh vào lớp 10 môn toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (406.66 KB, 40 trang )

Website: Sưu tầm

 !"#$%#&

'() *+"
Thời gian làm bài: 120 phút
, "(2,0 điểm)
Với x > 0, cho hai biểu thức
2 x
A
x
+
=

x 1 2 x 1
B
x x x
− +
= +
+
.
1) Tính giá trị của biểu thức A khi x = 64.
2) Rút gọn biểu thức B.
3) Tìm x để
A 3
B 2
>
.
, "(2,0 điểm) Giải bài toán bằng cách lập phương trình:
Quãng đường từ A đến B dài 90 km. Một người đi xe máy từ A đến B. Khi đến B,
người đó nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn vận tốc lúc đi là 9 km/h. Thời


gian kể từ lúc bắt đầu đi từ A đến lúc trở về đến A là 5 giờ. Tính vận tốc xe máy lúc đi từ
A đến B.
, "(2,0 điểm)
1) Giải hệ phương trình:
3(x 1) 2(x 2y) 4
4(x 1) (x 2y) 9
+ + + =


+ − + =

2) Cho parabol (P) : y =
1
2
x
2
và đường thẳng (d) : y = mx −
1
2
m
2
+ m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x
1
, x
2
sao
cho
1 2

x x 2− =
.
, "(3,5 điểm)
Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kẻ hai tiếp tuyến AM, AN với
đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O)
tại hai điểm B và C (AB < AC, d không đi qua tâm O).
1) Chứng minh tứ giác AMON nội tiếp.
2) Chứng minh AN
2
= AB.AC.
Tính độ dài đoạn thẳng BC khi AB = 4 cm, AN = 6 cm.
3) Gọi I là trung điểm của BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai
T. Chứng minh MT // AC.
4) Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở K. Chứng minh K thuộc
một đường thẳng cố định khi d thay đổi và thỏa mãn điều kiện đề bài.
, "(0,5 điểm)
Với a, b, c là các số dương thỏa mãn điều kiện a + b + c + ab + bc + ca = 6abc,
chứng minh:
2 2 2
1 1 1
3
a b c
+ + ≥
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
1
Website: Sưu tầm
 
/*
  !"#$%#&

'() *+"
Thời gian làm bài: 120 phút
, "0#1.23
Giải các phương trình và hệ phương trình sau:
a)
2
5 6 0− + =x x
b)
2
2 1 0− − =x x
c)
4
3 4 0
2
+ − =x x
d)
2 3
2 1
− =


+ = −

x y
x y
, #"0451.23
a) Vẽ đồ thị (P) của hàm số
2
=y x
và đường thẳng (D):

2= − +y x
trên cùng một hệ
trục toạ độ.
b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
, $"0451.23
Thu gọn các biểu thức sau:
3 3
.
9
3 3
 
+
= +
 ÷
 ÷
+
+ −
 
x x
A
x
x x
với
0≥x
;
9≠x
(
)
(
)

2 2
21 2 3 3 5 6 2 3 3 5 15 15= + + − − − + + −B
, &"0451.23
Cho phương trình
2 2
8 8 1 0− + + =x x m
(*) (x là ẩn số)
a) Định m để phương trình (*) có nghiệm
1
2
=x
b) Định m để phương trình (*) có hai nghiệm
1
x
,
2
x
thỏa điều kiện:
4 4 3 3
1 2 1 2
− = −x x x x
, 5"0$451.23
Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C
cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ
M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc
cung nhỏ BC), cắt BC tại F, cắt AC tại I.
a) Chứng minh rằng
·
·
=MBC BAC

. Từ đó suy ra MBIC là tứ giác nội tiếp.
b) Chứng minh rằng: FI.FM = FD.FE.
c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF
cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng.
d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn
nhất.
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
2
Website: Sưu tầm
 
 !"#$%#&
/6*+"
 Thời gian làm bài: 120 phút
'()
, "(2,0 điểm)
1) Tìm số x không âm biết
2.x =
2) Rút gọn biểu thức P=
2 2 2 2
1 1
2 1 2 1
  
+ −
+ −
 ÷ ÷
+ −
  
, #"(1,0 điểm)
Giải hệ phương trình

3 5
5 2 6
x y
x y
+ =


+ =

, $"(1,5 điểm)
a) Vẽ đồ thị hàm số
2
1
2
y x=
b) Cho hàm số bậc nhất
2y ax= −
(1) . Hãy xác định hệ số a, biết rằng a > 0 và đồ thị
của hàm số (1) cắt trục hoành Ox, trục tung Oy lần lượt tại hai điểm A, B sao cho
OB = 2OA (với O là gốc tọa độ).
, &"(2,0 điểm)
Cho phương trình
2
( 2) 8 0x m x+ − − =
, với m là tham số.
1) Giải phương trình khi m = 4.
2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x
1
, x
2

sao cho biểu thức
Q =
2 2
1 2
( 1)( 4)x x− −
có giá trị lớn nhất
, 5"(3,5 điểm)
Cho tam giác ABC nội tiếp đường tròn (O;R) có BC = 2R và AB < AC. Đường thẳng
xy là tiếp tuyến của đường tròn (O;R) tại A. Tiếp tuyến tại B và C của đường tròn
(O;R) lần lượt cắt đường thẳng xy ở D và E. Gọi F là trung điểm của đoạn thẳng DE.
a) Chứng minh rằng tứ giác ADBO là tứ giác nội tiếp.
b) Gọi M là giao điểm thứ hai của FC với đường tròn (O;R). Chứng minh rằng
·
·
2CED AMB=
c) Tính tích MC.BF theo R.
d)
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
3
Website: Sưu tầm

789 !"#$:#&
*;<"
=.>.?<"#@AB(không kể thời gian giao
đề)
, "(1,5 điểm3
3 Tính
3 16 5 36+
#3 Chứng minh rằng với

0x >

1x ≠
thì
1 1
1
x x
x x x x
+
− =
− −
$3 Cho hàm số bấc nhất
( )
2 1 6y m x= + −
a) Với giá trị nào của m thì hàm số đã cho nghịch biến trên R?
b) Tìm m để đồ thị hàm số đã cho qua điểm
( )
1;2A
, #"(2,0 điểm3
1) Giải phương trình:
2
2 3 5 0x x+ − =
2) Tìm m để phương trình
2
2 0x mx m+ + − =
có hai nghiệm
1 2
;x x
thỏa mãn
1 2

2x x− =
3) Giải hpt:
1
2 1
x y xy
x y xy
+ = −


+ = +

, $"(2,0 điểm3
Một tổ công nhân dự định làm xong 240 sản phẩm trong một thời gian nhất định.
Nhưng khi thực hiện, nhờ cải tiến kĩ thuật nên mỗi ngày tổ đã làm tăng thêm 10 sản
phẩm so với dự định. Do đó tổ đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi
khi thực hiện, mỗi ngày tổ đã làm được bao nhiêu sản phẩm?
, &"(3,5 điểm3
Cho đường tròn
( )
O
cố định. Từ một điểm A cố định ở bên ngoài đường tròn
( )
O
, kẻ
các tiếp tuyến AM và AN với đường tròn ( M;N là các tiếp điểm). Đường thẳng đi qua
A cắt đường tròn
( )
O
tại hai điểm B và C (B nằm giữa A và C). Gọi I là trung điểm của
dây BC.

1) Chứng minh rằng: AMON là tứ giác nội tiếp.
2) Gọi K là giao điểm của MN và BC. Chứng minh rằng:
. .AK AI AB AC
=
3) Khi cát tuyến ABC thay đổi thì điểm I chuyển động trên cung tròn nào? Vì sao?
4) Xác định vị trí của cát tuyến ABC để
2IM IN
=
.
, 5"(1,0 điểm)
Với
0x ≠
, tìm giá trị nhỏ nhất của biểu thức:
2
2
2 2014x x
A
x
− +
=
HẾT
Nguyễn Thành Chung Trường THCS Kỳ Ninh
4
'()
Website: Sưu tầm
CD>.EFGH!:1-FBIF
-<?
JKB.BLM2<C.<N-FOP@B@B
 !"#$:#&
Môn thi:FE<

Thời gian làm bài: 120 phút (không kể thời gian giao đề)
QL"(1,5 điểm)
Rút gọn các biểu thức sau:
A =
a a a 1
a 1
a 1
− −


+

(a 0;a 1)≥ ≠
B =
4 2 3 6 8
2 2 3
+ − − +
+ −

QL#"(2,0 điểm)
a) Giải phương trình: x
2
- 6x - 7 = 0
b) Giải hệ phương trình:
2x y 1
2(1 x) 3y 7
− =


− + =



QL$"(1,5 điểm)
Cho phương trình: x
2
+ 2(m – 1)x – 2m – 3 = 0 (m là tham số).
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt x
1
; x
2

m R∀ ∈
.
b) Tìm giá trị của m sao cho (4x
1
+ 5)(4x
2
+ 5) + 19 = 0.
QL&"(4,0 điểm)
Cho đường tròn tâm O, đường kính AB. Lấy điểm C thuộc (O) (C không trùng với
A, B), M là điểm chính giữa cung nhỏ AC. Các đường thẳng AM và BC cắt nhau tại I, các
đường thẳng AC và BM cắt nhau tại K.
a) Chứng minh rằng:
·
·
ABM IBM=
và ABI cân
b) Chứng minh tứ giác MICK nội tiếp
c) Đường thẳng BM cắt tiếp tuyến tại A của (O) ở N. Chứng minh đường thẳng NI
là tiếp tuyến của đường tròn (B;BA) và NI


MO.
d) Đường tròn ngoại tiếp BIK cắt đường tròn (B;BA) tại D (D không trùng
với I). Chứng minh ba điểm A, C, D thẳng hàng.
QL5"(1,0 điểm)
Cho các số thực dương x, y thỏa mãn
y 2x 3 1
2x 3
y 1
+ +
=
+
+
Tìm giá trị nhỏ nhất của biểu thức: Q = xy – 3y - 2x – 3.
HÕt
R,STU S
Nguyễn Thành Chung Trường THCS Kỳ Ninh
5
V!W<BX!
Website: Sưu tầm
Y*Z#$%#&
*;<B."FE<
Thời gian làm bài: 120 phút, không kể thời gian giao để
Ngày thi: 28/6/2013
, /01.23 Cho biểu thức A =
( 4) 4x x
− +
1/ Rút gọn biểu thức A
2/ Tính giá trị của A khi x =
3

, #/0451.23 Cho hai hàm số bậc nhất y = x – m và y = -2x + m – 1
1/ Với giá trị nào của m thì đồ thị của các hàm số trên cắt nhau tại một điểm thuộc trục
hoành.
2/ Với m = -1, Vẽ đồ thị các hàm số trên cùng mặt phẳng tọa độ Oxy
, $/0#1.23
1/ Giải hệ phương trình
2 10
1 1
1
2 3
x y
x y
+ =



− =


2/ Giải phương trình: x - 2
x
= 6 - 3
x
, &/0#1.23
1/ Tìm giá trị m trong phương trình bậc hai x
2
– 12x + m = 0, biết rằng phương trình có
hiệu hai nghiệm bằng 2
5
2/ Có 70 cây được trồng thành các hàng đều nhau trong một miếng đất. Nếu bớt đi 2 hàng

thi mỗi hàng còn lại phải trồng thêm 4 cây mới hết số cây đã có. Hỏi lúc đầu có bao nhiêu
hàng cây?
, 5/0#1.23 Cho đường tròn (O) đường kính AB, trên tia OA lấy điểm C sao cho AC =
AO. Từ C kẻ tiếp tuyến CD với (O) (D là tiếp điểm)
1/ Chứng minh tam giác ADO là tam giác đều
2/ Kẻ tia Ax song song với CD, cắt DB tại I và cắt đường tròn (O) tại E. Chứng minh tam
giác AIB là tam giác cân.
3/ Chứng minh tứ giác ADIO là tứ giác nội tiếp
4/ Chứng minh OE

DB
Hết
R[\ 
Nguyễn Thành Chung Trường THCS Kỳ Ninh
6
V!W<BX!
Website: Sưu tầm
Y*Z#$%#&
Môn thi: 
Thời gian làm bài : 120 phút(không kể thời gian giao đề)
QL" (2,0 điểm)
Cho biểu thức P =
2 1 1
:
x 4
x 2 x 2
 
+
 ÷


+ +
 
a) Tìm điều kiện xác định và rút biểu thức P.
b) Tim x để P =
3
2
.
QL#" (1,5 điểm)
Một mảnh vườn hình chữ nhật có chu vi 100 m. Nếu tăng chiều rộng 3 m và giảm
chiều dài 4 m thì diện tích mảnh vườn giảm 2 m
2
. Tính diện tích của mảnh vườn.
QL$" (2,0 điểm)
Cho phương trình x
2
– 2(m + 1)x + m
2
+ 4 = 0 (m là tham số)
a) Giải phương trình với m = 2.
b) Tìm m để phương trình có hai nghiệm x
1
, x
2
thỏa mãn
2 2
1 2
x 2(m 1)x 3m 16+ + ≤ +
.
QL&" (3,5 điểm)
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt

nhau tại H. Tia AO cắt đường tròn (O) tại D.
a) Chứng minh tứ giác BCEF nội tiếp đường tròn.
b) Chứng minh tứ giác BHCD là hình bình hành.
c) Gọi m là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của
tam giác ABC.
QL5" (1,0 điểm)
Cho các số thực dương a, b, c thỏa mãn a+b+c=1.
Chứng minh rằng:
2 2 2
a b c 1
a b b c c a 2
+ + ≥
+ + +
.
:::::]B::::::
R^ Y*Z#$:#&
Nguyễn Thành Chung Trường THCS Kỳ Ninh
7
Website: Sưu tầm
_
'()
'*+"
Thời gian làm bài: 120 phút, không kể thời gian giao đề.
/`ab[*02,0 điểm3
Trong các câu sau, mỗi câu có 4 lựa chọn, trong đó có một lựa chọn đúng. Em hãy
ghi vào bài làm chữ cái in hoa đứng trước lựa chọn đúng (Ví dụ: Câu 1 nếu chọn A là
đúng thì viết 1.A).
QL/ Điều kiện để biểu thức
1
1 x−

được xác định là:
A. x < 1 B. x

- 1 C. x > 1 D. x

1
QL#/ Đường thẳng có phương trình y = x – 1 đi qua điểm:
A. M(0; 1) B. N(0; -1) C. P(-1; 0) D. Q(1; 1)
QL$/ Phương trình x
2
+ 3x – 2 = 0 có tích hai nghiệm bằng:
A. 3 B. 2 C. – 2 D. – 3
QL&/ Cho
ABC

có diện tích 81cm
2
. Gọi M, N tương ứng là các điểm thuộc các đoạn
thẳng BC, CA sao cho 2BM = MC, 2CN = NA. Khi đó diện tích
AMN

bằng:
A. 36cm
2
B. 26cm
2
C. 16cm
2
D. 25cm
2

/`cd08,0 điểm3
QL502,5 điểm3/ Cho phương trình x
2
+ 2x – m = 0 (1). (x là ẩn, m là tham số)
a) Giải phương trình với m = - 1
b) Tìm tất cả các giá trị của m để phương trình (1) có nghiệm. Gọi x
1
, x
2
là hai
nghiệm (có thể bằng nhau) của phương trình (1). Tính biểu thức P = x
1
4
+ x
2
4
theo m, tìm
m để P đạt giá trị nhỏ nhất.
QLe01,5 điểm3/ Tìm số tự nhiên có hai chữ số. Biết tổng hai chữ số của nó bằng 11 và
nếu đổi chỗ hai chữ số hàng chục và hàng đơn vị cho nhau thì ta được số mới lớn hơn số
ban đầu 27 đơn vị.
QLf03,0 điểm3/ Cho hình vuông ABCD có độ dài cạnh bằng a. Trên cạnh AD và CD lần
lượt lấy các điểm M và N sao cho góc
·
MBN
= 45
0
, BM và BN cắt AC theo thứ tự tại E và
F.
a) Chứng minh các tứ giác ABFM, BCNE, MEFN nội tiếp.

b) Gọi H là giao điểm của MF với NE và I là giao điểm của BH với MN. Tính độ dài
đoạn BI theo a.
c) Tìm vị trí của M và N sao cho diện tích tam giác MDN lớn nhất.
QLg01,0 điểm3/ Cho các số thực x, y thoả mãn x
2
+ y
2
= 1. Tìm giá trị lớn nhất và giá trị
nhỏ nhất của biểu thức M =
3
xy + y
2
.
::::::::::::::::::::::::h:::::::::::::::::::::
Nguyễn Thành Chung Trường THCS Kỳ Ninh
8
Website: Sưu tầm

\*i
'Y*Z#$:#&
*+"
=.>.?<O-j "#@AB(không kể thời gian giao đề)
k<:lm!<>.n(2,0 điểm)
Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước phương án đó vào bài làm.
QL/ Điều kiện để biểu thức
1
1 x−
có nghĩa là
A.
1x

>
. B.
1x <
. C.
1x

. D.
1x

.
QL#/Trong mặt phẳng tọa độ Oxy, đường thẳng
ax 5y = +
(d) đi qua điểm M(-1;3). Hệ số góc của (d) là
A. –1. B. –2. C. 2. D. 3.
QL$. Hệ phương trình
2 3
6
x y
x y
+ =


− =

có nghiệm (x;y) là
A. (1;1). B. (7;1). C. (3;3). D. (3;-3).
QL&/ Phương trình nào sau đây có tích hai nghiệm bằng 3?
A.
2
3 0x x+ + =

. B.
2
3 0x x+ − =
. C.
2
3 1 0x x− + =
. D.
2
5 3 0x x+ + =
.
QL5. Trong mặt phẳng tọa độ Oxy, số giao điểm của parabol y = x
2
và đường thẳng y= 2x + 3 là
A. 2. B. 1. C. 0. D. 3.
QLe/ Cho tam giác ABC vuông tại A, có AB = 3cm; AC = 4cm. Độ dài đường cao ứng với cạnh huyền bằng
A. 7cm. B. 1cm. C.
12
5
cm. D.
5
12
cm.
QLf/ Cho hai đường tròn (O;3cm) và (
,
O
;5cm), có O
,
O
= 7cm. Số điểm chung của hai đường tròn là
A. 1. B. 2. C. 3. D. 4.

QLg/ Một hình nón có bán kính đáy bằng 4cm, đường sinh bằng 5cm. Diện tích xung quanh của hình nón bằng
A. 20
π
cm
2
. B. 15
π
cm
2
. C. 12
π
cm
2
. D. 40
π
cm
2
.
k<:oOLp<(8,0 điểm)
QL/ (1,5 điểm) Cho biểu thức A =
2 2
:
1
2 1 1
x x x
x
x x x
 
+ −


 ÷
 ÷

+ + +
 
với x > 0 và x
1≠
.
1) Rút gọn biểu thức A.
2) Tìm tất cả các số nguyên x để biểu thức A có giá trị là số nguyên.
QL#/ (1,5 điểm) Cho phương trình x
2
– 2mx + m
2
– m –1 =0 (1), với m là tham số.
1) Giải phương trình (1) khi m = 1.
2) Xác định m để phương trình (1) có hai nghiệm x
1
, x
2
thỏa mãn điều kiện
1 1 2 2
( 2) ( 2) 10x x x x+ + + =
.
QL$/ (1,0 điểm) Giải hệ phương trình
2 2
6
1 2
5 1
3.

1 2
x
x y
x y
+

+ =

+ −



− =

+ −

QL&/ (3,0 điểm) Cho đường tròn (O) đường kính AB. Trên tia đối của tia BA lấy điểm C (C không trùng với B).
Kẻ tiếp tuyến CD với đường tròn (O) (D là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại
E. Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tòn (O) (K không trùng với B).
1) Chứng minh AE
2
= EK . EB.
2) Chứng minh 4 điểm B, O, H, K cùng thuộc một đường tròn.
3) Đường thẳng vuông góc với AB tại O cắt CE tại M. Chứng minh
1
AE EM
EM CM
− =
.
QL 5. (1,0 điểm. Giải phương trình :

( )
( )
2 3 2
3 6 2 1 1 2 5 4 4.x x x x x x− − + = − + −
]B
Nguyễn Thành Chung Trường THCS Kỳ Ninh
9
'()
Website: Sưu tầm
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO 10 - THPT
TỈNH LÀO CAI NĂM HỌC: 2013 – 2014
MÔN: TOÁN (Không chuyên)
Thời gian: 120 phút (không kể thời gian giao đề).
QL"0#451.23
1. Thực hiện phép tính:
a) 3. 12 b)3 20 45 2 80.+ −
2. Cho biểu thức: P =
1 1 a 1 a 2
: Voia 0;a 1;a 4
a 1 a a 2 a 1
 
+ +
 
− − > ≠ ≠
 ÷
 ÷
− − −
 
 
a) Rút gọn P

b) So sánh giá trị của P với số
1
3
.
QL"041.23Cho hai hàm số bậc nhất y = -5x + (m+1) và y = 4x + (7 – m) (với m
là tham số). Với giá trị nào của m thì đồ thị hai hàm số trên cắt nhau tại một điểm trên trục
tung. Tìm tọa độ giao điểm đó.
QL"0#41.23Cho hệ phương trình:
( )
m 1 x y 2
mx y m 1
− + =


+ = +

(m là tham số)
1) Giải hệ phương trình khi m = 2.
2. Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy
nhất (x; y) thỏa mãn: 2x + y

3.
QL"0451.23Cho phương trình bậc hai x
2
+ 4x - 2m + 1 = 0 (1) (với m là tham
số)
a) Giải phương trình (1) với m = -1.
b) Tìm m để phương trình (1) có hai nghiệm x
1
; x

2
thỏa mãn điều kiện x
1
-x
2
=2.
QL"0$41.23
Cho đường tròn tâm O bán kính R và một điểm A sao cho OA = 3R. Qua A kẻ 2
tiếp tuyến AP và AQ với đường tròn (O ; R) (P, Q là 2 tiếp điểm). Lấy M thuộc đường
tròn (O ; R) sao cho PM song song với AQ. Gọi N là giao điểm thứ hai của đường thẳng
AM với đường tròn (O ; R). Tia PN cắt đường thẳng AQ tại K.
1) Chứng minh tứ giác APOQ là tứ giác nội tiếp và KA
2
= KN.KP.
2) Kẻ đường kính QS của đường tròn (O ; R). Chứng minh NS là tia phân giác của
góc
·
PNM
.
3) Gọi G là giao điểm của 2 đường thẳng AO và PK. Tính độ dài đoạn thẳng AG
theo bán kính R.
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
10
'()
Website: Sưu tầm
 S
q,ai\%r  !#$%#&
*+"
>-MB."#sBE<>e<#$

=.>.?<O-j "#@AB
, : ( 3.0 điểm)
1\ Giải phương trình và hệ phương trình sau:
a\ x
2
– 6x + 8 = 0
b\



2x + y = 5
x - y = 1
2\ Cho biểu thức: A=
2 4
9
x
x x− +
(Với x ≥ 0)
a\ Rút gọn biểu thức A
b\ Tính giá trị của biểu thức A khi x = 9.
, #" ( 1.5 điểm) Cho parabol (P): y=
3
4
x
2
và đường thẳng (d): y= x + m (với m là tham
số)
1\ Vẽ parabol (P)
2\ Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt.
, $" (1.5 điểm):

Một mảnh đất hình chữ nhật có diện tích bằng 600m
2
. Do thực hiện quy hoạch
chung, người ta đã cắt giảm chiều dài mảnh đất 10m nên phần còn lại của mảnh đất trở
thành hình vuông. Tính chiều rộng và chiều dài của mảnh đất hình chữ nhật ban đầu.
, &: (3.5 điểm): Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O), các đường
cao AM, BN, CP của tam giác ABC đồng quy tại H (
, , )M BC N AC P AB∈ ∈ ∈
.
1\ Chứng minh tứ giác MHNC nội tiếp đường tròn.
2\ Kéo dài AH cắt (O) tại điểm thứ hai là D. Chứng minh:
·
·
DBC NBC=
3\ Tiếp tuyến tại C của đường tròn ngoại tiếp tứ giác MHNC cắt đường thẳng AD
tại K. Chứng minh: KM.KH + HC
2
= KH
2
.
4\ Kéo dài BH và CH lần lượt cắt (O) tại các điểm thứ hai là Q và E.
Tính già trị của tổng:
DM QN EP
AM BN CP
+ +
.
, 5: (0,5 điểm) Cho ba số a, b, c thỏa mãn a
2
+ b
2

+ c
2
≤ 18. Tìm giá trị nhỏ nhất của
biểu thức:
P = 3ab + bc + ca
::::::::::::h:::::::::::
Nguyễn Thành Chung Trường THCS Kỳ Ninh
11
Website: Sưu tầm
t
TỈNH BÀ RỊA – VŨNG TÀU NĂM HỌC 2013 – 2014
*+" ( không chuyên)
Ngày thi 14 tháng 06 năm 2013
Thời gian làm bài thi: 120 phút, (không kể thời gian giao đề)
, "0$1.23
1\ Rút gọn biểu thức B=
3 2 5 6
2
6 2 6 2
+ −
− +
2\ Giải phương trình : 2x
2
+ x – 15 = 0
$uGiải hệ phương trình"
2x 3y 2
5x y 12
− =



+ = −

, "0451.23
Cho Parabol (P): y =
2
1
x
2
và đường thẳng (d): y = x +m
1\ Vẽ parabol (P) và đường thẳng (d) khi m= - 1 trên cùng một hệ trục tọa độ.
2\ Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ lần
lượt là x
1
; x
2
thỏa mãn x
1
2
+ x
2
2
= 5m
, "01.23
Quãng đường AB dài 120 km. Một ô tô khởi hành từ A đi đến B và một mô tô khởi
hành đi từ B đến A cùng lúc. Sau khi gặp nhau tại địa điểm C, ô tô chạy thếm 20 phút nữa
thì đến B, còn mô tô chạy thếm 3 giờ nữa thì đến A. Tìm vận tốc của ô tô và vận tốc của
mô tô.
, "0$451.23
Cho đường tròn (O) có bán kính R và điểm C nằm ngoài đường tròn. Đường thẳng CO cắt
đường tròn tại hai điểm A và B ( A nằm giữa C và O). Kẻ tiếp tuyến CM đến đường tròn

( M là tiếp điểm). Tiếp tuyến của đường tròn (O) tại A cắt CM tại E và tiếp tuyến của
đường tròn (O) tại B cắt CM tại F.
1\ Chứng minh tứ giác AOME nội tiếp đường tròn.
2\ Chứng minh
·
·
AOE OMB=
và CE.MF=CF.ME
3\ Tìm điểm N trên đường tròn (O) ( N khác M) sao cho tam giác NEF có diện tích lớn
nhất.Tính diện tích lớn nhất đó theo R, biết góc
·
0
AOE 30=
.
, "0451.23
Cho 2 số thực a và b thỏa mãn a>b và ab= 4.
Tìm giá trị nhỏ nhất của biểu thức P =
2 2
a b 1
a b
+ +

Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
12
'()
Website: Sưu tầm
QL(2,0điểm)
a) Tính :
49162 −=A

b) Trong các hình sau đây : Hình Vuông, hình bình hành, hình chữ nhật,hình thang cân
hình nào có hai đường chéo bằng nhau ?
QL# (2điểm)
a) giải phương trình :
0372
2
=+− xx
b) Giải hệ phương trình



=+
=+
2
43
yx
yx
QL$ (2điểm)
a)Rút gọn biểu thức




















+
+
+=
1
1
1
1
a
aa
a
aa
B
với
1;0 ≠≥ aa
b)Cho phương trình x
2
+2(m+1)x +m
2
=0
Tìm m để phương trình có hai nghiệm phân biệt trong dod có một nghiệm bằng -2
QL& (3điểm)
Cho đường tròn tâm O đường kính AB=2R.Gọi I là trung điểm OA qua I kẻ dây MN

vuông góc với OA .C thuộc cung nhỏ MB ( M khác B, M), AC cắt MN tại D
a)
Chứng minh tứ giác BIDC nội tiếp
b)
Chứng minh AD.AC=R
2
c)
Khi C chạy trên cung nhỏ MB chứng minh rằng tâm đường tròn ngoại tiếp tam
giác CMD luôn thuộc đường thẳng cố định
QL5(1 điểm)
Cho x, y là 2 số thực dương
Tìm giá trị nhỏ nhất của biểu thức

)2()2( xyyyxx
yx
P
+++
+
=
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
13
R_Z
'()
Y*Z#$:#&
*+
Thời gian làm bài: 120 phút, không kể thời gian giao đề
Đề thi có 01 trang

Website: Sưu tầm


U
S
Y*Z#$%#&
Ngày thi: 26/06/2013
ĐỀ THI CHÍNH THỨC *;<B."FE<
Thời gian làm bài: 120 phút
(không kể thời gian giao đề)
QL0#1.23
?/ Tính giá trị của các biểu thức:
A 9 4= +
;
2
B ( 2 1) 2= + −
.
j/ Rút gọn:
2
1 1 x
C ( )
x 1 ( x) x x 1
= −
+ + −
, với
x 0>

x 1≠
.
QL#01.23
Vẽ đồ thị các hàm số
2

y x ; y 2x 1= = −
trên cùng một mặt phẳng tọa độ, xác định
tọa độ giao điểm của hai đồ thị đó.
QL$0#1.23
?/Giải hệ phương trình
x y 5
3x y 3
+ =


− =

j/ Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 5 m. Tính kích thước
của mảnh đất, biết rằng diện tích mảnh đất là 150 m
2
.
QL&0&1.23
Cho đường tròn (O) và điểm M nằm ngoài đường tròn đó. Qua điểm M kẻ tiếp
tuyến MA và cát tuyến MBC (B nằm giữa M và C). Gọi E là trung điểm của dây BC.
?/ Chứng minh: MAOE là tứ giác nội tiếp;
j/ MO cắt đường tròn tại I (I nằm giữa M và O). Tính
AMI 2. MAI;∠ + ∠
!/ Tia phân giác goc BAC cắt dây BC tại D. Chứng minh:
2
MD MB.MC=
.
QL501.23
Tìm nghiệm nguyên x, y của phương trình:
2 2 2 2
x y (x 1) (y 1) 2xy(x y 2) 2+ − + − − + − =

.
]B
Nguyễn Thành Chung Trường THCS Kỳ Ninh
14
Website: Sưu tầm
UBND TỈNH BẮC NINH

'
Y*Z#$%#&
*;<B."Toán
=.>.?<O-j " 120 phút (Không kể thời gian giao đề)
>-MB." 16 tháng 7 năm 2013
QL/03,0 điểm3
1.Cho biểu thức P = x + 5. Tính giá trị biểu thức P khi x = 1.
2.Hàm số y = 2x +1 là hàm số đồng biến hay nghịch biến trên R ? Vì sao ?
3. Giải phương trình : x
2
+ 5x +4 = 0
QL#/ 02,0 điểm3
Cho hệ phương trình :
3 5
2 0
mx y
x my
+ =


− =

( m là tham số )

1.Giải hệ phương trình với m =2.
2.Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn y = 2x.
QL$/(1,5 điểm)
Khoảng cách giữa hai bến sông A và B là 30 km. Một ca nô đi xuôi dòng từ bến A đến
bến B rồi lại đi ngược dòng từ bến B về bến A . Tổng thời gian ca nô đi xuôi dòng và đi ngược
dòng là 4 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết vận tốc của dòng nước là 4km/h.
QL&/(2,5 điểm)
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. các đường cao AD và CE
của tam giác ABC cắt nhau tại H. Vẽ đường kính BM của đường tròn tâm O.
1. Chứng minh rằng EHDB là tứ giác nội tiếp.
2. Chứng minh tứ giác AHCM là hình bình hành.
3. Cho
·
0
60ABC =
. Chứng minh rằng BH = BO
QL5/(1,0 điểm)
 /Cho a, b, c là các số thực thỏa mãn abc = 1
Tính giá trị của biểu thức:
1 1 1
1 1 1
A
a ab b bc c ca
= + +
+ + + + + +

2. Chứng minh rằng nếu tam giác ABC có
·
·
2ACB BAC=

và AC = 2BC thì tam giác ABC
là tam giác vuông.
Hết
Họ và tên thí sinh: …………………………… ……Số báo danh: ………………
Nguyễn Thành Chung Trường THCS Kỳ Ninh
15
'(
Website: Sưu tầm
D>.EFGH!N-1-FBIF
v<>Mw<
1VB.!W<BX!
JKB.BLM2<C.<N-FOP@B@B
 !#$:#&
*;<B.: Toán
Thời gian làm bài: 120 phút
QL 1:
1) Rút gọn P =
12 3
3

2) Tìm m để đường thẳng y = 2x + m đi qua A(-1; 3)
3) Tìm tung độ của điểm A trên (P) y =
2
1
2
x
biết A có hoành độ x = -2.
QL 2: Cho phương trình x
2
-2mx -3 = 0

1) Giải phương trình khi m = 1
2) Tìm m để phương trình có hai nghiệm phân biệt x
1
, x
2
thoả mãn
1 2
6x x+ =
QL 3:
1) Giải hệ
3
3 5
x y
x y
+ =


+ =

2) Một người đi xe đạp từ A đến B cách nhau 20km. Khi đi từ B về A người đó
tăng vận tốc thêm 2km, vì vậy thời gian về ít hơn thời gian đi 20 phút. Tính vận
tốc của người đó lúc đi từ A đến B.
QL 4:
Cho nửa đường tròn tâm O đường kính AB. Điểm H thuộc đoạn thẳng AO (H khác
A và O). Đường thẳng đi qua điểm H và vuông góc với AO cắt nửa đường tròn (O) tại C.
Trên cung BC lấy điểm D bất kỳ (D khác B và C). Tiếp tuyến của nửa đường tròn (O) tại
D cắt đường thẳng HC tại E. Gọi I là giao điểm của AD và HC.
1. Chứng minh tứ giác BHID nội tiếp đường tròn.
2. Chứng minh tam giác IED là tam giác cân.
3. Đường thẳng qua I và song song với AB cắt BC tại K. Chứng minh tâm đường tròn

ngoại tiếp tam giác ICD là trung điểm của đoạn CK.
QL 5: Cho x, y không âm thoả mãn x
2
+y
2
= 1. Tìm min P =
4 5 4 5x y+ + +

Nguyễn Thành Chung Trường THCS Kỳ Ninh
16
Website: Sưu tầm
R
\x\

 !#$%#&
*;<B."Toán
>-MB."12 tháng 7 năm 2013
=.>.?<O-j " 120 phút
QL: (2,0 điểm)
1. Cho phương trình
2
2 3 0x x+ − =
với các hệ số
1; 2; 3a b c= = = −
.
a. Tính tổng:
S a b c
= + +

b. Giải phương trình trên.

2. Giải hệ phương trình
3 2
2 3 4
x y
x y
− =


+ =

.
QL#: (2,0 điểm).
Cho biểu thức
1
1 1
:
1 2 1
y
Q
y y y y y
   
+
= +
 ÷  ÷
 ÷  ÷
− − − +
   
với
0; 1y y> ≠
a) Rút gọn biểu thức

Q
.
b) Tính giá trị của
Q
khi
3 2 2y = −
.
QL$: (2,0 điểm)
Cho đường thẳng
: 2 1d y bx= +
và parabol
( )
2
: 2P y x= −
.
a) Tìm
b
để
d
đi qua
( )
1;5B
.
b) Tìm
b
để đường thẳng
d
cắt parabol
( )
P

tại hai điểm phân biệt có hoành độ lần
lượt là
1 2
,x x
thỏa mãn điều kiện
( )
2 2
1 2 1 2
4 4 0x x x x+ + + + =
.
QL&: (3,0 điểm)
Cho đường tròn (O;R) đường kính EF. Bán kính IO vuông góc với EF, gọi J là điểm
bất kỳ trên cung nhỏ EI (J khác E và I), FJ cắt EI tại L, kẻ LS vuông góc với EF (S thuộc
EF).
a) Chứng minh tứ giác IFSL nội tiếp.
b) Trên đoạn thẳng FJ lấy điểm N sao cho FN=EJ. Chứng minh rằng, tam giác IJN
vuông cân.
c) Gọi d là tiếp tuyến của (O) tại E. Lấy D là điểm nằm trên d sao cho hai điểm D và I
nằm trên cùng một nửa mặt phẳng bờ là đường thẳng EF và
. .ED JF JE OF
=
. Chứng minh
rằng đường thẳng FD đi qua trung điểm của đoạn thẳng LS.
QL5: (1,0 điểm)
Cho
, , 0a b c >
thỏa mãn
3ab bc ca+ + ≥
. CMR:
4 4 4

3
3 3 3 4
a b c
b c c a a b
+ + ≥
+ + +
.
Họ tên ……………………………… ……….……. Số báo danh ………………………………
Giám thị 1 ……………………………………….… Giám thị 2 …………………………………
Nguyễn Thành Chung Trường THCS Kỳ Ninh
17
ĐỀ CHÍNH THỨC
Đề B
Website: Sưu tầm
CDR1ByLz<>j{<JKB.BLM2<C.<N-FOP@B@B
< !#$:#&
(ĐỀ CHÍNH THỨC) FE<>-M#e:e:#$
 *;<: 
," =.>.?<O-j "#@AB(không kể thời gian giao đề)
Đề thi gồm có 01 trang
*9'"$e
QL"(2,0 điểm) Cho biểu thức
1 1 1
1
1 1
A
x
x x
 
 

= + −
 ÷
 ÷
− +
 
 
với x >0; x

1
a) Rút gọn biểu thức A.
b) Tìm tất cả các giá trị nguyên của x để biểu thức A nhận giá trị nguyên.

QL#"(1,5 điểm) Giải hệ phương trình sau:
2 5
3 1
x y
x y
+ =


− = −

QL$"(2,0 điểm) : Cho phương trình x
2
+(2m-1)x+2(m-1)=0 (m là tham số)
a) Giải phương trình khi m=2.
b) Chứng minh phương trình có nghiệm với m.
c) Tìm m để phương trình có 2 nghiệm x
1
, x

2
thoar mãn x
1
(x
2
-5)+x
2
(x
1
-5)=33
QL&"(1,0 điểm) Cho x, y là các số dương thoả mãn:
2x y+ =
.
Tìm giá trị nhỏ nhất của biểu thức:
4 4
( 1)( 1) 2013P x y= + + +
.
QL5"(3,5 điểm): Cho đường tròn (O) và đường thẳng d không giao nhau với đường tròn
(O). Gọi A là hình chiếu vuông góc của O trên đường thẳng d. Đường thẳng đi qua A
(không đi qua O) cắt đường tròn (O) tại B và C (B nằm giữa A, C). Tiếp tiếp tại B và C
của đường tròn (O) cắt đường thẳng d lần lượt tại D và E. Đường thẳng BD cắt OA, CE
lần lượt ở F và M, OE cắt AC ở N.
a) Chứng minh tứ giác AOCE nội tiếp.
b) Chứng minh AB.EN = AF.EC.
c) Chứng minh A là trung điểm của DE.
SỞ GIÁO DỤC VÀ ĐÀO TẠO 
Nguyễn Thành Chung Trường THCS Kỳ Ninh
18
Website: Sưu tầm
BÌNH THUẬN Năm học : 2013 – 2014

Khóa ngày : 10/7/2013
Môn thi : TOÁN
ĐỀ THI CHÍNH THỨC Thời gian làm bài : 120 phút
( Đề thi này có 01 trang) ( Không kể thời gian giao đề)
______________________________________________________________________
ĐỀ
, / ( 2,0 điểm)
Không dùng máy tính cầm tay, giải các phương trình và hệ phương trình sau
a) x
2
+ x – 20 = 0 b)
3 2 3
1
x y
x y
− =


+ =

, #.(2,0 điểm)
a) Tính giá trị biểu thức A =
( )
3 5 3 2 2 24 1− + +
b) Rút gọn biểu thức B =
1
2
1
a
a

a a
+ +
+
, với a > 0
, $/ (2,0 điểm)
a) Vẽ đồ thị hàm số y = 2x – 3 trên mặt phẳng tọa độ Oxy.
b) Chứng minh rằng với mọi giá trị của m, đường thẳng (d): y = mx + 1 luôn cắt parabol
(P): y = x
2
tại hai điểm phân biệt. Khi đó tìm m đễ
1 2 1 2
. 7y y y y+ + =
, với
1 2
,y y
là tung
độ của các giao điểm
, &/ (4,0 điểm)
Cho đường tròn tâm O đường kính AB = 2R. Gọi M là một điểm nằm trên đường tròn (O)
sao cho AM = R; C là một điểm tùy ý trên đoạn OB ( C khác B). Đường thẳng qua C và vuông
góc với AB lần lượt cắt các đường thẳng MA, MB tại K và H.
a) Chứng minh tứ giác AMHC nội tiếp.
b) Tinh độ dài đoạn BM và diện tích tam giác MAB theo R.
c) Tiếp tuyến của đường trỏn (O) tại M cắt CK tại I. Chứng minh tam giác MIH đều.
d) Các đường thẳng KB và MC cắt đường trỏn (O) lần lượt tại E và F. Chứng minh EF
song song với KC.
h .
Y*Z#$:#&
,Si x\#s:e:#$
Nguyễn Thành Chung Trường THCS Kỳ Ninh

19
Website: Sưu tầm
V!W<BX!
*;<"
=.>.?<O-j "#@AB0J;<>J2B=.>.?<@EB
1V3
, "0#1.23
a) Tìm điều kiện của x để biểu thức sau có nghĩa:
A x 2013 2014 x= − + −
b) Rút gọn biểu thức:
A 20 2 80 3 45= + −
c) Trong mặt phẳng tọa độ Oxy, đường thẳng y = ax + b đi qua điểm
( )
M 1; 2− −

songsongđường thẳng
y 3x 5= −
. Tìm hệ số a, b.
, #"01.23
Cho phương trình
2
x 4x m 0− + =
(m tham số) (1)
a) giải phương trình khi m = 3
b) Tìm m để phương trình (1) có hai nghiệm x
1
, x
2
thỏa mãn điều kiện:
2 2

1 2
1 1
2
x x
+ =
, $"0#1.23
Hai công nhân cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất
làm trong 3 giờ, người thứ hai làm trong 6 giờ thì họ làm được
1
4
công việc. Hỏi mỗi công
nhân làm một mình thì trong bao lâu làm xong công việc?
, &"0&1.23
Cho đường tròn (O; R), hai đường kính AB và CD vuông góc với nhau. Trong đoạn
thẳng AB lấy điểm M (khác điểm O), đường thẳng CM cắt đường tròn (O) tại điểm thứ hai
N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn (O) ở điểm P.
a) Cm tứ giác OMNP nội tiếp được trong đường tròn.
b) Tứ giác CMPO là hình gì?
c) Cm tích CM.CN không đổi.
d) Cm khi M di đông trên đoạn thẳng AB thì P chạy trên một đường thẳng cố định.
, 5"01.23
Cho ba số thực a, b, c dương. Cmr:
2 2 2 2 2 2
a b b c c a 2(a b c)+ + + + + ≥ + +

 '
Nguyễn Thành Chung Trường THCS Kỳ Ninh
20
Website: Sưu tầm
,b\

ĐỀ CHÍNH THỨC
Y*Z"#$:#&
*+"
NGÀY 30/06/2013
Thời gian làm bài : 120 phút
QL0$1.23
1. Tính giá trị của biểu thức A=
3 27 144 : 36× −
2.Tìm m để hai đường thẳng (d) : y =(2m-1)x+1,( m
1
2

) và (d'): y=3x-2 song song với
nhau.
3. Giải hệ phương trình
3 2 1
5 7
x y
x y
+ = −


− =

QL0#1.23
1. Rút gọn biểu thức B =
2
1
x x x
x x x


+
− −
( với x>0; x

1)
2. Cho phương trình
2
1 0x x m− + − =
(1)
a. Giải phương trình (1) với m =3.
b. Tìm m để phương trình (1) có hai nghiệm phân biệt
1 2
,x x
thoả mãn :
1 2
1 2
1 1
2 3 0x x
x x
 
+ + + =
 ÷
 
QL0451.23
Tìm hai số tự nhiên hơn kém nhau 12 đơn vị biết tích của chúng bằng 20 lần số lớn cộng
với 6 lần số bé.
QL0$1.23
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho
AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ

dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M,
tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một
đường thẳng cố định khi dây cung EF thay đổi.
QL0451.23
Cho hai số x, y thỏa mãn
1 3x≤ ≤

1 2
2 3
y≤ ≤
.
Tìm giá trị lớn nhất của biểu thức
M=
2 2 2 2 2 2
6 7 24 2 18 28 8 21 6x y x y xy x y xy x y− − + + + − − +
Nguyễn Thành Chung Trường THCS Kỳ Ninh
21
Website: Sưu tầm
R
8TU


Y*Z#$:#&
*+"
=.>.?<O-j "#@AB(không kể thời gian giao đề)
>-MB.">-M#BE<>f<#$0|B3

0VB.>}"Bl?<>3
QL0#41.23"
1) Giải phương trình : ( x – 2 )
2
= 9
2) Giải hệ phương trình:
x + 2y - 2= 0
1
2 3



= +


x y
.
QL#0#41.23"
1) Rút gọn biểu thức: A =
1 1 9
2
x 3 x 3 4
 
 
+ −
 ÷
 ÷
 ÷
− +
 

 
x
x
với x > 0 và x

9
2) Tìm m để đồ thị hàm số y = (3m -2) x +m – 1 song song với đồ thị hàm số y = x
+5
QL$0#41.23"
1) Một khúc sông từ bến A đến bến B dài 45 km. Một ca nô đi xuôi dòng từ A đến
B rồi ngược dòng từ B về A hết tất cả 6 giờ 15 phút. Biết vận tốc của dòng nước là 3
km/h.Tính vận tốc của ca nô khi nước yên lặng.
2) Tìm m để phương trình x
2
– 2 (2m +1)x +4m
2
+4m = 0 có hai nghiệm phân biệt
x
1
, x
2
thỏa mãn điều kiện
1 2
x x− =
. x
1
+ x
2
QL&0$41.23"
Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn lấy điểm C (C

khác A và B).Trên cung BC lấy điểm D (D khác B và C) .Vẽ đường thẳng d vuông góc với
AB tại B.
Các đường thẳng AC và AD cắt d lần lượt tại E và F.
1) Chứng minh tứ giác CDFE nội tiếp một đường tròn.
2)Gọi I là trung điểm của BF.CHứng minh ID là tiếp tuyến của nửa đường tròn đã
cho.
3)Đường thẳng CD cắt d tại K, tia phân giác của
·
CKE
cắt AE và AF lần lượt tại M
và N.Chứng minh tam giác AMN là tam giác cân.
QL5041.23"
Cho a, b là các số dương thay đổi thoả mãn a+b=2.Tính giá trị nhỏ nhất của biểu
thức
Q =
( )
2 2
2 2
1 1
2 6 9
a b
a b
b a
a b
   
+ − + + +
 ÷  ÷
   
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh

22
'()
Website: Sưu tầm
R
8TU


Y*Z#$:#&
*+"
=.>.?<O-j "#@AB(không kể thời gian giao đề)
>-MB.">-M&BE<>f<#$0|B#3
0VB.>}"Bl?<>3
QL0#41.23"Giải các phương trình sau:
1)
2
4x x= −
2)
( )
2
2 3 7x − =
QL#0#41.23"
1) Rút gọn biểu thức
1 1 1
:
1
a
P
a a a a a
+
 

= +
 ÷
− − −
 
với
0a
>

1a

.
2) Tìm m để đồ thị các hàm số
2 2 y x= +

7 y x m= + −
cắt nhau tại điểm nằm trong góc
phần tư thứ II.
QL$0#41.23:
1) Hai giá sách trong một thư viện có tất cả 357 cuốn sách. Sau khi chuyển 28 cuốn sách
từ giá thứ nhất sang giá thứ hai thì số cuốn sách ở giá thứ nhất bằng
1
2
số cuốn sách của giá thứ
hai. Tìm số cuốn sách ban đầu của mỗi giá sách.
2) Gọi
1 2
,x x
là hai nghiệm của phương trình
2
5 3 0x x+ − =

. Tính giá trị của biểu thức:
Q =
3 3
1 2
x x+
.
QL&0$41.23"
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên cạnh BC lấy điểm
M (M khác B, C và H). Kẻ ME vuông góc với AB tại E; MF vuông góc với AC tại F.
1) Chứng minh các điểm A, E, F, H cùng nằm trên một đường tròn.
2) Chứng minh BE.CF = ME.MF.
3) Giả sử
·
0
MAC 45=
. Chứng minh
BE HB
=
CF HC
.
QL5041.23"
Cho hai số dương x, y thay đổi thoả mãn xy = 2. Tìm giá trị nhỏ nhất của biểu thức
1 2 3
2
M
x y x y
= + +
+
.
Hết

Nguyễn Thành Chung Trường THCS Kỳ Ninh
23
'()
Website: Sưu tầm
UBND TỈNH TIỀN GIANG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM
 Độc lập – Tự do – Hạnh Phúc.

Khóa ngày: 30-6-2013
*;<B."
Thời gian làm bài: #@AB (không kể thời gian giao đề)
Đề thi này có: 01 trang
, : (2,0 điểm)
1. Giải phương trình và hệ phương trình sau:
a)
2
2 7 2 0x x− − =

b)
2 5
4 7
x y
x y
+ =


− =

c)
4 2
2 13 21 0x x− + =

2. Rút gọn biểu thức:
3 4 21
7 2 3 7 7
A = + −
+ −
, #: (3,0 điểm)
1. Cho Parabol (P):
2
y x= −
và đường thẳng (d): y = 2x – 3.
a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (d) bằng phép tính.
2. Cho phương trình:
( )
2
2 1 2 0mx m x m− + + + =
(x là ẩn số, m là tham số thực)
a) Định m để phương trình trên có nghiệm.
b) Định m để phương trình trên có đúng hai nghiệm phân biệt có giá trị tuyệt đối
bằng nhau và trái dấu nhau.
, $: (1,5 điểm) Giải bài toán sau bằng cách lập phương trình bậc hai.
Quãng đường AB dài 90 km, có hai ô-tô khởi hành cùng một lúc. Ô-tô thứ nhất đi từ
A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ô-tô thứ
hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe.
, &: (2,5 điểm)
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Gọi O là trung điểm BC,
qua O kẻ đường thẳng vuông góc với BC cắt đường thẳng BA tại I. Gọi M là trung điểm
BO.
1. Chứng minh tứ giác IAOC nội tiếp đường tròn.
2. Chứng minh BA.BI = BO.BC, từ đó suy ra tam giác BOA đồng dạng với tam

giác BIC.
3. Tính diện tích tam giác AMC.
4. Gọi N là điểm đối xứng của B qua C. Chứng minh tứ giác AINM nội tiếp đường
tròn.
, 5: (1,0 điểm)
Cho một hình trụ có bán kính đáy bằng 2cm, thể tích bằng
3
16 cm
π
. Tính diện tích
xung quanh của hình trụ đã cho.
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
24
Đề chính thức
Website: Sưu tầm
R
\\
:::::::::::::::
'()
SBD……PHÒNG………
'
 !#$:#&
::::::::::::::::::::
*;<"
~?<>-M:f:#$
=.>.?<O-j "#@AB
0;<>J2B=.>.?<@EB1V3
>-MB."#:f:#$
, /0$41.23

a. Thực hiện phép tính A =
− + −
4 9 16 25
b. Tìm x dương , biết
1 3x+ =
c. Giải hệ phương trình :
( )
( )
1 4
1 2 1
+ + =


+ − =


x y
x y
, #/0#41.23
Cho hàm số y = x
2
có đồ thị là Parabol ( P )
a) Vẽ đồ thị hàm số
b) Xác định a , b sao cho đường thẳng y = ax +b song song với đường thẳng y = – x +5 và cắt
Parabol (P) tại điểm có hoành độ bằng 1 .
, $/0#41.23

Cho phương trình x
2
– (2m +1) x + m

2
+ m = 0 (*)
a. Khi m = 0 giải phương trình (*)
b. Tìm m để phương trình (*) có hai nghiệm phân biệt x
1
; x
2
và cả hai nghiệm này đều là
nghiệm của phương trình x
3
+x
2
= 0
, &/0$41.23
Cho đường tròn tâm O đường kính AB ; C là một điểm trên đường tròn sao cho số đo
cung AC gấp đôi số đo cung CB.Tiếp tuyến tại B với đường tròn (O) cắt AC tại E.Gọi I là trung
điểm của dây AC.
a.Chứng minh rằng tứ giác IOBE nội tiếp.
b.Chứng minh rằng EB
2
= EC . EA .
c.Biết bán kính đường tròn (O) bằng 2 cm, tính diện tích tam giác ABE .
Hết
Nguyễn Thành Chung Trường THCS Kỳ Ninh
25

×