Tải bản đầy đủ (.pdf) (839 trang)

Tổng hợp kiến thức Phương Trình Bất phương trình Hệ phương trình

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (22.25 MB, 839 trang )











PT – BPT – HPT – Mũ- Logarit

Thư Viện Số







BẤT PHƯƠNG TRÌNH VÀ ĐỒ THỊ
 1. (Dự bị A, 2007) Tìm m để bất phương trình(

x
2
− 2x + 2 + 1) + x(2 −x)  0 có nghiệm
x ∈ [0; 1 +

3]. Đáp số. m 
2
3


.
 2. Tìm a để bất phương trình a.4
x
+ (a − 1)2
x+1
+ a − 1 > 0 đúng với mọi x thuộc R.
Đáp số. a  1.
 3. (ĐH Sư phạm Hà Nội II, 2001) Tìm a để bất phương trình a.9
x
+ (a −1)3
x+2
+ a −1 > 0
đúng với mọi x thuộc R . Đáp số. a  1.
 4. (Học viện Bưu chính Viễn thông, 2001)
Tìm tất cả các giá trị của tham số a sao cho bất phương trình sau đượ c nghiệm đúng với
mọi x  0:
a.2
x+1
+ (2a + 1)(3 −

5)
x
+ (3 +

5)
x
< 0.
Đáp số. a < −
1
2

.
 5. (ĐH Tài chánh Kế toán Hà Nội, 2000)
Tìm tất cả các giá trị của m sao cho bất phương trình sau đúng với mọi x thoả |x| 
1
2
9
2x
2
−x
− 2(m − 1)6
2x
2
−x
+ (m + 1).4
2x
2
−x
 0.
Đáp số. a  3.
 6. (ĐH Y Thái Bình, hệ dài hạn, 2000) Tìm các giá trị của a để hệ bất phương trình sau có
nghiệm:







(x
2

− 2x + 3)
log
0,5
2x − 3
x + 1
> 1,
x
2
− (a + 1)x + a  0.
Đáp số. a >
3
2
.
 7. (Dự bị ĐH, 2002) Tìm k để hệ bất phương trình sau có nghiệm:



|x − 1|
3
− 3x − k < 0,
1
2
log
2
x
2
+
1
3
log

2
(x − 1)
3
 1.
Đáp số. k > 5.
 8. Tìm a sao cho bất phương trình a

2x
2
+ 7 < x + a đúng với mọi x thuộc R.
Đáp số. a < −

21
6
.
 9. Tìm tất cả các giá trị thực của a sao cho bất phương trình x
2
+ 1 

a|x − 1| có nghiệm.
Đáp số. a 
20 + 4

7
3

3

7 − 3
.

1
 10. (Học viện Kỹ thuật Quân sự, 2000) Tìm a sao cho bất phương trình x
2
+ |x − a| < 3 có
nghiệm âm. Đáp số. −
13
4
< a < 3.
 11. (Học viện Kỹ thuật Mật mã, 1999) Tìm m để bất phương trình sau có nghiệm
x − m

x − 1 > m + 1.
Đáp số. Với mọi m thuộc R.
 12. (ĐH Kiến trúc Hà Nội, 1997) Xác định m để bất đẳng thức x
2
− 2x + 1 − m
2
 0 thoả
mãn với mọi x thuộc đo ạn [1; 2]
Đáp số. Với mọi |m|  1.
 13. (ĐH Bách khoa Hà Nội, 2000) Với giá trị nào của a thì bất phương trình
x
3
+ 3x
2
− 1  a(

x −

x − 1)

3
có nghiệm?
Đáp số. Với mọi a  3.
 14. (ĐH Giao thông vận tải Hà Nội, 2000)
Tìm m để bất phương trình 2 s in
2
x − m cos x − 3  0 nghiệm đúng với mọi x ∈

0;
π
2

.
Đáp số. m  −2

2.
 15. Tìm tất cả các giá trị của tham số a sao cho giá trị nhỏ nhất của hàm số
y = x
2
+ 2x − 1 + |x − a|
lớn hơn 2. Đáp số. a < −
21
4
hoặc a >
13
4
.
 16. Tìm tất cả các giá trị của tham số a sao cho giá trị nhỏ nhất của hàm số
y = 3|x − a| + |x
2

+ x − 2|
nhỏ hơn 2. Đáp số. −
8
3
< a < −1 hoặc 0 < a
5
3
.
 17. Tìm tất cả các giá trị của tham số a sao cho giá trị nhỏ nhất của hàm số
y = x
2
+ |x − a| + |x − 1|
lớn hơn 2. Đáp số. a < −1 hoặc a > 2.
 18. Tìm tất cả các giá trị của tham số a sao cho bất phương trình
x
2
− |x − a| − |x − 1| + 3  0
đúng với mọi số thực x Đáp số. −2  x  1.
2
Nguyễn Phi Hùng - Võ Thành Văn
Đại học Khoa học Huế
**************
Phương pháp đặt ẩn phụ
trong giải phương trình vô tỷ
A. Lời nói đầu
Qua bài viết này chúng tôi muốn giới thiệu cho các bạn một số kĩ năng đặt ẩn phụ trong giải
phương trình vô tỷ. Như chúng ta đã biết có nhiều trường hợp giải một phương trình vô tỷ mà ta
biến đổi tương đương sẽ ra một phương trình phức tạp , có thể là bậc quá cao Có lẽ phương
pháp hữu hiệu nhất để giải quyết vấn đề này chính là đặt ẩn phụ để chuyển về một phương trình
đơn giản và dễ giải quyết hơn .

Có 3 bước cơ bản trong phương pháp này :
- Đặt ẩn phụ và gán luôn điều kiện cho ẩn phụ
- Đưa phương trình ban đầu về phương trình có biến là ẩn phụ
Tiến hành giải quyết phương trình vừa tạo ra này . Đối chiếu với điều kiện để chọn ẩn phụ thích
h
ợp.
- Giải phương trình cho bởi ẩn phụ vừa tìm được và kết luận nghiệm
* Nhận xét :
- Cái mấu chốt của phương pháp này chính là ở bước đầu tiên . Lí do là nó quyết định đến toàn
b
ộ lời giải hay, dở , ngắn hay dài của bài toán .
- Có 4 phương pháp đặt ẩn phụ mà chúng tôi muốn nêu ra trong bài viết này đó là :
+ PP Lượ
ng giác hoá
+ PP dùng
ẩn phụ không triệt để
+ PP dùng ẩn phụ đưa về dạng tích
+ PP dùng
ẩn phụ đưa về hệ
2
B. Nội dung phương pháp
I. Phương pháp lượng giác hoá :
1. Nếu |x|
a
thì ta có thể đặt
tax sin
,t








2
;
2

hoặc
 

;0,cos  ttax
Ví dụ 1 : Giải phương trình:
)121(11
22
xxx 
Lời giải : ĐK :|
1|x
Đặt







2
;
2
,sin


ttx
Phương trình đã cho trở thành :




















2
cos
2
3
sin22sinsin
2
cos2)cos21(sincos1

tt
tt
t
ttt










































3
4
6
)12(
2
1
2
3
sin
0
2
cos
0)1
2
3

sin2(
2
cos


kt
kt
t
t
tt
Kết hợ p với điều kiện của t suy ra :
6

t
Vậy phương trình có 1 nghiệm :
2
1
6
sin 








x
Ví dụ 2 : Giải phương trình:
 

3
1
3
2
)1()1(11
2
332
x
xxx


Lời giải : ĐK :
1|| x
Khi đó VP > 0 .
Nếu
 
0)1()1(:0;1
33
 xxx
Nếu
 
0)1()1(:1;0
33
 xxx
.
Đặt
t
x
cos
, với








2
;0

t
ta có :
ttt
tttt
sin2sin
2
1
1cos62sin2
2
sin
2
cos
2
cos
2
sin62
33






















































 
6
1
cos0sin21cos6
 ttt
Vậy nghiệm của phương trình là
6
1
x
Ví dụ 3 : Giải phương trình:
x

x
x
x
xx
21
21
21
21
2121






Lời giải : ĐK :
2
1
|| x
Đặt
 

;0,cos2  ttx
phương trình đã cho trở thành :
 
0cos02sinsin
sin
4
sin12
2

cot
2
tan2
2
cos
2
sin
23
2





































ttt
t
t
t
an
ttt
Vậy phương trình có nghiệm duy nhất
0x
3
Ví dụ 4 (THTT): Giải phương trình:
23
3
 xxx
(1)
Hướng dẫn :

Nếu
2x
: phương trình không xác định .
Chú ý v
ới
2x
ta có :
 
243
23
 xxxxxxx
Vậy để giải phương trình (1) ta chỉ cần xét với
 
2;2x
Đặt
 

;0,cos2  ttx
khi đó phương trình đã cho trở thành :







2
cos3cos
t
t

2. Nếu
ax ||
thì ta có thể đặt :
0,
2
;
2
,
sin








tt
t
a
x

hoặc
 
2
;;0,
cos


 tt

t
a
x

Ví dụ 5 : Giải phương trình:
1
1
1
1
2
2











x
x
Lời giải : ĐK :
1|| x
Đặt








2
;
2
,
sin
1

t
t
x
Phương trình đã cho trở thành :
 
0
sin
1
coscoscotcos1cot1
sin
1
2
2









t
ttanttant
t










kt
t
t
12
2
1
2sin
0cos
kết hợp với điều kiện của t suy ra
12

t
Vậy phương trình có 1 nghiệm :
 
132

12
sin
1










x
Tổng quát: Giải phương trình
a
x
ax 










1
1

2
2
Ví dụ 6 : Giải phương trình:
2
9
3
2



x
x
x
Lời giải : ĐK :
3|| x
Đặt
 
2
,;0,
cos
3


 tt
t
x
, phương trình đã cho trở thành :
23
4
cos

3
4
12sin2sin22sin122
sin
1
cos
1
2










xtttt
tt
(thoả mãn)
Tổng quát: Giải phương trình:
b
ax
ax
x 


22
với

ba,
là các hằng số cho trước
3. Đặt







2
;
2
,tan

ttx
để đưa về phương trình lượng giác đơn giản hơn :
Ví dụ 7 : Giải phương trình: 03333
23
 xxx (1)
4
Lời giải :
Do
3
1
x
không là nghiệm của phương trình nên (1)
3
31
3

2
3



x
xx
(2)
Đặt







2
;
2
,tan

ttx
, Khi đó (2) trở thành :
39
33tan


ktt 
Suy ra (1) có 3 nghiệm :






















9
7
tan;
9
4
tan;
9
tan

xxx

Ví dụ 8 : Giải phương trình:
 
 
2
2
22
2
12
1
2
1
1
xx
x
x
x
x





Lời giải : ĐK :
1;0  xx
Đặt
4
;0,
2
;
2

,tan








 tttx
, phương trình đã cho trở thành :
012cos2cos.sin20
2cos.sin2
1
sin2
1
1
cos
1
4sin
2
2sin
1
cos
1








 ttt
ttttttt
   






















2
6
2

2
2
1
sin
1sin
0sin
0sin2sin1sin0sin2sin21sin2
222
kt
kt
t
t
t
tttttt
Kết hợp với điều kiện suy ra :
6

t
Vậy phương trình có 1 nghiệm :
3
1
6
tan










x
4. Mặc định điều kiện :
ax ||
. Sau khi tìm được số nghiệm chính là số nghiệm tối đa của phương
trình và kết luận :
Ví dụ 9 : Giải phương trình:
xx 216
3

Lời giải :
Phương trình đã cho tương đương với :
168
3
 xx
(1)
Đặt
 

;0,cos  ttx
, Lúc đó (1) trở thành :
 
Zkktt 
3
2
92
1
3cos



Suy ra (1) có tập nghiệm :

























9
7
cos;

9
5
cos;
9
cos

S
Vậy nghiệm của phương trình đã cho có tập nghiệm chính là S
II. Phương pháp dùng ẩn phụ không triệt để
* Nội dung phương pháp :
Đưa phương trình đã cho về phương trình bậc hai với ẩn là ẩn phụ hay là ẩn của phương trình đã cho :
Đưa phương trình về dạng sau :
       
xxPxfxQxf 
khi đó :
Đặt
 
0,  ttxf
. Phương trình viết thành :
   
0.
2
 xPxQtt
Đến đây chúng ta giải t theo x. Cuối cùng là giải quyết phương trình
 
txf 
sau khi đã đơn giản hóa
và kết luận
Ví d
ụ 10 : Giải phương trình

16924422
2
 xxx
(1)
L
ời giải : ĐK : 2|| x
5
Đặt
 
2
42 xt 
Lúc đó :(1)
 
 
 
   
xxxxxxxx 84216481692164216424
22222

Phương
trình trở thành :
08164
22
 xxtt
Giải phương trình trên với ẩn t , ta tìm được :
4
2
;
2
21


x
t
x
t
Do
2|| x
nên
0
2
t
không thỏa điều kiện
0t
Với
2
x
t 
thì :
 
 







3
24
48

0
2
42
22
2
x
xx
x
x
x
( thỏa mãn điều kiên
2|| x
)
Ví dụ 11 :Giải phương trình
36112
2
 xxx
Lời giải : ĐK :
1x
Đặt
01  xt
,phương trình đã cho trở thành :
x
t
ttxt
66
03612
2



* Với
x
t
t
66 

, ta có :
 
66  tx
(vô nghiệm vì :
0;0  VPVT
)
* Với
x
t
t
66 

, ta có :
tx)6(6 
Do
6x
không là nghiệm của phương trình nên :
x
x
x
t





6
6
1
6
6
Bình phương hai vế và rút gọn ta được :
3x
(thỏa mãn)
Tổng quát: Giải phương trình:
22
2 baxbaxx 
Ví dụ 12 : Giải phương trình:




128311123
22
 xxxx
Lời giải :
Đặt
112
2
 tx

Phương trình đã cho viết thành :
 



 
03383831313
2222
 xxtxtxtxtxt
Từ đó ta tìm được
3
x
t

hoặc
xt 31
Giải ra được :
0x
* Nhận xét : Cái khéo léo trong việc đặt ẩn phụ đã được thể hiện rõ trong ở phương pháp này và cụ thể
là ở ví dụ trên . Ở bài trên nếu chỉ dừng lại với việc chọn ẩn phụ thì không dễ để giải quyết trọn vẹn nó .
Vấn đề tiếp theo chính là ở việc kheo léo biến đổi phần còn lại để làm biến mất hệ số tự do , việc gải
quyết t theo x được thực hiện dễ dàng hơn .
Ví dụ 13 : Giải phương trình:
342007342008
2
 xxxx
Lời giải : ĐK :
4
3
x
Đặt
034  tx
phương trình đã cho trở thành :
020072008
22

 txtx
Giải ra :
t
x

hoặc
2008
t
x 
(loại)
*
t
x

ta có :






3
1
034
2
x
x
xx
Vậy
3,1  xx

là các nghiệm của phương trình đã cho .
Ví d
ụ 14 : Giải phương trình:
 
122114
33
 xxxx
6
Lời giải : ĐK :
1x
Đặt
1
3
 xt
,Phương trình đã cho trở thành


   
012142141212
22
 xtxttxxt
Phương trình trên đã khá đơn giản !!!!!!!
III. Phương pháp dùng ẩn phụ đưa về dạng tích
1. Dùng một ẩn phụ
Ví dụ 15 : Giải phương trình:
4
9
2
3
2

 xx
(1)
Lời giải : ĐK :
2
3
x
Đặt
0
2
3
 tx
phương trình (1) trở thành :
 
 













2013
0
013

4
9
2
3
3
3
2
2
tt
t
ttttt
(2) giải đựoc bằng cách áp dụng phương pháp I :
Đặt
 

;0,cos2  ttx
để đưa về dạng :
2
1
3cos
t
Tổng quát: Giải phương trình:
22
aaxx 
với
a
là hắng số cho trước .
Ví d
ụ 16 :Giải phương trình:
   

16223
3
23
xxxx 
Lời giải : ĐK :
2x
Viết lại (1) dưới dạng :
     
202223
3
3
 xxxx
Đặt
02  xt
, Khi đó (2) trở thành :
   













22

2
2
02023
2
323
xx
xx
tx
tx
txtxtxtx
























322
2
084
0
02
0
2
2
x
x
xx
x
xx
x
Vậy phương trình đã cho có 2 nghiệm :
322,2  xx
Ví dụ 17 : Giải phương trình :
015  xx
Lời giải : ĐK :
 
6;1x
(1)
Đặt
01  xt
(2) , phương trình đã cho trở thành :
55
2

 tt
(3)




05402010
2224
 ttttttt
Đối chiếu với hai điều kiện (1) và (2) thay vào và giải ra :
2
1711 

x
Ví dụ 18 : Giải phương trình:
 
2
112006







xxx
Lời giải : ĐK :
 
1;0x
(1)

Đặt
101  txt
, Khi đó :
 
2
22
1,1 txtx 
,phương trình đã cho trở thành :
   
     
 
   
 
010031212007111120061
2
22
2
222
22
 tttttttttt
Vì 10  t nên
01003
2
 tt
Do đó phương trình tương đương với :
101  tt
Do vậy
0x
(thỏa (1))
7

2. Dùng 2 ẩn phụ
.
Ví dụ 19 : Giải phương trình:
3912154
22
 xxxxx
Lời giải :
Đặt
12;154
22
 xxbxxa
  
0139
2222
 babababaxba




































65
56
0
3
1
292
39
3
1
01

0
x
x
x
xa
xba
x
ba
ba
Vậy tập nghiệm của pt là







65
56
;0;
3
1
S
Ví dụ 20 : Giải phương trình:
 
83232
32
 xxx
(1)
Lời giải : ĐK :






2
12
x
x
(*)
Đặt
2,42
2
 xvxxu
ta có :
23
22
 xxvu
Lúc đó (1) trở thành :


  
vuvuvuuvvu 202232
22

(Do
02  vu
)
Tìm x ta giải :
1330462242

22
 xxxxxx
(Thỏa (*))
Vậy (1) có 2 nghiệm :
133
2,1
x
Ví dụ 21 : Giải phương trình:
15209145
22
 xxxxx
Lời giải : ĐK :
5x
Chuyển vế rồi bình phương hai vế phương trình mới ,ta có:
      
 
 
 
 
045454354215410524951
222
 xxxxxxxxxxxxx
(2)
Đặt
0,,4,54
2
 vuxvxxu
,thì :
(2)
  














056254
095
32
0320532
2
2
22
xx
xx
vu
vu
vuvuuvvu
Giải ra ta được 2 nghiệm thỏa mãn :
8;
2
615
21



 xx
Ví dụ 22 : Giải phương trình:
     
4
2
4
3
4
3
4
2
1111 xxxxxxxx 
Lời giải : ĐK :
10  x
Đặt :















1
0
0
1
44
4
4
vu
v
u
xv
xu
Từ phương trình ta được :
   






1
0
01
232322
vu
vu
vuvuvuvuuvvuvu
( Do
0 vu

)
t
ừ đó ta giải ra được các nghiệm :
2
1
;1;0
 xxx
3. Dùng 3 ẩn phụ
.
Ví d
ụ 23 : Giải phương trình:
218817
3
2
3
2
3
 xxxxx
8
Lời giải :
Đặt
3 23 2
3
18,8,17  xxcxxbxa
ta có :
   
 
   
 






2818817
182
22333
3
xxxxxcba
cbacba
Từ (1) và (2) ta có :
 
 
   
03
333
3
 accbbacbacba
Nên :
   









ac

cb
ba
accbba 0
từ đó dễ dàng tìm ra 4 nghiệm của phương trình :
 
9;1;0;1S
Ví dụ 24 : Giải phương trình:
03492513
3333
 xxxx
(1)
Lời giải :
Đặt
333
92,5,13  xcxbxa
,ta có:
34
333
 xcba
khi đó từ (1) ta có :
     
0
333
3
 accbbacbacba
Giải như ví dụ 23 suy ra được 3 nghiệm của phương trình :
5
8
;4;3  xxx
IV. Phương pháp dùng ẩn phụ đưa về hệ

1.
Dùng ẩn phụ đưa về hệ đơn giản giải bằng phép thế hoặc rút gọn theo vế .
a.
Dùng một ẩn phụ .
Ví dụ 25 : Giải phương trình:
55
2
 xx
Lời giải : ĐK :
5x
Đặt
0,5  txt
Ta có :
5
2
 tx
  





























































2
211
2
211
1
5
0
5
01
5
0
5
5
5

2
2
2
22
2
2
2
x
x
tx
tx
tx
tx
txtx
tx
xttx
tx
xt
tx
Tổng quát: Giải phương trình:
aaxx 
2
b.
Dùng 2 ẩn phụ .
* Nội Dung :
   
cxfbxfa
nm

* Cách giải :

Đặt :
   
nm
xfbvxfau  ,
Như vậy ta có hệ :





bavu
cvu
nm
Ví dụ 26 : Giải phương trình:
54057
44
 xx
(1)
Lời giải : ĐK :
5740  x
Đặt
44
40,,57  xvxu
Khi đó :(1)
 
 
 





















0528102
5
9722
5
97
5
2
22
2
2
44
uvuv
vu

vuuvvu
vu
vu
vu
9




































2
3
3
2
6
5
44
6
5
v
u
v
u
uv
vu
uv
uv
vu
(Do hệ






44
5
uv
vu
vô nghiệm)
Đến đây chỉ việc thay vào để tìm nghiệm của phương trình ban đầu .
Ví dụ 27 : Giải phương trình:
4
4
2
1
12  xx
Lời giải : ĐK :
120  x
Đặt :







vx
ux
4
12

với







4
120
120
v
u
(*)
Như vậy ta được hệ :



























)1(12
2
1
2
1
12
2
1
4
2
4
4
42
4
vv
vu
vu
vu
Giải (1) :(1)

 
 
0
2
3
2
4
1
0
2
1
10
2
1
1
2,1
4
2,1
4
2
2
4
2
2











vvvvvv
Vậy
2,1
v
thỏa (*) chính là 2 nghiệm của phương trình đã cho .
Ví dụ 28 : Giải phương trình:
 
2
2
11
4
7
xxx 
Lời giải :
Đặt :
 
























(*)1
4
7
1
1
1
4
7
1
4
7
1
1
0
4
444
yyy

zy
yxzy
zy
xz
xy
Giải phương trình (*),ta có:





















16
9
0

4
3
0
0
4
3
4
2
x
x
y
y
yy
2. Dùng ẩn phụ đưa về hệ đối xứng
Dạng 1 :
Giải phương trình:
n
n
baxabx 
Cách giải: Đặt
n
baxt 
ta có hệ :





axbt
atbx

n
n
Việc giải hệ này đã trở nên dễ dàng
Ví dụ 29 : Giải phương trình:
3
3
1221  xx
Lời giải :
Đặt :
3
12  xt
ta có hệ :
   
 






















02
21
2
21
21
21
22
3
33
3
3
3
txtxtx
tx
xttx
tx
xt
tx
 
 
 
 
 
































2

51
1
04
011
2
02
21
1
012
2
22
2
2
22
3
3
x
x
txxt
xxx
txtx
tx
xx
tx
10
Vậy tập nghiệm của phương trình là :











2
51
;1
S
Dạng 2 :
Giải phương trình:
xaax 
Cách giải : Đặt
xat 
,phương trình đã cho tương đương với





xat
tax
Ví dụ 30 : Giải phương trình:
xx  20072007
Lời giải : ĐK :
0x
Đặt :
xt  2007
(1), PT

Lấy (3) trừ (2) ta được :




txxtxtxttx  01
(1)
4
802928030
02007


xxx
(Do
0x
)
Dạng 3
:
Chọn ẩn phụ từ việc làm ngược
:
Ví dụ 31 : Giải phương trình:
1222
2
 xxx
Lời giải : ĐK :
2
1
x
Đặt
bayx 12

Chọn a, b để hệ :
 
 





12
22
2
2
xbay
bayxx







1,
2
1
yx
(*) là hệ đối xứng .
Lấy
1,1  ba
ta được hệ :
 

 
 













0
122
122
122
22
2
2
2
yx
yxx
xyy
yxx
Giải hệ trên ta được :
22  yx
Đối chiếu với điều kiện của hệ (*) ta được nghiệm duy nhất của phương trình là :

22 x
Dạng 4 :
Nội dung phương pháp :
Cho phương trình :
 

 xedxcbax
n
n
với các hệ số thỏa mãn :







bce
acd
Cách giải :
Đặt
n
baxedy 
Ví dụ 32 : Giải phương trình:
77
28
94
2



x
x
Lời giải : ĐK :
4
9
x
PT
4
7
2
1
7
28
94
2










x
x
- Kiểm tra :
4
7

,0,
2
1
,1,7,
28
9
,
7
1


edcba
(thoả mãn) 
Đặt : yyxxyy
x
yy
x
y 77
2
1
4
9
4
7
77
28
94
4
1
28

94
2
1
222




 (1)
11
Mặt khác :
xxy 77
2
1
2

(2)
T
ừ (1) và (2) ta có hệ :







xxy
yyx
77
2

1
77
2
1
2
2
Đây là hệ đối xứng loại II đã biết cách giải .
Ví dụ 33 : Giải phương trình:
3,336
2
 xxxx
Lời giải :
PT
 
363
2
 xx
- Kiểm tra :
6,0,3,1,1,3,1 


edcba
Đặt :
36339633
22
 yyxxyyxy
(1)
Mặt khác :
363
2

 xxy
(2)
Từ (1) và (2) ta có hệ :





363
363
2
2
xxy
yyx
Đến đây đã khá dễ dàng
Ví dụ 34 : Giải phương trình:
255336853
23
3
 xxxx
Lời giải :
PT
   
232532272.9.33.4.3253
3
3
2
3
3
 xxxxxxxx

- Kiểm tra :
2,1,3,2,1,5,3 


edcba
(thoả mãn) 
Đặt :
3325533685327543685332
2323
3
 yxyyyxyyyxy
(1)
Mặt khác :
322553368
23
 yxxx
(2)
Từ (1) và (2) ta có hệ :





322553368
332553368
23
23
yxxx
yxyyy
Giải hệ trên đã thật đơn giản !!!!!!!!! 


Huế , ngày 15 tháng 4 năm 2007
1

78 ĐỀ THI TOÁN VÀO CÁC TRƯỜNG ĐẠI HỌC, CAO ĐẲNG
(HỆ PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH)

Phi lộ:
Việc giải một bài toán đã được phân loại bên phần lý thuyết vừa học đem đến cho học sinh nhiều
thuận lợi. Học sinh biết được phải dùng nội dung lý thuyết nào, cách giải ra sao.
Giải một đề thi được sắp xếp theo kiểu “đao kiếm vô tình” , học sinh không có được thuận lợi ấy.
Học sinh phải phân tích, tìm tòi nội dung lý thuyết phù hợp, có thể phải dùng nhiều phần lý thuyết
tổng hợp lại, gỡ rối, tìm hướng đi.
Điểm không thuận lợi ấy lại là điểm mạnh của việc luyện giải đề thi, học sinh được rèn luyện tư
duy, sẽ quen cách xử lý các tình huống bất thường khi phải thi thật sự.
Tài liệu này chỉ thật sự có ích cho các học sinh ở trường chăm chú nghe thầy cô giảng bài, nắm
chắc nội dung cơ bản của môn toán nói chung, phần hệ phương trình, bất phương trình nói riêng.
Nội dung tài liệu :
I/ Đề thi vào các trường đại học, cao đẳng năm học 2001-2002
(các trường tự ra đề).
II/ Đề thi chính thức vào đại học, cao đẳng từ năm học 2002-2003 đến năm học 2007-2008
(đề chung của Bộ).
III/ Đề thi dự bị vào đại học, cao đẳng từ năm học 2002-2003 đến năm học 2007-2008
(đề chung của Bộ).
IV/ Đáp số.
V/ Phương pháp giải.
Các ký hiệu được dùng trong tài liệu:
(ANND) = Đề thi đại học An ninh nhân dân năm học 2001-2002 .
(A.08) = Đề thi chính thức khối A năm học 2007-2008.
(A1.07) =Đề thi dự bị số 1, khối A năm học 2006-2007.

I/ĐỀ THI NĂM HỌC 2001-2002
1. (ANND)
2
( 2)(2 ) 9
46
xx x y
x xy
+ +=


+ +=


2. (NN)
22
12
1
x y xy
xy
+=−


+=


3. (BK)
2 5 90
5 2 80
yy
xx

yy
xx
AC
AC

+=

−=


4. (CT) Tìm a để hệ có đúng 1 nghiệm
2
22
3||
5|| 5 3
x ya
y xx a

++ =


++ = + + −



5. (CT) Tìm m để hệ có 2 nghiệm
2
3
33
2

2
( 2 5)
log ( 1) log ( 1) log 4
log ( 2 5) log 2 5
xx
xx
xx m
−+
+− −>



− +− =



6. (HVCTQG)
2
2
1
2
1
2
xy
y
yx
x

= +





= +



CtnSharing.Com – Download Ebook Free !!!
2

7. (DHN) Tìm a để hệ có nghiệm với mọi b
55
42
( 1) 1
( 1)
bx
a xy
e a by a

− +=

++ =


8. (DN)
22
1
6
x xy y
x y xy

− −=


−=


9. (DN)
log (6 4 ) 2
log (6 4 ) 2
x
y
xy
yx
+=


+=


10. (GTVT) Tìm a để hệ có nghiệm
2
2 ( 1) 2
xy
x y xy a
+<



++ −+=




11. (HH)
22 2
22
19( )
7( )
x xy y x y
x xy y x y

+= −
−=−
+

+


12. (HVHCQG)
33
8
22
xy
x y xy

+=

++ =


13. (HD)

22
1 ( 1) 1
1
x y kxy
x y xy


+ −− + − =

+= +


Giải khi k=0. Tìm k để hệ có nghiệm duy nhất.
14. (H)
2
22
log ( ) log ( ) 1
a
xy xy
xya
++ −=


−=

,
01a<≠
. Tìm a để hệ có nghiệm duy nhất.
Giải hệ trong trường hợp đó.
15. (L) Tìm a để hệ có nghiệm duy nhất

2
2
( 1)
( 1)
x ya
y xa

+=+

+=+


16. (M-DC)
4
4
4
4
( )3 1
8( ) 6 0
yx
xy
xy
xy



+=


+− =




17. (HVNH) Tìm m để hệ có nghiệm
22
22
52 0
22
1
x xy y
m
x xy y
m

+ −≥


+≤



+

18. (HVNH)
22
22
239
2 13 15 0
x xy y
x xy y


−+=

−+ =


19. (NNHN)
22
33
1
1
xy
xy

+=

+=


20. (NT)
33
66
33
1
x xy y
xy

−=−

+=



3

21. (NNIHN)
2
33
()2
19
xyy
xy

−=

−=


22. (NLTPHCM)
33
6
126
xy
xy
−=


−=


23. (PCCC)

2
3 34
xy
xy

+=


++ +=



24. (HVQHQT)
2 23 3
4
( )( ) 280
xy
x yx y
+=


+ +=


25. (HVQY)
22 22
2
4
xy xy
xy xy


+− −=


++ −=



26. (HVQY)
22 2 2
128 (4 1)(8 1) 1 2 0
1
0
2
xx x x
x

− − +− =


−<<



27. (QGHN) Tìm m để hệ có nghiệm
22
22
52 3
22 2
1

x xy y
m
x xy y
m

−≥


+ +≤

+



28. (SPHN) Tìm a để hệ có nghiệm thỏa mãn
3
4,
53
xy
x
x ya

+=



++ +≤




29. (SPHN)
33
8
22
xy
x y xy

+=

++ =


30. (SPTPHCM)
12
12
xy m
yx m

++ − =


++ − =


Giải khi m=9. Tìm m để hệ có nghiệm.
31. (TCKT)
44
66
1
1

xy
xy

+=

+=


32. (TN)
3
3
12
12
xy
yx

+=

+=


33. (TN)
22 2
6
xya
xy a
+=


+=−


Giải khi a=2. Tìm GTNN
2( )F xy x y=++
với (x,y) là nghiệm
của hệ.
34. (TM)
33 3
22
1 19
6
xy x
y xy x

+=

+=−


4

35. (TL)
2
2
3
2
3
2
xy
x
yx

y

+=




+=



36. (VHHN)
17 4
17 4
xy
yx

++ − =


++ − =



37. (DLVL)
sin 7cos 0
5sin cos 6 0
xy
yx
−=



− −=


38. (V)
55
9944
1xy
xyxy

+=

+=+


39. (YTB) Tìm a để hệ có nghiệm
0,5
23
log ( )
2
1
2
( 2 3) 1
( 1) 0
x
x
xx
x a xa


+


−+ >


− + +≤


40. (CDSPHN)
2
2
| 10| 20
5
xy x
xy y

−=−

= +


41. (CDSPTW1)
22
5
4
1
4
x y xy
x y xy


++ =




+=



42. (CDGTVT) Tìm nghiệm nguyên dương
22
22
4
22
xy
xy xy

+≥

+≤+


43. (CDSPHY)
22
6
20
xy yx
xy yx


+=


+=



44. (KTCN)
1
cos cos
2
1
sin sin
2
xy
xy

=




= −



45. (CDSPV)
33
()
1

x y mx y
xy

−= −

+=

Tìm m để hệ có 3 nghiệm phân biệt, với
123
,,xxx
lập thành
CSC, trong đó có 2 số có trị tuyệt đối lớn hơn 1.
46. (CDYTND)
22
4
2
x xy y
x xy y

++=

+ +=


47. (DHM-HN)
22
3
3
xy
yx

x y xy

+=



−+ =


5

II/ ĐỀ THI CHÍNH THỨC TỪ 2002-2008
48. (A.08)
2 32
42
5

4
5
(1 2 )
4
yx xy xy xy
x y xy x

++ +=−




++ + =−


+


49. (B.08)
4322
2
2 29
2 66
x x xy x
x xy x
y

++=+

+=+


50. (D.08)
22
2
2 12 2
xy x y x y
x y yx x y

++= −


− −= −




51. (CD.08) Tìm m để hệ
1
3
x my
mx y
−=


+=

có nghiệm (x,y) thỏa mãn xy<0.
52. (D.07) Tìm m để hệ sau đây có nghiệm:

33
33
11
5
11
15 10
xy
xy
xy m
xy

+++ =





+++ = −



53. (A.06)
3
1 14
x y xy
xy

+− =


++ +=



54. (D.06) CMR
0a∀>
hệ sau có nghiệm duy nhất

(1 ) (1 )
xy
yxa
e e ln x ln y
−=


−= +− +



55. (B.05)
23
93
12 1
39 3()
xy
log x log y

−+ − =


−=



56. (A.04)
22
14
4
2
(
5
1
)1
xy
log y x log
y


+=


−− =



57. (D.04) Tìm m để hệ sau có nghiệm
1
13
xy
xx yy m

+=


+=−



6

58. (A.03)
3
11
21
xy
xy
yx


−=−



= +


59. (B.03)
2
2
2
2
2
3
2
3
y
y
x
x
x
y

+
=



+


=



60. (B.02)
3
2
xy xy
xy xy

−= −


+= ++



61. (D.02)
32
1
25 4
42
22
x
xx
x
yy
y
+


= −


+
=

+

III/ ĐỀ THI DỰ BỊ TỪ 2002-2008
62. (A1.07)
21
21
2 23 1
2 23 1
y
x
xx x
yy y



+ − += +


+ − += +



63. (A2.07)
4 3 22

32
1
1
x xy xy
x y x xy

−+ =

−+=


64. (B1.07) Chứng minh hệ phương trình sau có đúng hai nghiệm thỏa mãn x>0,y>0:
2
2
2007
1
2007
1
x
y
y
e
y
x
e
x

= −






= −



.
65. (B2.07)
2
3
2
2
2
3
2
29
2
29
xy
x xy
xx
xy
y yx
yy

+=+

−+




+=+

−+


66. (D2.07) Tìm m để hệ sau đây có nghiệm duy nhất.

20
1
xym
x xy
−− =



+=



7

67. (A1.06)
2
2
( 1) ( ) 4
( 1)( 2)
x yy x y
x yx y


++ + =

+ +− =


68. (A2.06)
33
22
82
3 3( 1)
x xy y
xy

−=+

−= +


69. (B2.06)
22
22
( )( ) 13
( )( ) 25
x yx y
x yx y

− +=

+ −=



70. (D1.06)
22
22 3
3( )
7( )
x xy y x y
x xy y x y

−+= −

++= −


71. (A1.05)
22
4
( 1) ( 1) 2
x y xy
xx y yy

+ ++=

+++ + =


72. (A2.05)
21 1
32 4

xy xy
xy

+ +− + =


+=



73. (D1.05) Tìm m để hệ có nghiệm
2 1 21
2
7 7 2005 2005
( 2) 2 3 0
xx x
x
x m xm
++ ++

−+≤


− + + +≥



74. (D1.04)
22
1

22
xy x
x yy x
xy
+−

+= +

−=−


75. (A1.03)
log log
223
yx
xy
xy y

=


+=



76. (B1.02)
42
4| | 3 0
log log 0
xy

xy
− +=



−=



77. (B2.02) Tìm k để hệ có nghiệm
3
23
22
| 1| 3 0
11
log log ( 1) 1
23
x xk
xx

− − −<


+ −≤



78. (D2.02)
32
32

log ( 2 3 5 ) 3
log ( 2 3 5 ) 3
x
y
x x xy
y y yx

+ −− =


+ −− =








8


IV/ ĐÁP SỐ
1.
1
1
x
y
=



=

,
3
9
x
y
= −


=


2.
0
1
x
y
=


=

,
1
0
x
y
=



=


3.
5
2
x
y
=


=


4.
3a =

5.
25
6
4
m− < <−

6.
1
1
x
y

=


=


7.
1a = −

8.
3 17
2
3 17
2
x
y


=



−−

=


,
3 17
2

3 17
2
x
y

+
=



−+

=



9.
10
10
x
y
=


=


10.
1
2

a ≥−

11.
0
0
x
y
=


=

,
3
2
x
y
=


=

,
2
3
x
y
= −



= −


12.
0
2
x
y
=


=

,
2
0
x
y
=


=


13.
1
1
x
y
=



= −

,
1
1
x
y
= −


=

,
1
1
x
y
=


=

.
Không có k.
14.
0 1, 2a<≠≠

15.

37
,
44
aa= =

16.
4
15
12
x
y

= ±


=



17.
0
1
m
m



>



18.
5
2
1
2
x
y

=




=


,
5
2
1
2
x
y

= −




= −



,
3
2
x
y
=


=

,
3
2
x
y
= −


= −


19.
0
1
x
y
=



=

,
1
0
x
y
=


=


20.
6
6
1
2
1
2
x
y

=




=



,
6
6
1
2
1
2
x
y

= −




= −



21.
3
2
x
y
=


=


,
3
3
7
18
1
18
x
y

=




=



22.
15
,
51
xx
yy
= =


=−=−



23.
1
1
x
y
=


=


24.
13
,
31
xx
yy
= =


= =


25.
5
2
6
x

y

=



=


26.
4668
{cos ,cos ,cos ,cos }
7799
ππππ

27. m>1
9

28.
5a ≥

29.
02
,
20
xx
yy
= =



= =


30.
3
,3
3
x
m
y
=



=


31.
01
,
10
xx
yy
= = ±


=±=


32.

15
1
2
,
1
15
2
x
x
y
y

−−
=

=



=
−+


=



33.
22
1

, min ( 1) 4
1
a
x
FF
y
−≤≤
=

= −=−

=


34.
1
1
,
3
2
3
2
x
x
y
y


=
= −




=
= −



35.
1
1
x
y
=


=


36.
3
3
x
y
=


=



37.
2
2
2
xk
yk
ππ
π
π
= +



= +



38.
01
,
10
xx
yy
= =


= =


39.

3
2
a >

40.
25 25
,
55
xx
yy

= = −


= = −



41.
1
2
1
2
x
y

=





=



42.
1 22
,,
212
xxx
yyy
= = =


= = =


43.
14
,
41
xx
yy
= =


= =


44.

11
arccos (2 )
42 4 2
11
arccos (2 )
42 4 2
x mk
y mk
ππ
ππ

=± ++




=−± + −



45. 1<m<3
46.
02
,
20
xx
yy
= =



= =


47.
33
12
, ,,
2
3
21
3
2
x
xx
x
yy
y
y
= −

=−=
=


  
=−=
= −


=



48.
3
3
5
4
25
16
x
y

=




= −


,
1
3
2
x
y
=




= −



49.
4
17
4
x
y
= −



=



50.
5
2
x
y
=


=


51.

1
3
3
m
m

<−


>


52.
7
2
4
22
m
m

≤≤





53.
3
3
x

y
=


=


54. CM
55.
1
1
x
y
=


=

,
2
2
x
y
=


=


56.

3
4
x
y
=


=


10

57.
1
0
4
m≤≤

58.
15
1,
2
xy xy
−±
= = = =

59. x=y=1
60. x=y=1,
3
2

1
2
x
y

=




=



61.
0
1
x
y
=


=

,
2
4
x
y
=



=


62.
1xy= =

63.
1
1
x
y
= ±


= ±


64. CM
65.
1, 0xy xy= = = =

66. m>2
67.
1
2
x
y
=



=

,
2
5
x
y
= −


=


68.
3
1
x
y
=


=

,
3
1
x
y

= −


= −

,
6
4
13
6
13
x
y

=




= −


,
6
4
13
6
13
x
y


= −




=



69.
3
2
x
y
=


=

,
2
3
x
y
= −


= −



70.
0
0
x
y
=


=

,
2
1
x
y
=


=

,
1
2
x
y
= −


= −



71.
2
2
x
y

=


= −


,
2
2
x
y

= −


=


,
1
2
x

y
=


= −

,
2
1
x
y
= −


=


72.
2
1
x
y
=


= −


73.
2m ≥−


74.
1
1
x
y
= −


= −

,
1
0
x
y
=


=


75.
2
2
3
log
2
3
log

2
x
y

=




=



76.
1
1
x
y
=


=

,
9
3
x
y
=



=


77.
5k >−

78.
4
4
x
y
=


=









1
Chuyên đề 1: PHƯƠNG TRÌNH ĐẠI SỐ
& BẤT PHƯƠNG TRÌNH ĐẠI SỐ

TÓM TẮT GIÁO KHOA

CÁC HẰNG ĐẲNG THỨC CƠ BẢN


1.
+=++
22 2
() 2ab a abb

abbaba 2
2
)(
22
−+=+

2.
−=−+
22 2
() 2ab a abb
abbaba 2
2
)(
22
+−=+

3.
−=+ −
22
()()ab abab

4.

+=+ + +
33 2 23
() 3 3ab a ab ab b

)(3
3
)(
33
baabbaba +−+=+

5.
−=− + −
33 2 23
() 3 3ab a ab ab b

6.
+=+ −+
33 2 2
()( )ab abaabb

7.
−=− ++
33 2 2
()( )ab abaabb


Áp dụng:
Biết
Syx =+


Pxy =
. Hãy tính các biểu thức sau theo S và P

2
) ya +=
2
xA
2
y)-(xB =)b
3
) yc +=
3
xC
4
) yd +=
4
xD

A. PHƯƠNG TRÌNH ĐẠI SỐ
I. Giải và biện luận phương trình bậc nhất:

1. Dạng : ax + b = 0 (1)



số tham : ba,
số ẩn : x

2. Giải và biện luận:


Ta có : (1) ⇔ ax = -b (2)
Biện luận:
• Nếu a ≠ 0 thì (2) ⇔
a
b
x −=


Nếu a = 0 thì (2) trở thành 0.x = -b
* Nếu b ≠ 0 thì phương trình (1) vô nghiệm
* Nếu b = 0 thì phương trình (1) nghiệm đúng với mọi x
Tóm lại :
• a

0 : phương trình (1) có nghiệm duy nhất
a
b
x −=


a = 0 và b

0 : phương trình (1) vô nghiệm

a = 0 và b = 0 : phương trình (1) nghiệm đúng với mọi x

×