Tải bản đầy đủ (.doc) (76 trang)

Giáo án dạy thêm toán lớp 8

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.36 MB, 76 trang )

Ngày soạn : 10.9.2012
Ngày giảng:
Buổi 1 : ôn tập Những hằng đẳng thức đáng nhớ
I- Mục tiêu cần đạt.
1.Kiến thức: Cần nắm đợc các hằng đẳng thức: Bình phơng của một tổng, bình
phơng một hiệu, hiệu hai bình phơng.
2.Kĩ năng: Biết áp dụng các hằng đẳng thức trên để tính nhẩm, tính hợp lý.
3.Thái độ: Rèn tính chính xác khi giải toán
II- Chuẩn bị:
GV:Nội dung bài
III- Tiến trình bài giảng.
1. ổ n đinh tổ chức :
2.Kiểm tra bài cũ:
HS1:Làm tính nhân : (x
2
- 2x + 3) (
2
1
x - 5)
3.Bài mới:
Hoạt động của thầy và trò Nội dung
Hoạt động1:Lý thuyết
GV:Yêu cầu học sinh nhắc lại hằng
đẳng thức.
+Bằng lời và viết công thức lên bảng.
HS:Thực hiện theo yêu cầu của giáo
viên.
Hoạt động2:Bài tập
Bài tập: Tính giá trị các biểu thức:
a) - x
3


+ 3x
2
- 3x + 1 tại x = 6.
b) 8 - 12x +6x
2
- x
3
tại x = 12.
HS: Hoạt động theo nhóm ( 2 bàn 1
nhóm)
Bài tập 16:
*Viết các biểu thức sau dới dạng bình
phơng của một tổng một hiệu.
HS:Thực hiện theo nhóm bàn và cử đại
diện nhóm lên bảng làm
GV: Nhận xét sửa sai nếu có
Bài tập 18:
HS: hoạt động nhóm.
GV:Gọi hai học sinh đại diện nhóm
lên bảng làm
HS:Dới lớp đa ra nhận xét
Bài 21 <12 Sgk>.
+ Yêu cầu HS làm bài vào vở, 1 HS lên
bảng làm.
Bài 23 <12 Sgk>.
I.Lý thuyết:
1. (A+B)
2
= A
2

+2AB + B
2

2. (A-B)
2
= A
2
- 2AB + B
2

3. A
2
- B
2
= ( A+B) ( A-B)
4. (A+B)
3
= A
3
+ 3A
2
B + 3AB
2
+ B
3
5. (A-B)
3
= A
3
- 3A

2
B + 3AB
2
- B
3
6. A
3
+ B
3
= (A+B)( A
2
- AB + B
2
)
7. A
3
- B
3
= (A-B)( A
2
+ AB + B
2
)
II.Bài tập:
Bài tập1:
a) - x
3
+ 3x
2
- 3x + 1 = 1 - 3.1

2
.x +
3.1.x
2
- x
3
= (1 - x)
3
= A
Với x = 6 A = (1 - 6)
3
= (-5)
3
= -125.
b) 8 - 12x +6x
2
- x
3
= 2
3
- 3.2
2
.x +
3.2.x
2
- x
3
= (2 - x)
3
= B

Với x = 12
B = (2 - 12)
3
= (-10)
3
= - 1000.
Bài tập 16.(sgk/11)
a/ x
2
+2x+1 = (x+1)
2
b/ 9x
2
+ y
2
+6xy
= (3x)
2
+2.3x.y +y
2
= (3x+y)
2
c/ x
2
- x+
4
1
= x
2
- 2.

)
2
1
(
2
1
+x
2
= ( x -
)
2
1
2
Bài tập 18.(sgk/11)
a/ x
2
+6xy +9y
2
= (x
2
+3y)
2
b/ x
2
- 10xy +25y
2
= (x-5y)
2
.
Bài 21 Sgk-12:

a) 9x
2
- 6x + 1
= (3x)
2
- 2. 3x . 1 + 1
2
= (3x - 1)
2
.
b) (2x + 3y)
2
+ 2. (2x + 3y) + 1
= [(2x + 3y) + 1]
2
= (2x + 3y + 1)
2
.
1
+ Để chứng minh một đẳng thức, ta
làm thế nào ?
+ Yêu cầu hai dãy nhóm thảo luận, đại
diện lên trình bày
áp dụng tính:
(a b)
2
biết a + b = 7 và a . b = 12.
Có : (a b)
2
= (a + b)

2
4ab
= 7
2
4.12 = 1.
Bài 33 <16 SGK>.
+Yêu cầu 2 HS lên bảng làm bài.
+ Yêu cầu làm theo từng bớc, tránh
nhầm lẫn.
Bài 18 <Sbt-5>.
VT = x
2
- 6x + 10
= x
2
- 2. x . 3 + 3
2
+ 1
+ Làm thế nào để chứng minh đợc đa
thức luôn dơng với mọi x.
b) 4x - x
2
- 5 < 0 với mọi x.
+ Làm thế nào để tách ra từ đa thức
bình phơng của một hiệu hoặc tổng ?
Bài 23 Sgk-12:
a) VP = (a - b)
2
+ 4ab
= a

2
- 2ab + b
2
+ 4ab
= a
2
+ 2ab + b
2
= (a + b)
2
= VT.
b) VP = (a + b)
2
- 4ab
= a
2
+ 2ab + b
2
- 4ab
= a
2
- 2ab + b
2
= (a - b)
2
= VT.
Bài 33 (Sgk-16):
a) (2 + xy)
2
= 2

2
+ 2.2. xy + (xy)
2
= 4 + 4xy + x
2
y
2
.
b) (5 - 3x)
2
= 5
2
- 2.5.3x + (3x)
2
= 25 - 30x + 9x
2
.
c) (5 - x
2
) (5 + x
2
)
= 5
2
-
( )
2
2
x


= 25 - x
4
.
a) Có: (x - 3)
2
0 với x
(x - 3)
2
+ 1 1 với x hay
x
2
- 6x + 10 > 0 với x.
b) 4x - x
2
- 5
= - (x
2
- 4x + 5)
= - (x
2
- 2. x. 2 + 4 + 1)
= - [(x - 2)
2
+ 1]
Có (x - 2)
2
với x
- [(x - 2)
2
+ 1] < 0 với mọi x.

hay 4x - x
2
- 5 < 0 với mọi x.
4. Củng cố Tìm x, y thỏa mãn 2x
2
- 4x+ 4xy + 4y
2
+ 4 = 0
5. Hớng dẫn học sinh học và làm bài về nhà
Thờng xuyên ôn tập để thuộc lòng 7 hằng đẳng thức đáng nhớ.
+ BTVN: Bài 19 (c) ; 20, 21 <Sbt-5>.
Ngày soạn: 18.9.2012
Ngày giảng:
Buổi 2: ôn tập đờng trung bình của tam giác
của hình thang
I- Mục tiêu cần đạt.
1.Kiến thức: Nắm vững hơn định nghĩa và các định lý 1, định lý 2 về đờng trung
bình của tam giác.
2.Kĩ năng:Biết vận dụng tốt các định lý về đờng trung bình của tam giác để giải
các bài tập tính toán, chứng minh hai đoạn thẳng bằng nhau, hai đoạn thẳng song
song.
3.Thái độ: Rèn luyện cách lập luận trong chứng minh định lý và vận dụng các
định lý vào giải các bài toán thực tế.
II- Chuẩn bị:
GV:Nội dung bài
III- Tiến trình bài giảng.
1. ổ n đinh tổ chức:
2.Kiểm tra bài cũ:
HS1:Phát biểu định nghĩa đờng trung bình của tam giác của hình thang.
3.Bài mới:

2
Hoạt động của thầy và trò Nội dung
Hoạt động1:Lý thuyết
GV:Yêu cầu học sinh nhắc lại định lí đ-
ờng trung bình của tam giác,của hình
thang.
HS:Thực hiện theo yêu cầu của giáo
viên.
Hoạt động2:Bài tập
Bài 1.Tứ giác ABCD có BC=CD và DB
là phân giác của góc D. Chứng minh
ABCD là hình thang
-GV yêu cầu HS vẽ hình?
- Để chứng minh ABCD là hình thang
thì cần chứng minh điều gì?
- Nêu cách chứng minh hai đờng thẳng
song song
Bài 3.Tam giác ABC vuông cân tại A,
Phía ngoài tam giác ABC vẽ tam giác
BCD vuong cân tại B. Chứng minh
ABDC là hình thang vuông
- GV hớng dẫn học sinh vẽ hình
- Yêu cầu HS thảo luận nhóm
Đại diện 1 nhóm trình bày
Bài tập 24:(sgk/80)
HS: Đọc đề.
GV: Hớng dẫn vẽ hình: Kẻ AD; CK;
BQ vuông góc xy.
Trong hình thang APQB: CK đợc tính
nh thế nào? Vì sao?

HS: CK =
)(16
2
2012
2
cm
BQAP
=
+
=
+
(Vì CK là đờng trung bình của hình
thang APQB)
I.Lý thuyết:
1.Định lí:Đờng trung bình của tam giác
Định lí1:Đờng thẳng đi qua trung điểm
một cạnh của tam giác và song song với
cạnh thứ hai thì đi qua trung điểm cạnh
thứ ba.
Định nghĩa:Đờng trung bình của tam
giác là đoạn thẳng nối trung điểm hai
cạnh của tam giác.
II.Bài tập:
HS vẽ hình
1
2
1
D
C
B

A
- Ta chứng minh BC//AD
- Chỉ ra hai góc so le trong bằng nhau
Ta có
BCD

cân => B
1
= D
1


1
D
=

2
D
=>
à
1
B
=

2
D
=> BC//AD
Vậy ABCD là hình thang
HS vẽ hình
2

1
D
C
B
A
- ABC vuông cân tại A=>
à
1
C
=45
0
- BCD vuông cân tại B=>

2
C
=45
0
=>
à
C
=90
0
, mà ậ=90
0
=>AB//CD
- => ABDC là hình thang vuông
Nhóm khác nhận xét
Bài tập 24:(sgk/80)
. Kẻ AP, CK, BQ
vuông góc với xy.

Hình thang ACQB
có: AC = CB;
CK // AP // BQ
nên PK = KQ.
CK là trung bình của hình thang
3
5
x
20
12
K
C
Q
B
A
P
Bài 21(sgk/80): Cho hình vẽ:
A
M N

B
D I C
a) Tứ giác BMNI là hình gì ?
b) Nếu  = 58
0
thì các góc của tứ giác
BMNI bằng bao nhiêu ?
HS:Quan sát kĩ hình vẽ rồi cho biết GT
của bài toán.
*Tứ giác BMNI là hình gì ?Chứng minh

?
HS:Trả lời và thực hiện theo nhóm bàn
GV:Gọi đại diện nhóm lên bảng thực
hiện
HS:Nhóm khác nêu nhận xét
*Còn cách nào chứng minh BMNI là
hình thang cân nữa không ?
HS:Trả lời
GV:Hãy tính các góc của tứ giác BMNI
nếu  = 58
0
.
HS:Thực hiện theo nhóm bàn
GV:Gọi học sinh đại diện nhóm lên
bảng thực hiện
HS:Nhóm khác nhận xét
APQB.
CK =
2
1
(AP + BQ)
=
2
1
(12 + 20) = 16(cm)
Bài 21(sgk/80)
ABC (B = 90
0
).
Phân giác AD của góc A.

GT M, N , I lần lợt là trung
điểm của AD ; AC ; DC.
a) Tứ giác BMNI là hình gì ?
KL b) Nếu  = 58
0
thì các góc
của tứ giác BMNI bằng
bao nhiêu ?
Giải:
a) + Tứ giác BMNI là hình thang cân
vì:
+ Theo hình vẽ ta có: MN là đờng trung
bình của tam giác ADC MN // DC
hay MN // BI (vì B, I, D, C thẳng hàng).
BMNI là hình thang .
+ ABC (B = 90
0
) ; BN là trung tuyến
BN =
2
AC
(1).
ADC có MI là đờng trung bình (vì
AM = MD ; DI = IC) MI =
2
AC
(2).
(1) (2) có BN = MI (=
2
AC

).
BMNI là hình thang cân. (hình thang
có 2 đờng chéo bằng nhau).
b) ABD (B = 90
0
) có

BAD =
2
58
0
= 29
0
.

ADB = 90
0
- 29
0
= 61
0
.


MBD = 61
0
(vì BMD cân tại M).
Do đó

NID =


MBD = 61
0
(theo đ/n
ht cân).
4


BMN =

MNI = 180
0
- 61
0
=
119
0
.
4.Củng cố,h ớng dẫn:
GV:Hệ thống lại nội dung kiến thức đã thực hiện.
HS:Nhắc lại định lý ,định nghĩa đờng trung bình của tam giác ,hình thang
Hoạt động 5: Hớng dẫn học ở nhà.
-Học kĩ định lý ,định nghĩa đờng trung bình của tam giác ,hình thang
- Xem lại các bài học đã chữa.
Ngày soạn: 15.9.2012
Ngày giảng :
Buổi 3 : ôn tập về Những hằng đẳng thức đáng nhớ
I- Mục tiêu cần đạt.
1.Kiến thức: Cần nắm đợc các hằng đẳng thức: Lập phơng của một tổng; Lập ph-
ơng của một hiệu.

2.Kĩ năng: Biết áp dụng các hằng đẳng thức trên để tính nhẩm, tính hợp lý.
3.Thái độ: Rèn tính chính xác khi giải toán
II- Chuẩn bị: GV:Nội dung bài
III- Tiến trình bài giảng.
1. ổ n đinh tổ chức:
2.Kiểm tra bài cũ:
1. Làm tính nhân : (x
2
- 2x + 3) (
2
1
x - 5)
2. Khai triển : ( 2+ 3y)
3
3. Khai triển : ( 3x - 4y)
3
3.Bài mới:
Hoạt động của thầy và trò Nội dung
Hoạt động1:Lý thuyết
GV:Yêu cầu học sinh nhắc lại hằng đẳng
thức.
HS:Thực hiện theo yêu cầu của giáo
viên.
* áp dụng: Tính.a)
3
3
1







x
b) (x - 2y)
3
.
HS: Làm bài độc lập trong ít phút.
2 HS trình bày bài trên bảng.
GV: Nhận xét kết quả.
Hoạt động2:Bài tập
I.Lý thuyết:
1. (A+B)
2
= A
2
+2AB + B
2

2. (A-B)
2
= A
2
- 2AB + B
2

3. A
2
- B
2

= ( A+B) ( A-B)
4. (A+B)
3
= A
3
+ 3A
2
B + 3AB
2
+ B
3
5. (A-B)
3
= A
3
- 3A
2
B + 3AB
2
- B
3
6. A
3
+ B
3
= (A+B)( A
2
- AB + B
2
)

7. A
3
- B
3
= (A-B)( A
2
+ AB + B
2
)
* á p dụng:(skg/13)
1)Tính:a)
27
1
3
1
3
1
3
1
3
3
1
.3
3
1
23
32
23
3
+=














+=







xxx
xxxx
b) (2x - 2y)
3
= x
3
- 3. x
2
. 2y + 3. x (2y)

2
- (2y)
3
= x
3
- 6x
2
y + 12xy
2
- 8y
3
II.Bài tập:
5
7
Bài tập 31 : Tính giá trị các biểu thức:
a) - x
3
+ 3x
2
- 3x + 1 tại x = 6.
b) 8 - 12x +6x
2
- x
3
tại x = 12.
HS: Hoạt động theo nhóm ( 2 bàn 1
nhóm)
GV:Gọi học sinh đại diện nhóm thực
hiện.
HS:Nhóm khác nhận xét

Bài 43(sgk/17):
GV:Gọi học sinh đọc nội dung đầu bài
HS:Thực hiện và hđộng theo nhóm bàn
GV:Gọi đdiện nhóm lên bảng thực hiện
HS:Nhóm khác nêu nhận xét.
Bài 36 (sgk/17):
GV:Nêu nội dung đề bài
HS:Hai em lên bảng thực hiện,học sinh
dới lớp cùng làm so sánh kết quả với bạn
Bài 1. Khai triển các HĐT sau
a) (2x
2
+ 3y)
3
b)
3
3
2
1






x
c) 27x
3
+ 1 d) 8x
3

- y
3
Yêu cầu HS thảo luận nhóm, sau đó đại
diện một nhóm lên bảng trình bày
- GV theo dõi các nhóm thảo luận
Yêu cầu các nhóm nhận xét
Bài 2. Chứng minh đẳng thức
1.Chứng minh: a
3
+b
3
+c
3
= (a+b+c)
(a
2
+b
2
+c
2
- ab - bc - ca )+ 3abc
? Bài toán chứng minh đẳng thức ta làm
nh thế nào
Ta dùng cách biến đổi VP về VT
- GV hớng dẫn HS biến đổi VT bằng
cách nhân đa thức với đa thức và thu gọn
số hạng đồng dạng
Chú ý: Nếu a+b+c = 0 thì
a
3

+b
3
+c
3
= 3abc
Nếu a
2
+b
2
+c
2
- ab - bc - ca = 0
hay a =b =c thì a
3
+b
3
+c
3
= 3abc
b. AD: Viết (x-y)
3
+(y-z)
3
+(z-x)
3
dới dạng
tích.
GVHD : Đặt a= x-y, b= y-z ,c= z-x
Tính a+ b+ c
Bài tập31:(sgk/14)

a) - x
3
+ 3x
2
- 3x + 1 = 1 - 3.1
2
.x +
3.1.x
2
- x
3
= (1 - x)
3
= A
Với x = 6 A = (1 - 6)
3
= (-5)
3
= -125.
b) 8 - 12x +6x
2
- x
3
= 2
3
- 3.2
2
.x + 3.2.x
2
- x

3
= (2 - x)
3
= B
Với x = 12
B = (2 - 12)
3
= (-10)
3
= - 1000.
Bài 43(sgk/17):Rút gọn biểu thức
a/ (a + b)
2
(a b)
2
= [(a + b) + (a
b)] [(a + b) - (a b)] = 2a (2b) = 4ab
b/ (a + b)
3
(a b)
3
2b
3
= a
3
+ 3a
2
b + 3ab
2
+ b

3
(a
3
3a
2
b +
3ab
2
- b
3
) 2b
3
= 6a
2
b
Bài 36 (sgk/17):
a/ x
2
+ 4x + 4 = (x + 2)
2
với x = 98

(98 + 2)
2
= 100
2
= 10000
b/ x
3
+ 3x

2
+ 3x + 1 = (x + 1)
3
với x = 99

(99 + 1)
3
= 100
3
= 1000000
B1.Khai triển HĐT
Đại diện các nhóm lên bảng
a.(2x
2
+ 3y)
3
= 8x
6
+ 36x
4
y + 54x
2
y
2
+ 27y
3
.
b.
3
3

2
1






x
=
8
1
x
3
-
4
9
x
2
+
2
27
x - 27.
c.27x
3
+ 1 = (3x)
3
+ 1
3
= (3x + 1) (9x

2
- 3x + 1)
d. 8x
3
- y
3
= (2x)
3
- y
3
= (2x - y) [(2x)
2
+ 2xy + y
2
]
= (2x - y) (4x
2
+ 2xy + y
2
).
Các nhóm khác nhận xét
2. Chứng minh đẳng thức
-HS trả lời
- Một HS đứng tại chỗ biến đổi
VP = .= VT
HS theo dõi GV phân tích để đa ra kết
quả .
HS tính : a+ b+ c =
x-y+ y-z + z-x = 0
Vậy: (x-y)

3
+(y-z)
3
+(z-x)
3
=
3(x-y)(y-z)(z-x)
4.Củng cố,h ớng dẫn:
6
GV:Hệ thống lại nội dung kiến thức đã thực hiện.
Ngày soạn : 25.9.2012
Ngày giảng :
Buổi 4 : ôn tập Hình bình hành - Hình chữ nhật
I. Mục tiêu cần đạt:
1.Kiến thức: Học sinh nắm vững hơn định nghĩa hình bình hành HCN. Tính
chất và dấu hiệu nhận biết hình bình hành HCN.
2.Kĩ năng: Học sịnh dựa vào tính chất và dấu hiệu nhận biết để vẽ đợc dạng của
một hình bình hành- HCN. Biết chứng minh một tứ giác là hình bình hành- HCN
3.Thái độ: Có ý thức liên hệ giữa hình thang cân với hình bình hành- HCN.
II. Chuẩn bị: GV:Thớc thẳng, compa
III.Tiến trình bài giảng:
1. ổ n định tổ chức:
2.Kiểm trabài cũ:
HS1: Phát biểu định nghĩa về hình thang, hình thang vuông, hình thang
cân, HBH, HCN?
HS2: Nêu các tính chất của hình thang, của hình thang cân, HBH, HCN?
3.Bài mới:
Hoạt động của thầy và trò Nội dung
Hoạt động1:Lý thuyết
GV:Yêu cầu học sinh nhắc lại định

nghĩa,định lí hình bình hành .
HS:Thực hiện theo yêu cầu của giáo
viên.
GV:Chuẩn lại nội dung.
+ Định nghĩa và tính chất hình chữ
nhật
Hoạt động2:Bài tập
HS:Nêu nội dung bài 47(sgk/93)
GV: Vẽ hình 72 lên bảng.
HS:Quan sát hình, thấy ngay tứ giác.
AHCK có đặc điểm gì?
(AH // CK vì cùng vuông góc với BD)
- Cần chỉ ra tiếp điều gì, để có thể
khẳng định AHCK là hình bình hành?
I.Lý thuyết:
*Định nghĩa:
Hình bình hành là tứ giác có các cạnh đối
song song.
*Định lí:
+Trong hình bình hành:
a.Các cạnh đối bằng nhau.
b.Các góc đối bằng nhau.
c.Hai đờng chéo cắt nhau tại trung điểm
mỗi đờng.
*Định nghĩa hình chữ nhật:
Hình chữ nhật là tứ giác có bốn góc
vuông.
à
à à
à

0
A=B=C=D=90
Tính chất hình chữ nhật:
Trong hình chữ nhật, hai đờng chéo bằng
nhau và cắt nhau tại trung điểm của mỗi
đờng.
II.Bài tập:
Bài 47(sgk/93):
A B
1
H K
1
D C

ABCD là hình bình hành
GT AH DB, CK DB
OH = OK
KL a) AHCK là hình bình hành.
b) A; O : C thẳng hàng
Chứng minh:
a)Theo đầu bài ta có:
7
Ta cần (Cần c/m AH = BK).ntn?
GV:Yêu cầu học sinh thực hiện theo
nhóm bàn.
HS:Thực hiện theo yêu cầu của giáo
viên.
GV:Gọi đại diện nhóm lên bảng làm.
HS:Nhóm khác nêu nhận xét.
GV:Sửa sai nếu có.

HS:Hoàn thiện vào vở.
GV:Yêu cầu học sinh nêu nội dung
bài 48(sgk/93).
HS:Thực hiện theo yêu cầu của giáo
viên.
GV:Vẽ hình lên bảng và ghi giả thiết
kết luận của bài toán.
HS:Thực hiện theo yêu cầu của giáo
viên.
*F EG H là hình gì?
HS:Trả lời
GV: H,E là trung điểm của AD ; AB.
Vậy có kết luận gì về đoạn thẳng HE?
*Tơng tự đối với đoạn thẳng GF?
GV:Yêu cầu học sinh thực hiện theo
nhóm bàn.
HS:Thực hiện và cử đại diện lên bảng
AH DB
CK DB AH // CK (1)
Xét AHD và CKB có :
H = K = 90
0
AD = CB ( tính chất hình bình hành)

D
1
=

B
1

(so le trong của AD //
BC)
AHD = CKB (cạnh huyền góc
nhọn)
AH = CK ( Hai cạnh tơng ứng) (2)
Từ (1), (2) AHCK là hình bình
hành.
b)- O là trung điểm của HK mà AHCK là
hình bình hành ( Theo chứng minh câu a).
O cũng là trung điểm của đờng chéo
AC (theo tính chất hình bình hành)
A; O ;C thẳng hàng.
Bài 48(sgk/93):
GT Tứ giác ABCD
AE = EB ;
BF = FC
CG = GD ;
DH = HA

KL Tứ giác E FGH
là hình gì ?
Vì sao?
Chứng minh:
Theo đàu bài:
H ; E ; F ; G lần lợt là trung điểm của AD;
AB; CB ; CD đoạn thẳng HE là đờng
trung bình của ADB.
Đoạn thẳng FG là đờng trung bình của
DBC.
HE // DB và HE =

DB
2
1
GF // DB và GF =
DB
2
1
HE // GF ( // DB ) và HE = GF
(=
2
DB
)
Tứ giác FEHG là hình bình hành.
8
thùc hiƯn.
GV:NhËn xÐt sưa sai nÕu cã.
Bµi 64(sgk/100):
HS:Nªu néi dung bµi 64.
GV: §Ĩ tø gi¸c EFGH lµ h×nh ch÷
nhËt
Th× tø gi¸c ph¶i cã nh÷ng tÝnh chÊt g×?
HS:Tr¶ lêi.
GV:Yªu cÇu häc sinh ho¹t ®éng theo
nhãm bµn.
HS:Thùc hiƯn theo yªu cÇu cđa gi¸o
viªn.
GV:Gäi ®¹i diƯn nhãm lªn b¶ng thùc
hiƯn.
HS:Nhãm kh¸c nªu nhËn xÐt.
GV:Sưa sai nÕu cã.

Bài 63(sgk/100):
HS:Nªu néi dung bµi 63.
GV:Gäi mét häc sinh lªn b¶ng thùc
hiƯn.
HS:Díi líp cïng lµm vµ ®a ra nx.
GV:Chn l¹i kiÕn thøc.
Bµi 64(sgk/100):
Chøng minh:
Tứ giác EFGH có 3 góc vuông nên là
HCN
EFGH là HBH (EF //= AC)
AC

BD , EF // AC
=>EF

BD, EH // BD =>EF

EH
Vậy EFGH là HCN
Bài 63(sgk/100):
Ve õthêm
)( DCHDCBH ∈⊥

=>Tứ giác ABHD
là HCN
=>AB = DH = 10 cm
=>CH = DC – DH
= 15 – 10 = 5 cm Vậy x = 12
4.Cđng cè,h íng dÉn:

GV:HƯ thèng l¹i néi dung kiÕn thøc ®· thùc hiƯn.
HS: Nh¾c l¹i néi dung ®Þnh nghÜa , ®Þnh lý h×nh b×nh hµnh.
5. Híng dÉn häc ë nhµ.
- Häc kü ®Þnh nghÜa,®Þnh lý h×nh b×nh hµnh.
- Xem l¹i c¸c bµi häc ®· ch÷a.
Ngµy so¹n : 2 / 10/ 2012
Ngµy gi¶ng :
Bi 5 : «n tËp ph©n tÝch ®a thøc thµnh nh©n tư
I- Mơc tiªu cÇn ®¹t:
1.KiÕn thøc + HS hiĨu thÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tư.
+ HS ®ỵc cđng cè c¸ch ph©n tÝch ®a thøc thµnh nh©n tư b»ng ph-
¬ng ph¸p ®Ỉt nh©n tư chung, dïng h»ng ®¼ng thøc, nhãm c¸c h¹ng tư.
2.KÜ n¨ng - HS biÕt vËn dơng mét c¸ch linh ho¹t c¸c ph¬ng ph¸p ph©n tÝch ®a
thøc thµnh nh©n tư ®· häc vµo viƯc gi¶i lo¹i to¸n ph©n tÝch ®a thøc thµnh nh©n tư.
3.Th¸i ®é: -RÌn tÝnh cÈn thËn, chÝnh x¸c khi tÝnh to¸n.
II- Chn bÞ: GV: PhÊn mµu m¸y tÝnh bá tói.
III- TiÕn tr×nh bµi gi¶ng:
1. ỉ n ®Þnh tỉ chøc:
2.KiĨm tra bµi cò:
3.Bµi míi:
C©u hái 1 : ThÕ nµo lµ ph©n tÝch mét ®a thøc thµnh nh©n tư?
Tr¶ lêi: Ph©n tÝch mét ®a thøc thµnh nh©n tư lµ biÕn ®ỉi ®a thøc ®ã
thµnh mét tÝch cđa nh÷ng ®¬n thøc vµ ®a thøc kh¸c.
9
Cho h×nh thang
GT ABCD C¸c tia
c¸cgãc A,B,C,D
c¾t nhau
nh h×nh vÏ.
KL CMR:

EFGH lµ h.c.n
Câu hỏi 2: Trong các cách biến đổi đa thức sau đây, cách nào là phân tích
đa thức thành nhân tử? Tại sao những cách biến đổi còn lại không phải là
phân tích đa thức thành nhân tử?
2x
2
+ 5x 3 = x(2x + 5) 3 (1)
2x
2
+ 5x 3 = x






+
x
x
3
52
(2)
2x
2
+ 5x 3 = 2







+
2
3
2
5
2
xx
(3)
2x
2
+ 5x 3 = (2x 1)(x + 3) (4)
2x
2
+ 5x 3 = 2







2
1
x
(x + 3) (5)
Lời giải : Ba cách biến đổi (3), (4), (5) là phân tích đa thức thành nhân tử.
Cách biến đổi (1) không phải là phân tích đa thức thành nhân tử vì đa thức
cha đợc biến đổi thành một tích của những đơn thức và đa thức khác. Cách
biến đổi (2) cũng không phải là phân tích đa thức thành nhân tử vì đa thức

đợ biến đổi thành một tích của một đơn thức và một biểu thức không phải
là đa thức.
Câu hỏi : Những phơng pháp nào thờng dùng để phân tích đa thức thành
nhân tử?
Trả lời: Ba phơng pháp thờng dùng để phân tích đa thức thành nhân tử
là: Phơng pháp đặt nhân tử chung, phơng pháp dùng hằng đẳng thức và
phơng pháp nhóm nhiều hạng tử.
1 . PH ơNG PHáP ĐặT NHâN Tử CHUNG
Câu hỏi : Nội dung cơ bản của phơng pháp đặt nhân tử chung là gì? Phơng
pháp này dựa trên tính chất nào của phép toán về đa thức? Có thể nêu ra
một công thức đơn giản cho phơng pháp này hay không?
Trả lời: Nếu tất cả các hạng tử của đa thức có một nhân tử chung thì đa
thức đó biểu diễn đợc thành một tích của nhân tử chung đó với một đa
thức khác.
Phơng pháp này dựa trên tính chất phân phối của phép nhân đối với phép
cộng các đa thức.
Một công thức đơn giản cho pp này là: AB + AC = A(B +
C)
Bài 1 : Phân tích đa thức thành nhân tử
a) 3x
2
+ 12xy ; b) 5x(y + 1) 2(y + 1) ; c) 14x
2
(3y 2) + 35x(3y 2)
+28y(2 3y)
Trả lời:
a) 3x
2
+ 12xy = 3x.x + 3x . 4y = 3x(x + 4y)
b) 5x(y + 1) 2(y + 1) = (y + 1) (5x 2)

c) 14x
2
(3y 2) + 35x(3y 2) +28y(2 3y) = 14x
2
(3y2) + 35x(3y2)
28y(3y 2)
= (3y 2) (14x
2
+ 35x 28y).
Bài 2
Phân tích các đa thức sau thành nhân tử:
10
a, 5x 20y ; b, 5x( x 1 ) 3x( x 1 ) ; c, x( x + y ) 5x 5y.
Trả lời:
a, 5x 20y = 5 ( x 4y ) ; b, 5x ( x 1 ) 3x ( x 1 ) = x ( x
1 ) ( 5 2 )
= 3x ( x 1 )
c, x ( x + y ) 5x 5y = x( x+ y ) ( 5x + 5y )
= x( x + y ) 5 ( x + y ).
= ( x + y ) ( x 5 )
Bài3
Tình giá trị của các biểu thức sau:
a, x
2
+ xy + x tại x = 77 và y = 22 ;
b, x( x y ) +y( y x ) tại x = 53 và x = 3;
Trả lời:
a, x
2
+ xy + x = x ( x + y + 1 ) = 77 ( 77 + 22 + 1 ) = 77 . 100 = 7700.

b,x( x y ) +y ( y x ) = x ( x y ) - y( x y )
= ( x y ) ( x y )
= ( x y )
2
Thay x = 53 , y = 3 ta có ( x y )
2
= ( 53 3 )
2
= 2500
Bài 4
Chứng minh rằng: n
2
( n + 1 ) + 2n( n + 1 ) luôn chia hết cho 6 với mọi số
nguyên n
Bài giải.
Ta có n
2
( n + 1 ) + 2n( n + 1 ) = n ( n + 1 )( n + 2 )
M
6 vớ mọi n

Z.
(Vì đây là tích của 3 số nguyên liên tiếp V)
Bài tập tự giải:
Bài 1.1. Phân tích đa thức sau thành nhân tử bằng phơng pháp đặt nhân tử
chung
a, 3x ( x a ) + 4a ( a x ) .
b, 2x ( x + 1 ) x 1
c, x
2

( y
2
+ z ) + y
3
+ yz
d, 3x
2
( x + 1 ) 5x ( x + 1 )
2
+ 4 ( x + 1 )
Bài 1.2 . Đánh dấu x vào câu trả lời đúng nhất
Khi rút gọn biểu thức: ( x 1 ) ( x
2
+ x + 1 ) x ( x 1 )( x +
1 )
Các bạn Tuấn, Bình, Hơng thực hiện nh sau:
Tuấn: ( x 1 ) ( x
2
+ x + 1 ) x ( x 1 )( x + 1 )
= x
3
1 - x ( x
2
1 ) = x
3
1 - x
3
+ x = x 1 .
Bình: ( x 1 ) ( x
2

+ x + 1 ) x ( x 1 )( x + 1 )
= x
3
+ x
2
+ x x
2
x 1 ( x
2
x ) ( x + 1 )
= x
3
1 ( x
3
+ x
2
x
2
x ) = x
3
1 x
3
+ x = x 1
Hơng: ( x 1 ) ( x
2
+ x + 1 ) x ( x 1 )( x + 1 )
= ( x 1 )
( )
2
x x 1 x x 1


+ + +

= ( x 1 ) ( x
2
+ x + 1 x
2
x )
= ( x 1 ) . 1 = x 1
Bạn nào thực hiện đúng:
11
A. Tuấn C. Hơng
B. Bình D. B Cả ba bạn
2 . PH ơNG PHáP DùNG HằNG ĐẳNG THứC
Câu hỏi: Nội dung cơ bản của phơng pháp dùng hằng đẳng thức là gì?
Trả lời: Nếu đa thức là một vế của hằng đẳng thức nào đó thì có thể
dùng hằng đẳng thức đó để biểu diễn đa thức này thành một tích các đa
thức
Bài 1 : Phân tích đa thức thành nhân tử
a) x
2
4x + 4 ; b) 8x
3
+ 27y
3
; c) 9x
2
(x y)
2


Trả lời:
a)
x
2
4x + 4 = (x 2)
2
b)
8x
3
+ 27y
3
= (2x)
3
+ (3y)
3
= (2x + 3y) [(2x)
2
(2x)(3y) + (3y)
2
]
= (2x + 3y) (4x
2
6xy + 9y
2
)
c)
9x
2
(x y)
2

= (3x)
2
(x y)
2
= [ 3x (x y)] [3x + (x y)]
= (3x x + y) (3x + x y) = (2x + y) (4x y)
Bài 2
Phân tích các đa thức sau thành nhân tử:
a, 9x
2
+ 6xy + y
2
; b, 4x
2
25 ; c, x
6
y
6
; d, ( 3x + 1 )
2
(x +1 )
2
trả lời:
a, 9x
2
+ 6xy + y
2
= ( 3x )
2
+ 2 . 3x. y + y

2
= ( 3x + y )
2
b, 4x
2
25 = (2x )
2
5
2
= ( 2x 5 )( 2x + 5 ).
c, x
6
y
6
= ( x
2
)
3
( y
2
)
3
= ( x
2
y
2
) ( x
4
+ x
2

y
2
+ y
4
)
= ( x + y) ( x y ) ( x
4
+ x
2
y
2
+ y
4
)
Bài 3
Tìm x, biết:
a, x
3
0,25x = 0 ; b, x
2
10x = - 25.
Trả lời:
a, x
3
0,25x = 0

x ( x
2
0,25 ) = 0


x ( x 0,5)( x + 0,5 ) = 0

x = 0
Hoặc x 0,5 = 0

x = 0,5.
Hoặc x + 0,5 = 0

x = - 0,5.
b, x
2
10x = - 25

x
2
10 x + 25 = 0


( x 5 )
2
= 0.


x = 5 .
Bài tập tự giải:
Bài 1.2: Phân tích thành nhân tử bằng cách dùng hằng đẳng thức:
a, x
2
+ x + y
2

+ y + 2xy
b, - x
2
+ 5x + 2xy 5y y
2
c, x
2
y
2
+ 2x + 1
d, x
2
+ 2xz y
2
+ 2ty + z
2
t
2
12
Ngµy so¹n : 6.10.2012
Ngµy gi¶ng :
Bi 6 : «n tËp H×nh thoi - H×nh vu«ng
I. Mơc tiªu cÇn ®¹t:
1.KiÕn thøc:Häc sinh n¾m v÷ng ®Þnh nghÜa, tÝnh chÊt cđa h×nh thoi,h×nh vu«ng,
hai tÝnh chÊt ®Ỉc trng cđa h×nh thoi (hai ®êng chÐo vu«ng gãc vµ lµ c¸c ®êng
ph©n gi¸c cđa gãc h×nh thoi).N¾m ®ỵc bèn dÊu hiĐu nhËn biÕt h×nh thoi.
2.KÜ n¨ng: Häc sinh biÕt dùa vµo hai tÝnh chÊt ®Ỉc trng ®Ĩ vÏ ®ỵc h×nh thoi, nhËn
biÕt ®ỵc tø gi¸c lµ h×nh thoi qua c¸c dÊu hiƯu cđa nã.
3.Th¸i ®é :Cã ý thøc liªn hƯ víi c¸c h×nh ®·
II- Chn bÞ:

GV: PhÊn mµu m¸y tÝnh bá tói.
HS:b¶ng phơ
III- TiÕn tr×nh bµi gi¶ng:
1. ỉ n ®Þnh tỉ chøc:
2.KiĨm tra bµi cò:
3.Bµi míi:
Ho¹t ®éng cđa thÇy vµ trß Néi dung
Ho¹t ®éng1:Lý thut
GV:Yªu cÇu häc sinh nh¾c l¹i néi
dung ®Þnh nghÜa h×nh thoi,h×nh vu«ng.
HS:Thùc hiƯn theo yªu cÇu cđa gi¸o
viªn.
GV:H×nh thoi,h×nh vu«ng cã ®Çy ®đ
tÝnh chÊt cđa nh÷ng h×nh nµo?
HS:Tr¶ lêi.
Ho¹t ®éng2:Bµi tËp
Bài tập 84 (sgk/109):
GV:Nªu néi dung bµi 84.
HS : L¾ng nghe vµ ho¹t ®éng theo
nhãm bµn.
GV:Gäi ®¹i diƯn nhãm lªn b¶ng thùc
hiªn.
HS :Nhãm kh¸c nªu nhËn xÐt.
Bài 87(sgk/110):
HS :Nªu néi dung bµi 84.
GV:Yªu cÇu c¸ nh©n quan s¸t h×nh vÏ
trong s¸ch gi¸o khoa ®Ĩ t×m tËp hỵp
c¸c h×nh,giao cđa tËp hỵp.
HS :Thùc hiƯn theo yªu cÇu cđa gi¸o
viªn vµ ®a ra c©u tr¶ lêi.

I.Lý thut:
*§Þnh nghÜa h×nh thoi.
+H×nh thoi lµ tø gi¸c cã bèn c¹nh b»ng
nhau.
*§Þnh lÝ h×nh thoi.
+Trong h×nh thoi.
-Hai ®êng chÐo vu«ng gãc víi nhau.
- Hai ®êng chÐo lµ c¸c ®êng ph©n gi¸c
cđa c¸c gãc cđa h×nh thoi.
*§Þnh nghÜa h×nh vu«ng.
+H×nh vu«ng lµ tø gi¸c cã bèn gãc
vu«ng vµ cã bèn c¹nh b»ng nhau.
II.Bµi tËp:
Bài tập 84 (sgk/109):
a) Tứ giác AEDF
là HBH
(theo đònh nghóa)
b) Khi D là giao điểm của tia phân
giác  với cạnh BC, thì AEDF là
hình thoi.
c)
ABC∆
vuông tại A thì: hình bình
hành AEDF là hình chữ nhật.
Bài 87(sgk/110):
a) Tập hợp các HCN là tập hợp con
của tập hợp các HBH, Hình thang.
b) Tập hợp các hình thoi là tập hợp
con của tập hợp các HBH, Hình
13

F
E
D
C
B
A
Bài 89 (sgk/110):
GV: Yªu cÇu häc sinh ®äc kÜ ®Çu bµi
vÏ h×nh ,ghi gt, kl.
HS:Thùc hiƯn theo yªu cÇu cđa gi¸o
viªn.
*Mn chøng minh E ®èi xøng víi M
qua AB ta cÇn chøng minh mÊy u tè.
HS:Hai u tè DM = DE
ME ⊥ AB
*Mn chøng minh ME ⊥ AB ta lµm
ntn?
HS:Ta dùa vµo tÝnh chÊt ®êng trung
b×nh.
GV:Tø gi¸c AEMC lµ h×nh g×? v× sao?
t¹i sao?
HS:Thùc hiƯn.
GV:C¨n cø vµo hai ®êng chÐo Ab vµ
ME ®Ĩ kÕt ln AEBM lµ h×nh g×?
HS:Thùc hiƯn.
GV:Chu vi cđa h×nh thoi lµ tỉng cđa 4
c¹nh b»ng nhau.
GV:Yªu cÇu häc sinh thùc hiƯn.
*§Ĩ AFBM lµ h×nh vu«ng th× h×nh thoi
ph¶i cã mét gãc vu«ng M.

VËy
Δ
ABC vu«ng ph¶i thªm ®iỊu kiƯn
g×?
HS:§ã lµ
Δ
vu«ng c©n.
Bµi 1.GV ®a ®Ị bµi vµ h×nh vÏ lªn
b¶ng phơ
Trªn c¹nh AB, AC cđa tam gi¸c ABC
lÊy D, E sao cho BD=CE. Gäi M, N, P,
Q lµ trung ®iĨm cđa BC,CD,DE,EB
a. Tø gi¸c MNPQ lµ h×nh g×, v× sao ?
b. Ph©n gi¸c cđa gãc A c¾t BC t¹i F,
chøng minh PM//AF
c.QN c¾t AB, AC t¹i I,K. Tam gi¸c
AIK lµ tam gi¸c g×? v× sao?
thang.
c) Giao của tập hợp các HCN và tập
hợp các Hình thoi là tập hợp các hình
vuông.
Bài 89 (sgk/110):
a.Tacã:DM = DE (gt) (1) mỈt kh¾c DM
lµ ®êng trung b×nh cđa
Δ
ABC nªn
DM//AC mµ AC ⊥ AB

DM ⊥ AB
(2)

Tõ (1) vµ (2) C E vµ M ®/x nhau qua
AB.
b.Tø gi¸c AEMC lµ h.b.h v×;
DM =
1
2
AC ; DM // AC (CM c©u a)

EM = AC ; EM //AC (v× EM =
2DM)
VËy AEMC lµ h.b.h.
*AEBM lµ h×nh thoi v×.
AB vµ EM c¾t nhau t¹i trung ®iĨm mçi
®êng vµ AB ⊥ EM.
c.Chu vi cđa tø gi¸c AEBM lµ:
C = 4 . BM = 4 .
BC
2
C = 2. BC = 8 cm
d.§Ĩ AEBM lµ h×nh vu«ng th×
·
0
AMB=90

AM ⊥ BC mỈt kh¸c AM lµ trung
tun.VËy
Δ
ABC ph¶i lµ h×nh vu«ng
c©n t¹i A
Häc sinh vÏ h×nh

- HS tr×nh bµy :
Ta cã PQ lµ ®êng trung b×nh cđa ∆
BED => PQ = BD/2
T¬ng tù : MN = BD/2 ; NP = CE/2;
MQ = CE/2 mµ BD = CE => PQ = MN
= NP = MQ => MNPQ lµ h×nh thoi.
14

Δ
ABC cã
µ
0
A 90=
MB = MC
GT M vµ E ®/x qua D
DA = DB
a.CMR:E ®/x víi
qua AB.
b.AEMC vµ
AEBM lµ h×nh g×?
KL c.BC = 4cm ;
C
AEBM
= ?
d.
Δ
ABC cã®/k g×?
th× AEBM lµ hv
R
K

I
F
Q
P
N
M
E
D
C
B
A
- GV hớng dẫn HS vẽ hình
- Sử dụng t/c đờng trung bình của tam
giác và dấu hiệu tứ giác có 4 cạnh
bằng nhau để chỉ ra MNPQ là hình
thoi
- GV hớng dẫn HS chứng minh từng ý
của phần b.
.Sử dụng tam giác có đờng phân giác
là đờng cao là tam giác cân
b.

QPN =

BAC ( Góc có cạnh tơng
ứng song song )
Gọi MP cắt AB tại R
=>

ARM =


QPM ( đồng vị )
MNPQ là hình thoi => PM là phân
giác=>

QPM =

QPN/2
=>

ARM =

QPM=

QPN/2=

BAC/2
Mặt khác AF là phân giác =>

BAF =

BAC/2
Vậy

ARM=

BAF => AF//MR =>
MP//AF.
c. MNPQ là hình thoi => NQ MP
nhng AF//MP=>NQAF tức IKAF

AIK có AF là đờng cao, là phân giác
=>AIK là tam giác cân.
4.Củng cố:
GV:Hệ thống lại nội dung kiến thức đã thực hiện.
HS: Nhắc lại định nghĩa,định lí của hình thoi và hình vuông.
5. Hớng dẫn học ở nhà.
- Xem lại các bài tập đã chữa.
- Học thuộc định nghĩa,định lí của hình thoi và hình vuông.
Ngày soạn :18.10.2012
Ngày giảng :
Buổi 7 : ôn tập phân tích đa thức thành nhân tử
MụC TIêU :
Sau khi học xong chủ đề này, HS có khả năng:
Biết thế nào là phân tích đa thức thành nhân tử
Hiểu các phơng pháp phân tích đa thức thành nhân tử thờng dùng.
Vận dụng đợc các phơng pháp đó để giải các bài toán về phân tích đa
thức thành nhân tử, tìm nghiệm của đa thức, chia đa thức, rút gọn phân
thức
1. PHƯƠNG PHáP NHóM NHIềU HạNG Tử.
Câu hỏi : Nội dung của phơng pháp nhóm nhiều hạng tử là gì?
Trả lời: Nhóm nhiều hạng tử của một đa thức một cách thích hợp để có
thể đặt đợc nhân tử chung hoặc dùng đợc hằng đẳng thức đáng nhớ .
15
Bài 1: Phân tích đa thức thành nhân tử
a)
x
2
2xy + 5x 10y ; b) x (2x 3y) 6y
2
+ 4xy ; c) 8x

3
+ 4x
2
y
3

y
2
Trả lời:
a) x
2
2xy + 5x 10y = (x
2
2xy) + (5x 10y) = x(x 2y) + 5(x 2y)
= (x 2y) (x + 5)
b)
x (2x 3y) 6y
2
+ 4xy = x(2x 3y) + (4xy 6y
2
) = x(2x 3y) +
2y(2x 3y) =
= (2x 3y) (x + 2y)
c) 8x
3
+ 4x
2
y
3
y

2
= (8x
3
y
3
) + (4x
2
y
2
) = (2x)
3
y
3
+ (2x)
2
y
2
= (2x y) [(2x)
2
+ (2x)y + y
2
] + (2x y) (2x + y)
= (2x y)(4x
2
+ 2xy + y
2
) + (2x y) (2x +y)
= (2x y (4x
2
+ 2xy + y

2
+ 2x + y)
Bài 2
Phân tích các đa thức sau thành nhân tử:
a,5x 5y + ax ay ;
b, a
3
a
2
x ay + xy ;
c, xy( x + y ) +yz( y + z ) + xz( x + z ) + 2xyz;
Trả lời:
a,5x 5y + ax ay = (5x 5y ) + ( ax ay)
= 5( x y ) + a ( x y ).
= ( x y ) ( 5 + a );
b, a
3
a
2
x ay + xy = (a
3
a
2
x ) ( ay - xy ) = a
2
( a x ) y ( a
x )
= ( a x )(a
2
1 )

= ( a x )( a + 1 ) ( a
1 )
c, xy( x + y ) +yz( y + z ) + xz( x + z ) + 2xyz
= xy ( x + y ) + xyz + yz ( y + z ) + xyz + xz ( x + z ) + xyz
=
( ) ( ) ( )
xy x y xyz yz y z xyz xz x z xyz

+ + + + + + + +


= xy ( x + y + z ) + yz ( x + y + z ) + xz ( x + y + z )
= ( x + y + z ) ( xy + yz + xz ).
Bài tập tự giải:
Bài 1. 3 . Phân tích đa thức sau thành nhân tử bằng cách nhóm hạng tử:
a, x
4
x
3
x + 1.
b, x
2
y + xy
2
x y
c, ax
2
+ ay bx
2
by

d, 8xy
3
5xyz 24y
2
+ 15z
2. PHâN TíCH BằNG CáCH PHốI HợP NHIềU PH ơNG PHáP
Câu hỏi : Khi cần phân tích một đa thức thành nhân tử, chỉ đợc dùng riêng
rẽ từng phơng pháp hay có thể dùng phối hợp các phơng pháp đó?
Trả lời: Có thể và nên dùng phối hợp các phơng pháp đã biết
Bài 1 : Phân tích đa thức thành nhân tử:
16
a) a
3
a
2
b ab
2
+ b
3
; b) ab
2
c
3
+ 64ab
2
; c) 27x
3
y a
3
b

3
y
Trả lời: :
a) a
3
a
2
b ab
2
+ b
3
= a
2
(a b) b
2
(a b) = (a b) (a
2
b
2
)
= (a b)(a b)(a + b) = (a b)
2
(a + b)
b) ab
2
c
3
+ 64ab
2
= ab

2
(c
3
64) = ab
2
(c
3
+ 4
3
) = ab
2
(c + 4)(c
2
4c + 16)
c) 27x
3
y a
3
b
3
y = y(27 a
3
b
3
) = y([3
3
(ab)
3
]
= y(3 ab) [3

2
+ 3(ab) + (ab)
2
] = y(3 ab) (9 + 3ab + a
2
b
2
)
Bài 2
Phân tích các đa thức sau thành nhân tử:
a, x
3
x + 3x
2
y + 3x y
2
+y
3
y ;
b, 5 x
2
10 xy + 5y
2
20 z
2
Trả lời:
a, x
3
x + 3x
2

y + 3x y
2
+y
3
y = ( x
3
+ 3x
2
y + 3x y
2
+y
3
) ( x + y )
= ( x + y )
3
( x + y )
= ( x + y )
( )
2
x y 1

+

= ( x + y ) ( x + y 1 ) ( x + y + 1 )
b, 5 x
2
10 xy + 5y
2
20 z
2

= 5 ( x
2
2xy + y
2
4z
2
)
= 5
( )
2 2 2
x 2xy y 4z

+

= 5
( )
2
2
x y 4z


= 5 ( x y 2z ) ( x y + 2z )
3. PH ơNG PHáP TáCH HạNG Tử, THêM BớT CùNG MộT
HạNG Tử
Câu hỏi : Ngoài 3 phơng pháp thờng dùng nêu trên, có phơng pháp nào
khác cũng đợc dùng để phân tích đa thức thành nhân tử không?
Trả lời: Còn có các phơng pháp khác nh: phơng pháp tách một hạng tử
thành nhiều hạng tử, phơng pháp thêm bớt cùng một hạng tử.
Bài 1 : Phân tích thành nhân tử
a) 2x

2
3x + 1 ; b) y
4
+ 64
Lời giải :
a)
2x
2
3x + 1 = 2x
2
2x x + 1 = 2x(x 1) (x 1) = (x 1) (2x 1)
b)
y
4
+ 64 = y
4
+ 16y
2
+ 64 16y
2
= (y
2
+ 8)
2
(4y)
2
= (y
2
+ 8 4y) (y
2

+ 8 + 4y)
Bài 2 :
Phân tích các đa thức sau thành nhân tử:
a, x
2
+ 5x 6 ; b, 2x
2
+ 3x 5
Trả lời:
a, x
2
+ 5x 6 = x
2
x + 6x 6
= ( x
2
x ) + ( 6x 6 )
= x ( x 1 ) + 6 ( x 1 )
= ( x 1 ) ( x + 6 )
b, 2x
2
+ 3x 5 = 2x
2
2x + 5x 5 = ( 2x
2
2x ) + ( 5x 5 )
= 2x ( x 1 ) + 5 ( x 1 )
17
= ( x 1 ) ( 2x + 5 )
Bài 3

Tìm x, biết:
a, 5x ( x 1 ) = x 1 ; b, 2 ( x + 5 ) x
2
5x = 0
Trả lời:
a, 5x ( x 1 ) = x 1

5x ( x 1 ) ( x 1 ) = 0


( x 1 ) ( 5x 1 ) = 0


( x 1 ) = 0

x = 1
Hoặc ( 5x 1 ) = 0

x = 1/5.
Bài tập tự giải:
Bài 5.1. Phân tích đa thức sau thành nhân tử bằng cách thêm bớt cùng một
hạng tử
a, x
8
+ x
4
+ 1 b, x
8
+ 3x
4

+ 4
4 . VậN DụNG PHâN TíCH ĐA THứC THàNH NHâN Tử Để
LàM CáC DạNG TOáN
Câu hỏi: Việc phân tích đa thức thành nhân tử có thể có ích cho việc
giải một số loại toán nào?
Trả lời: Việc phân tích đa thức thành nhân tử có thể có ích cho việc giải
các bài toán về tìm nghiệm của đa thức, chia đa thức, rút gọn phân thức
Bài 1 : Giải các phơng trình
a) 2(x + 3) x(x + 3) = 0 ; b) x
3
+ 27 + (x + 3) (x 9) = 0 ; c) x
2
+ 5x = 6
Trả lời:
a) Vì 2 (x + 3) x(x + 3) = (x + 3) (2 x) nên phơng trình đã cho trở
thành
(x + 3)(2 x) = 0. Do đó x + 3 = 0 ; 2 x = 0, tức là x = 3 ; x = 2
phơng trình có 2 nghiệm x
1
= 2 ; x
2
= 3
b) Ta có x
3
+ 27 + (x + 3)(x 9) = (x + 3)(x
2
3x + 9) + (x + 3)(x 9)
= (x + 3)(x
2
3x + 9 + x 9) = (x + 3)(x

2
2x) = x(x + 3)(x 2)
Do đó phơng trình đã trở thành x (x + 3)(x 2) = 0. Vì vậy x = 0 ; x + 3 =
0 ; x 2 = 0 tức là phơng trình có 3 nghiệm: x = 0 ; x = 3 ; x = 2
c)
Phơng trình đã cho chuyển đợc thành x
2
+ 5x 6 = 0. Vì x
2
+ 5x 6 =
x
2
x + 6x 6 = x(x 1) + 6(x 1) = (x 1)(X + 6) nên phơng trình đã
cho trở thành (x 1)(x + 6) = 0. Do đó x 1 = 0 ; x + 6 = 0 tức là x = 1 ; x
= 6
Bài 2 : Thực hiện phép chia đa thức sau đây bằng cách phân tích đa thức bị
chia thành nhân tử:
a) (x
5
+ x
3
+ x
2
+ 1) : (x
3
+ 1) ; b) (x
2
5x + 6) : (x 3) ; c) (x
3
+ x

2
+ 4):
(x +2) Trả lời:
a) Vì x
5
+ x
3
+ x
2
+ 1 = x
3
(x
2
+ 1) + x
2
+ 1 = (x
2
+ 1)(x
3
+ 1) nên
(x
5
+ x
3
+ x
2
+ 1) : (x
3
+ 1) = (x
2

+ 1)(x
3
+ 1) : (x
3
+ 1) = x
2
+ 1
b) Vì x
2
5x + 6 = x
2
3x 2x + 6 = x(x 3) 2(x 3) = (x 3)(x 2)
nên
(x
2
5x + 6) : (x 3) = (x 3)(x 2) : (x 3) = x 2
c) Ta có x
3
+ x
2
+ 4 = x
3
+ 2x
2
x
2
+ 4 = x
2
(x + 2) (x
2

4)
18
= x
2
(x + 2) (x 2) (x + 2) = (x + 2)(x
2
x + 2)
Do đó (x
3
+ x
2
+ 4) : (x +2) = (x + 2)(x
2
x + 2) : (x + 2) = x
2
x + 2
Bài 3 : Rút gọn các phân thức
xyy
xyx
a


2
)32((
)
; b)
22
22
32
2

yxyx
yxyx
+
+
; c)
2
132
2
2
+
+
xx
xx
Trả lời:
a)
y
x
y
x
yxy
xyx
xyy
xyx
xyy
xyx
2332
)(
)32)((
)(
)32)(()32((

2

=


=


=


=


b)
22
22
32
2
yxyx
yxyx
+
+
=
)(
)(
)2)((
)2)((
)()(2
)()(2

2
2
2
2
2
2
2
2
yx
yx
yxyx
yxyx
yxyyxx
yxyyxx
yxyxyx
yxyxyx

+
=

+
=

++
=
+
+
c)
2
132

2
2
+
+
xx
xx
=
2
12
)2)(1(
)12)(1(
)1(2)1(
)1()1(2
22
122
2
2
+

=
+

=
+

=
+
+
x
x

xx
xx
xxx
xxx
xxx
xxx
.
BàI TậP NâNG CAO.
Bài 1 : Phân tích các đa thức sau thành nhân tử:
x
3
+ 6x
2
+ 11x + 6
b, Hớng dẫn giải:
x
3
+ 6x
2
+ 11x + 6 = x
3
+ x
2
+ 5x
2
+ 5x + 6x + 6
= ( x
3
+ x
2

) + ( 5x
2
+ 5x ) + ( 6x + 6 )
= x
2
( x + 1 ) 5x ( x + 1 ) + 6 ( x + 1 )
= ( x + 1 ) ( x
2
+ 5x + 6 )
= ( x + 1 ) ( x
2
+ 2x + 3x + 6 )
= ( x + 1 )
( )
( )
2
x 2x 3x 6

+ + +

= ( x + 1 )
( ) ( )
x 2 3 x 2 x

+ + +

= ( x + 1 ) ( x + 2 ) ( x + 3 )
Bài tập học sinh tự giải
Bài 2: Tìm x biết:
a, x

3
- 5x
2
+ 8x 4 = 0;
b, (x
2
+ x ) ( x
2
+ x + 1 ) = 6
Bài 3: Phân tích đa thức sau thành nhân tử:
x
3
+ 6x
2
+ 13x 42.
19
Ngày soạn : 26.10.2012
Ngày giảng :
Buổi 8 : Ôn tập các phép toán về phân thức đại số
I- Mục tiêu cần đạt:
1.Kiến thức:Củng cố định nghĩa hai phân thức bằng nhau, tính chất cơ bản của
phân thức, qui tắc rut gọn phân thức, các phép toán về phân thức.
2.Kĩ năng:HS có kỹ năng vận dụng qui tắc rút gọn phân thức vào giải bài tập.
- Có kỹ năng vận dụng qui tắc đổi dấu.
3.Thái độ:Rèn luyện t duy lô gíc ;lòng yêu thích bộ môn.
II. Chuẩn bị: GV:SGK+SBT +SGV.
III. Tiến trình bài giảng:
1. ổ n định tổ chức:
2.Kiểm trabài cũ:
HS1:Muốn rút gọn một phân thức ta làm thế nào?

HS2:Rút gọn phân thức sau:
2
2 2
1
x x
x
+
+
3.Bài mới:
Hoạt động của thầy và trò Nội dung
Hoạt động 1: Lý thuyết
GV:Yêu cầu học sinh nhắc lại định
nghĩa Hai phân thức bằng nhau.
GV:Phan thức có những tính chất cơ
bản nào?
GV: Để rút gọn phân thức ta làm nh
thế nào
GV:Yêu cầu học sinh nhắc lại các b-
ớc qui đồng mẫu thức nhiều phân
thức.
Hoạt động 2:Luyện tập
Bài11(sgk/40):
GV:Nêu nội dung bài 11sgk/40.
HS: Hoạt động theo nhóm bàn.
GV:Gọi học sinh đại diện nhóm lên
bảng thực hiện.
HS:Nhóm khác nhận xét bài làm
trên bảng.
GV:Kiểm tra đánh giá lời giải.
HS: Nêu cách làm ý b.

Bài112(sgk/40):
HS: Đọc yêu cầu của bài tập 12
GV:Gọi một học sinh ên bảng làm
bài tập 12.a
HS:Dới lớp nêu nhận xét.
I- Nhắc lại các kiến thức cơ bản
1. Đ/N hai phân thức bằng nhau
2. TC cơ bản của phân thức
3. Rút gọn phân thức
*Các bớc qui đồng mẫu thức nhiều phân
thức:
+Muốn qui đồng mẫu thức nhiều phân
thức ta có thể làm nh sau.
- Phân tích các mẫu thức thành nhân tử
rồi tìm mẫu thức chung.
- Tìm nhân tử phụ của mẫu thức.
- Nhân cả tử và mẫu của mỗi phân thức
với nhân tử phụ tơng ứng.
II. Bài tập
Bài11(sgk/40):

3 2 2 2 2
5 2 3 3
12 6 .2 2
18 6 .3 3
x y xy x x
xy xy y y
= =
a .


3
2
2
15 ( 5) 5 ( 5).3( 5)
20 ( 5) 5 .( 5).4
x x x x x
x x x x x
+ + +
=
+ +
b.
2
3( 5)
4
x
x
+
=
Bài112(sgk/40):

2 2
4 3
3 12 12 3( 4 4)
8 ( 8)
x x x
x x x x
+ +
=

=

20
GV:Gợi ý: tử và mẫu có nhân tử
chung không ?
+Sau khi đặt nhân tử chung xuất
hiện hằng đẳng thức nào ?
HS :Nêu cách làm ý b,về nhà tự trình
bày
Bài 10(SBT):
HS:Đọc nội dung bài 10 SBT.

*Để chứng minh đợc đẳng thức này
ta làm thế nào?
HS:Nêu cách làm.Trả lời các bớc
thực hiện.
GV:Cùng học sinh thực hiện.
Bài19(sgk/43):
GV:Yêu cầu học sinh đọc nội dung
bài 19.
HS:Thực hiện theo yêu cầu của giáo
viên.
*Muốn tìm MTC ta làm nh thế nào?
HS:Trả lời.
GV:Yêu cầu học sinh hoạt động theo
nhóm bàn.
HS:Thực hiện theo yêu cầu của giáo
viên.
GV:Gọi đại diện nhóm lên bảng thực
hiện.
HS:Nhóm khác nêu nhận xét.
GV:Sửa sai nếu có.

Bài25 (sgk/47):
HS:Đọc thông tin bài 25.
*Muốn cộng các phân thức có mẫu
thức khác nhau ta làm nh thế nào?
HS:Trả lời.
GV:Gọi hai học sinh lên bảng thực
hiện.
HS:Dới lớp cùng làm và đửa ra nhận
xét bài làm của bạn.
GV:Sửa sai nếu có.
HS:Hoàn thiện vào vở.
Bài26(sgk/47):

( )
2
3
3
3( 4 4)
2
x x
x x
+



=
2
2 2
3( 2) 3( 2)
( 2)( 2 4) ( 2 4)

x x
x x x x x x

=
+ + + +
=
2 2
2
7 14 7 7( 2 1)
3 3 3 ( 1)
x x x x
x x x x
+ + + +
=
+ +
b .

2
7( 1) 7( 1)
3 ( 1) 3
x x
x x x
+ +
=
+
=
Bài 10(SBT):
CM đẳng thức sau:
2 2 3 2
2 2

2
2 2
x y xy y xy y
x xy y x y
+ + +
=
+
a. Ta có vế trái
bằng:
2 2 2
2 2 2 2
( 2 ) ( )
2 2 2
y x xy y y x y
x xy y x xy xy y
+ + +
=
+ +
Đ<=PCM
2 2
( )
( )(2 ) 2
y x y yx y
VP
x y x y x y
+ +
= =
+
=
Bài19(sgk/43):Qui đồng mẫu thức.

b. x
2
+1 vaứ
1
2
4
x
x
MTC = x
2
-1
x
2
+1 =
1
1
1
)1)(1(
2
4
2
22


=

+
x
x
x

xx
;
1
2
4
x
x
c.
xyy
x
yxyyxx
x
+
23223
3
;
33
MTC = y(x - y)
3
3 3
3 2 2 3 3
3 3
3 3
*
3 3 ( )
.
( ) . ( )
x x
x x y xy y x y
x y x y

x y y y x y
=
+
= =

2
2 2
2 3
*
( ) ( )
( ) ( )
( )( ) ( )
x x x
y xy y y x y x y
x x y x x y
y x y x y y x y

= =


= =

Bài25 (sgk/47):
32
32
322
10
10625
5
3

2
5
)
yx
xxyy
y
x
xyyx
a
++
=
++
21
GV:Nêu nội dung bài 26.
HS:Lắng nghe và tóm tắt đầu bài.
*Bài toán cho ta biết những gì ? Cần
tính những gì?
HS:Trả lời.
*Gọi thời gian xúc 5000cm
3
đầu tiên
là gì?
HS:Trả lời.
GV:Yêu cầu học sinh các nhóm hoạt
động theo nhóm bàn.
HS:Thực hiện và cử đại diện nhóm
lên bảng làm.
GV:Nhận xét sửa sai nếu có.
HS:Hoàn thiện vào vở.
x

x
xx
x
xx
xx
xx
xxx
xx
xxx
x
x
xx
x
x
x
xx
x
x
x
xx
x
c
5
5
)5(5
)5(
)5(5
2510
)5(5
252515

)5(5
)25()53(5
)5(5
25
)5(
53
)5(5
25
)5(
53
525
25
5
53
)
2
22
2

=


=

+
=

++
=


++
=


+

+
=


+

+
=


+

+
Bài26(sgk/47):
Thời gian xúc 5000cm
3
đầu tiên là:

5000
x
(ngày).Phần việc còn lại là:
11600 5000 = 6600 (m
3
)

Năng suất làm việc ở phần việc còn lại
là: x + 25 ( m
3
/ngày)
Thời gian làm nốt phần việc còn lại là:
6600
x+25
(ngày).
Thời gian làm việc để hoàn thành công
việc:
500 6600
+
x x+25
(ngày)
Ta có:

5000 6600 5000(x+25)+6600x
+ =
x x+25 x(x+25)
11600x+125000
=
x(x+25)
Với x = 250 biểu thức
5000 6600
+
x x+25
có gia
trị bằng
5000 6600
+ = 44

250 250+25
)ngày(
4. Củng cố:
GV:Hệ thống lại nội dung kiến thức của bài.
HS chọn câu trả lời đúng:
4 ( 2)
20(2 )
x x
x


= A. -x; B
; .
10 5
x x
C
; D. x+5
Đáp án: câu C
5. H ớng dẫn học ở nhà:
-Xem bài tập đã làm trên lớp
-Làm bài tập 13 SGK/40
Ngày soạn : 1.11.2012
Ngày giảng :
Buổi 9 : Ôn tập các phép toán về phân thức đại số
I- Mục tiêu cần đạt:
1Kiến thức: HS nắm vững và vận dụng tốt qui tắc nhân,chia phân thức.
2.Kĩ năng: HS biết các tính chất của phép nhân,phép chia và có ý thức nhận xét
bài toán cụ thể để vận dụng.
3.Thái độ:Rèn luyện t duy lô gíc ;lòng yêu thích bộ môn.
II. Chuẩn bị:

GV:SGK+SBT +SGV.
22
HS:Máy tính bỏ túi.
III. Tiến trình bài giảng:
1. ổ n định tổ chức:
2 Kiểm tra bài cũ:
HS1: Nhắc lại t/c phép nhân các phân số.
HS2: Nhắc lại t/c phép chia các phân số.
3.Bài mới:
Hoạt động của thầy và trò Nội dung
Hoạt động1:Lý thuyết.
GV:Yêu cầu học sinh nhắc lại nội
dung quy tắc phép nhân,phép chia
các phân thức đại số.
HS:Thực hiện theo yêu cầu của giáo
viên.
GV:Nhận xét sửa sai nếu có.
HS:Hoàn thiện vào vở.
Hoạt động2:Bài tập.
Bài39(sgk/52)
GV:Yêu cầu học sinh nêu nội dung
bài 39.
HS:Thực hiện theo yêu cầu của giáo
viên.
GV:Gọi hai học sinh lên bảng thực
hiện.
HS:Dới lớp cùng làm và nêu nhận
xét.
GV:Chuẩn lại nội dung kiến thức.
HS:Hoàn thiện vào vở.

Bài43(sgk/54):
GV:Yêu cầu học sinh nêu nội dung
bài 39.
*Muốn chia phân thức cho phân thức
ta làm nh thế nào?
HS:Trả lời.
GV:Yêu cầu học sinh thực hiện theo
nhóm bàn.
HS:Thực hiện và cử đại diện nhóm
lên bảng làm.
GV:Nhận xét sửa sai nếu có.
I.Lý thuyết:
*Quy tắc phép nhân các phân thức đạisố
+Muốn nhân hai phân thức,ta nhân các
tử thức với nhau,các mẫu thức với nhau.
A C A.C
= =
B D B.D
*Quy tắc phép chia các phân thức đại
số.
+ Muốn chia phân thức
A
B
cho phân thức
C
D
khác 0,ta nhân
A
B
với phân thức

nghịch đảo của
C
D
A
B
:
C
D
=
A
B
.
D
C
, với
C
D

0.
II.Bài tập:
Bài39(sgk/52):
a.
( ) ( )
( ) ( )
5 x+2 .2 2-x
5x+10 4-2x
. =
4x-8 x+2 4 x-2 x+2
=
( )

( )
( )
( )
5 2-x -5 x-2
5
= =-
2 x-2 2 x-2 2
b.
( ) ( )
( ) ( )
2
x+6 x-6 .3
x -36 3
. =
2x+10 6-x 2 x+5 6-x
=
( ) ( )
( ) ( )
-3 x+6 6-x
3(x+6)
=-
2 x+5 6-x 2(x+5)
c.
2 2 2 2
4 4 2
4y 3x 4y 3x 3y
. - =- . =-
11x 8y 11x 8y 22x




Bài43(sgk/54):
b.
( )
2
2
2x+10 x -25 2x+10
x -25 : = :
3x-7 1 3x-7
=
( ) ( ) ( )
( ) ( )
2
x-5 x+5 . 3x-7
x -25 3x-7
. =
1 2x+10 2(x+5)
x-5 3x-7
=
2
23
30
HS:Hoàn thiện vào vở.
Bài40(sgk/52)
HS:Nêu thông tin bài40.
*Bài toán này có thể áp dụng những
tính chất nào để thực hiện.
HS:Trả lời.
GV:Yêu cầu hai học sinh lên bảng
thực hiện.

HS:Dới lớp cùng làm và nêu nhận
xét.GV:Sửa sai nếu có.
HS:Hoàn thiện vào vở.
Bài 34 (Sgk-50):
+ GV đa đầu bài lên bảng phụ.
+ Có nhận xét gì về mẫu của hai
phân thức này ?
+ Vậy nên thực hiện phép tính này
nh thế nào ?
+ Yêu cầu HS làm bài, yêu cầu một
HS lên bảng trình bày.
+ Yêu cầu HS lên làm tiếp phần b.
Bài tập 1:
Rút gọn phân thức:
1)



















3
2
4
3
9
15
.
25
18
y
x
x
y
2)
3
22
)5(4
1
.
33
50202


+
+
x
x

x
xx
3)
279
6128
.
4
3
32
2
+
+

+
x
xxx
x
x
GV nhấn mạnh quy tắc đổi dấu.
4)
65
32
.
1
2
2
2
+

+


xx
xx
x
x
+ GV nhắc lại cách tách hạng tử để
phân tích đa thức thành nhân tử.
+ GV yêu cầu HS hoạt động nhóm
bài
43 (a,c) và bài 44 Sgk-54.
c.
2 2
2 2
x +x 3x+3 x +x 5x-5
: = .
5x -10x+5 5x-5 5x -10x+5 3x+3
=
( ) ( )
( ) ( )
( )
2
x x+1 .5 x-1
x
=
3 x-1
5 x-1 .3 x+1
Bài40(sgk/52):
*áp dụng tính chất phân phối.
( )
( )

( )
( )
3
2
2
3
x-1 x
. x +x+1+
x x-1
x-1 x +x+1
x-1 .x
= +
x x x-1



=
3 3 3 3 3
x -1 x x -1+x 2x -1
+ = =
x x x x
*Không áp dụng tính chất phân phối.
3
2
x-1 x
. x +x+1+
x x-1




=
( )
( )
2
3
x +x+1 x-1
x-1 x
. +
x x-1 x-1




=
3 3 3
x-1 x -1+x 2x -1
. =
x x-1 x
Bài 34(Sgk-50):
a)
)7(5
48
)7(5
134
xx
x
xx
x





+
=
)7(5
355
)7(5
48
)7(5
134


=


+

+
xx
x
xx
x
xx
x
=
.
1
)7(5
)7(5
xxx

x
=


b)
125
1525
5
1
22



x
x
xx
=
2
251
1525
)51(
1
x
x
xx

+

=
)51)(51(

1525
)51(
1
xx
x
xx +

+

=
)51)(51(
152551
2
xxx
xxx
+
++
=
( )
.
)51(
51
)51)(51(
51
2
xx
x
xxx
x
+


=
+

+ HS làm bài tập, 4 HS lên bảng trình
bày.
24
+ GV yêu cầu đại diện hai nhóm lên
trình bày. HS cả lớp theo dõi nhận
xét.
1) =
234
23
5
6
9.25
15.18
xyx
xy
=
2) =
)5.(6
1


x
x
3) =
)2(9
)2(

2
+

x
x
4) = 1.
Bài 43(Sgk-54):
a)
)42(:
7
105
2

+

x
x
x
=
)1(3
5
)2(2
1
.
7
)2(5
2
+
=
+


xxx
x
c)
55
33
:
5105
2
2

+
+
+
x
x
xx
xx
=
)1(3)1(3
)1(5
.
)1(5
)1(
2
+
=
+



+
x
x
x
x
x
xx
Bài 44(Sgk-54):
xx
x
Q
x
xx


=

+
2
22
4
.
1
2
Q =
1
2
:
4
2

2
2

+


x
xx
xx
x
Q =
2
2
x
x
4.Củng cố:
GV:Hệ thống lại nội dung kiến thức đã thực hiện.
HS:Nhắc lại nội dung hai quy tắc.
5. Hớng dẫn học ở nhà.
- Xem lại các bài tập đã chữa.
- Học thuộc nội dung hai quy tắc.
- Học thuộc các tính chất của phép nhâ,phép chia.
Ngày soạn : 10.11.2012
Ngày giảng :
Buổi 10 : Ôn tập Đa giác. Đa giác đều
Diện tích hình chữ nhật
I/ Mục tiêu:
1/ Kiến thức:
+ HS đợc củng cố khái niệm đa giác lồi, đa giác đều.
+ HS biết cách tính tổng số đo các góc của một đa giác.

+ HS cần nắm vững công thức tính diện tích hình chữ nhật, hình vuông, tam giác
vuông.
+ HS hiểu rằng để chứng minh các công thức đó cần vận dụng các tính chất của
diện tích đa giác.
2/ Kỹ năng:
+ Vẽ đợc và nhận biết một số đa giác lồi, một số đa giác đều.
+ Biết vẽ các trục đối xứng và tâm đối xứng (nếu có) của một đa giác đều.
+ Qua vẽ hình và quan sát hình vẽ, HS biết cách quy nạp để xây dựng công thức
tính tổng số đo các góc của một đa giác.
+ HS vận dụng đợc các công thức đã học và các tính chất của diện tích trong giải
toán.
3/ Thái độ: Kiên trì trong suy luận (tìm đoán và suy diễn), cẩn thận chính xác
trong vẽ hình.
25

×