ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
NGUYỄN VĂN THÔNG
XÂY DỰNG MỘT HỆ THỐNG THÔNG TIN
HỖ TRỢ ĐÁNH GIÁ HỌC SINH
DÙNG LÝ THUYẾT TẬP MỜ
Chuyên ngành: Bảo đảm toán học cho máy tính
và hệ thống tính toán
Mã số: 60 46 35
LUẬN VĂN THẠC SĨ KHOA HỌC
NGƢỜI HƢỚNG DẪN KHOA HỌC:
PGS.TSKH. Bùi Công Cƣờng
Hà Nội – Năm 2011
MỤC LỤC
MỞ ĐẦU 3
Chƣơng 1. KIẾN THỨC CƠ SỞ VỀ LÝ THUYẾT TẬP MỜ VÀ SỐ MỜ 4
1.1. Tập mờ 4
1.1.1. Định nghĩa 1.1 4
1.1.2. Ví dụ . 4
1.2. Số mờ 5
1.2.1. Định nghĩa 1.2 5
1.2.2. Ví dụ 5
1.3. Luật mờ 7
1.3.1. Định nghĩa 1.3 7
1.3.2. Ví dụ 7
Chƣơng 2. PHƢƠNG PHÁP MỚI ĐỂ ĐÁNH GIÁ BÀI LÀM CỦA HỌC SINH SỬ
DỤNG TẬP MỜ 8
2.1. Phƣơng pháp của Biswas để đánh giá bài làm của học sinh 8
2.1.1 Thuật toán đánh giá bài làm của học sinh theo trang điểm mờ 9
2.1.2. Ví dụ 2.1 10
2.2. Phƣơng pháp mới để đánh giá bài làm của học sinh 12
2.2.1. Thuật toán mới đánh giá bài làm của học sinh 14
2.2.2. Ví dụ 2.3 15
2.2.3. Chƣơng trình máy tính 17
2.3. Một phƣơng pháp đánh giá tổng quát 18
Chƣơng 3. ĐÁNH GIÁ KẾT QUẢ HỌC TẬP CỦA HỌC SINH BẰNG CÁCH SỬ
DỤNG HÀM THUỘC VÀ LUẬT MỜ 21
3.1. Đặt vấn đề 21
3.2. Thuật toán 21
3.3. Ví dụ 35
3.4. Chƣơng trình máy tính 40
KẾT LUẬN 49
TÀI LIỆU THAM KHẢO 50
2
MỞ ĐẦU
Từ khi lí thuyết tập mờ đƣợc Zadeh đề xuất năm 1965, lí thuyết tập mờ và logic
mờ phát triển rất nhanh và đa dạng. Công nghệ mờ và công nghệ mạng nơ-ron phát
triển mạnh, áp dụng vào các ngành công nghiệp làm ra nhiều sản phẩm thông minh,
đáp ứng nhu cầu thị trƣờng. Những năm gần đây, một số nghiên cứu ứng dụng lý
thuyết tập mờ vào giáo dục đào tạo đã đƣợc tiến hành và có những kết quả cụ thể nhƣ
đánh giá học sinh, xếp hạng hệ thống giáo dục
Việc chấm điểm bài làm của học sinh nhƣ hiện tại đạt độ chính xác chƣa cao, vì
thực chất điểm mà học sinh đạt đƣợc trong mỗi bài kiểm tra có tính chất "mờ". Ví dụ
trong số những học sinh đƣợc điểm 8 thì có những học sinh đạt “cỡ 8 điểm”, tức là có
thể thấp hơn hay cao hơn 8 điểm một chút…
Trên cơ sở đã tìm hiểu những kiến thức cơ bản về logic mờ, là ngƣời trực tiếp
làm nhiệm vụ quản lý giáo dục, tôi chọn đề tài "Xây dựng một hệ thống thông tin hỗ
trợ đánh giá học sinh dùng lý thuyết tập mờ" cho luận văn của mình, nhằm nghiên cứu
một cách mới để đánh giá học sinh chính xác hơn, khách quan hơn, công bằng hơn.
Tôi dùng phần mềm Matlab để cài đặt chƣơng trình tính và đƣa ra những kết quả đánh
giá cụ thể.
Luận văn gồm 3 chƣơng:
Chƣơng 1: Kiến thức cơ sở về lý thuyết tập mờ và số mờ.
Chƣơng 2: Phƣơng pháp mới để đánh giá bài làm của học sinh sử dụng tập mờ.
Chƣơng 3: Đánh giá kết quả học tập của học sinh bằng cách sử dụng hàm thuộc
và luật mờ.
Do thời gian có hạn và khả năng còn hạn chế nên luận văn khó tránh khỏi
những thiếu sót, tôi rất mong nhận đƣợc sự đóng góp ý kiến từ các thầy cô giáo, các
bạn học viên để hoàn thiện hơn bản luận văn của mình.
3
Chương 1. KIẾN THỨC CƠ SỞ VỀ LÝ THUYẾT TẬP MỜ
VÀ SỐ MỜ
1.1. Tập mờ
1.1.1. Định nghĩa 1.1[3]:
Cho tập X , ta sẽ gọi X là không gian nền.
A là tập mờ trên không gian nền X nếu A đƣợc xác định bởi hàm:
: [0,1]
A
X
(
( ) [0,1], x X)
A
x
A
gọi là hàm thuộc (membership function);
()
A
x
là độ thuộc của x vào tập mờ A.
Tập A đƣợc gọi là tập rỗng nếu nó không có phần tử nào. Kí hiệu là:
A
1.1.2. Ví dụ [3]:
- Ví dụ 1.1:
Cho không gian nền X = [0, 150] là tập chỉ tốc độ của ngƣời đi xe máy (km/h).
Tập mờ A = ”Đi nhanh” xác định bởi hàm thuộc
: [0,1]
A
X
nhƣ đồ thị sau:
Nhƣ vậy:
- Với x ≥ 50 (tốc độ từ 50km/h trở lên) thì
A
(x) = 1 (đi nhanh);
- Với x = 45 (km/h) thì
A
(x) = 0.8 (đi khá nhanh);
…
- Ví dụ 1.2 :
Vết vân tay của tội phạm trên hiện trƣờng là một ví dụ về tập mờ đƣợc cho
trong hình sau:
()
A
x
1
0.8
45
25
50
x
4
Để cho gọn, ta kí hiệu độ thuộc là A(x) thay cho
()
A
x
.
Ta cũng kí hiệu A = {(x,
()
A
x
) | x
X}
hoặc A = {(
()
A
x
/x): x
X}
- Ví dụ 1.3:
A
0
= Một vài (quả cam)
= {(0/0),(0/1),(0.6/2),(1/3),(1/4),(0.8/5),(0.2/6)}
Ta kí hiệu: F(X) = {A tập mờ trên X}
1.2. Số mờ
1.2.1. Định nghĩa 1.2 [3]:
Tập M trên đƣờng thẳng số thực R
1
là một số mờ nếu :
a) M chuẩn hóa, tức là có điểm x’ sao cho
( ')
M
x
=1;
b) Ứng với mỗi R
1
, tập mức { x:
()
M
x
} là đoạn đóng trên R
1
;
c)
()
M
x
là hàm liên tục.
1.2.2. Ví dụ:
- Ví dụ 1.4 [3] : Số mờ tam giác: Số mờ tam giác đƣợc xác định bởi 3 tham số.
Khi đó hàm thuộc của số mờ tam giác M(a,b,c) cho bởi:
0
( ) / ( )
( ) 1
( ) / ( )
0
M
z a b a
z
c z c b
X
1
( ) 1
A
x
2
( ) 0.7
A
x
nếu z ≤ a
nếu a ≤ z ≤ b
nếu z = b
nếu b ≤ z ≤ c
nếu c ≤ z
5
Hình 1.1. Số mờ tam giác
- Ví dụ 1.5 [3]: Số mờ hình thang M(a,b,c,d) đƣợc xác định bởi 4 tham số, có
hàm thuộc dạng sau:
0
( ) / ( )
( ) 1
( ) / ( )
0
M
z a b a
z
d z d c
Hình 1.2. Số mờ hình thang
- Ví dụ 1.6 : Số mờ ’Bờ vai’ M(t
1
,t
2
) (t
1
<t
2
) đƣợc xác định bởi 2 tham số, có
hàm thuộc dạng sau:
2
2 1 2 1
1
1
()
0
M
t
zz
t t t t
()
M
z
Z
z
a
b
c
1
nếu z ≤ a
nếu a ≤ z ≤ b
nếu b ≤z ≤ c
nếu c ≤ z ≤ d
nếu d ≤ z
()
M
z
Z
d
a
b
c
1
nếu z ≤ t
1
nếu t
1
≤ z ≤ t
2
nếu t
2
≤ z
6
Hình 1.3. Số mờ ’Bờ vai’
1.3. Luật mờ
Xét U
i
≠ là tập nền của biến ngôn ngữ vào x
i
, i=1,2, ,n
V≠ là tập nền của biến ngôn ngữ ra y
1.3.1. Định nghĩa 1.3 [3]:
Một luật mờ dạng tổng quát với n biến vào, 1 biến ra R có dạng:
“IF (x
1
is A
1
)(x
2
is A
2
) (x
n
is A
n
) THEN (y is B)”
trong đó A
i
F(U
i
), i=1,2, ,n; B F(V).
1.3.2. Ví dụ 1.7:
x
1
là biến ngôn ngữ thời gian trả lời câu hỏi;
tập U
1
=[1,45] là không gian nền của biến ngôn ngữ x
1
(phút);
A
1
=’ngắn’ là một tập mờ trên không gian nền U
1
;
x
2
là biến ngôn ngữ độ chính xác trong câu trả lời;
tập U
2
=[0,1] là không gian nền của biến ngôn ngữ x
2
;
A
2
=’cao’ là một tập mờ trên không gian nền U
2
;
y là biến ngôn ngữ độ khó của câu trả hỏi;
tập V=[0,1] là không gian nền của biến ngôn ngữ y;
B=’thấp’ là một tập mờ trên không gian nền V,
Một luật mờ suy ra độ khó của câu hỏi là:
IF (x
1
is A
1
) (x
2
is A
2
) THEN (y is B) (nếu thời gian trả lời ngắn và độ chính
xác cao thì độ khó của câu hỏi là thấp (câu hỏi dễ).
()
M
z
Z
t
2
t
1
1
7
Chƣơng 2: PHƢƠNG PHÁP MỚI ĐỂ ĐÁNH GIÁ BÀI LÀM
CỦA HỌC SINH SỬ DỤNG TẬP MỜ
2.1. Phương pháp của Biswas để đánh giá bài làm của học sinh: [7]
- Cho 2 tập mờ A, B trên không gian nền X.
A = {f
A
(x
1
)/x
1
, f
A
(x
2
)/x
2
, , f
A
(x
n
)/x
n
}
B = {f
B
(x
1
)/x
1
, f
B
(x
2
)/x
2
, , f
B
(x
n
)/x
n
}
X = {x
1
, x
2
, , x
n
}
Để cho gọn, ta dùng vectơ để biểu thị các tập mờ A, B nhƣ sau:
A
= {f
A
(x
1
), f
A
(x
2
), , f
A
(x
n
)}
B
= {f
B
(x
1
), f
B
(x
2
), , f
B
(x
n
)}
Độ tƣơng tự S(
A
,
B
), đƣợc định nghĩa nhƣ sau:
.
( , )
( . , . )
AB
S A B
Max A A B B
Ở đó S(
A
,
B
) [0, 1];
A
.
B
chỉ tích vô hƣớng 2 véc tơ biểu thị 2 tập mờ A, B.
- Tập không gian nền:
X = {0, 20, 40, 60, 80, 100} là tập không gian nền nhằm phân định mức độ
hoàn thành công việc của học sinh tƣơng ứng với: 0%, 20%, 40%, 60%, 80%, 100%.
- Tập mờ chuẩn:
Tuyệt vời, ký hiệu E = {0/0; 0/20; 0.8/40; 0.9/60; 1/80; 1/100} (Excellent).
Rất tốt, ký hiệu V = {0/0; 0/20; 0.8/40; 0.9/60; 0.9/80;0.8/100} (Very good)
Tốt, ký hiệu G ={0/0; 0.1/20; 0.8/40; 0.9/60; 0.4/80; 0.2/100} (Good).
Đạt yêu cầu, ký hiệu S = {0.4/0; 0.4/20; 0.9/40; 0.6/60; 0.2/80; 0/100}
(Satisfactory).
Không đạt yêu cầu, ký hiệu U ={1/0; 1/20; 0.4/40; 0.2/60; 0/80; 0/100}
(Unsatisfactory).
Để cho gọn ta dùng các véc tơ
E
,
V
,
G
,
S
,
U
để biểu thị các tập E, V, G, S,
U một cách tƣơng ứng:
E
= {0, 0, 0.8, 0.9, 1, 1},
V
= {0, 0, 0.8, 0.9, 0.9, 0.8}
G
= {0, 0.1, 0.8, 0.9, 0.4, 0.2},
S
= {0.4, 0.4, 0.9, 0.6, 0.2, 0},
U
= {1, 1, 0.4, 0.2, 0, 0}
8
- Gọi A, B, C, D, E là các chữ chỉ các mức giá trị của 5 điểm mờ nêu trên theo thứ tự
tƣơng ứng với E, V, G, S, U với ý nghĩa nhƣ sau: 0≤E<30, 30≤D<50, 50≤C<70,
70≤B<90; 90≤A≤100.
Ký hiệu: P(E) là trung điểm của khoảng E, theo ý nghĩa đó ta có:
P(E) =15, P(D) =40, P(C) = 60, P(B) = 80; P(A) = 95.
- Trang điểm mờ (Fuzzy grade sheet) để đánh giá bài làm học sinh:
Thứ tự
Điểm mờ
Mức
0%
20%
40%
60%
80%
100%
Câu hỏi 1
0
0.1
0.2
0.4
0.6
0.4
Câu hỏi 2
Câu hỏi 3
Tổng số điểm:
Bảng 2.1: Trang chấm điểm mờ
Trang có cấu trúc kiểu ma trận gồm n dòng, 8 cột nhƣ bảng 2.1.Trong đó:
Dòng thứ i ghi câu hỏi i và điểm mờ của học sinh cho câu hỏi i, i=1,2, , n, với
n là số lƣợng câu hỏi của bài kiểm tra.
Cột 1: Các câu hỏi của bài kiểm tra theo thứ tự từ trên xuống.
Từ cột thứ hai đến cột thứ bảy ghi “điểm mờ” mà giáo viên đánh giá câu trả lời
của học sinh cho câu hỏi tƣơng ứng.
Cột 8: Ghi mức đánh giá dành cho mỗi câu hỏi.
Dòng cuối cùng là tổng số điểm dành cho bài làm của học sinh.
Ví dụ điểm cho câu hỏi 1 là F
1
={0/0; 0.1/20; 0.2/40; 0.4/60; 0.6/80; 0.4/100}
(trên không gian nền X = {0, 20, 40, 60, 80, 100} ) thì ghi vào bảng trên dòng 1, các
cột từ thứ 2 đến thứ 7 lần lƣợt là 0, 0.1, 0.2, 0.4, 0.6, 0.4.
2.1.1. Thuật toán đánh giá bài làm của học sinh theo trang điểm mờ
Bƣớc 1:
- Ngƣời đánh giá điểm cho câu hỏi thứ i bằng điểm mờ F
i
và đƣợc biểu thị bởi vectơ
i
F
:
i
F
= {f
i1
/0, f
i2
/20, f
i3
/40, f
i4
/60, f
i5
/80, f
i6
/100},
9
hay viết gọn
i
F
= {f
i1
, f
i2
, …, f
i6
}
- Tính mức tƣơng tự: S(
E
,
i
F
), S(
V
,
i
F
), S(
G
,
i
F
), S(
S
,
i
F
) và S(
U
,
i
F
), với
E
,
V
,
G
,
S
,
U
lần lƣợt là các vectơ biểu thị các tập mờ chuẩn E, V, G, S, U
- Tìm max {S(
E
,
i
F
), S(
V
,
i
F
), S(
G
,
i
F
), S(
S
,
i
F
), S(
U
,
i
F
)}.
- Tìm P(g
i
), trong đó g
i
là chữ chỉ mức ứng với giá trị max vừa tìm đƣợc
(g
i
{A, B, C, D, E})
Bƣớc 2: Tính tổng số điểm theo công thức sau:
Tổng số điểm =
Trong đó: T(Q
i
) là điểm của câu hỏi thứ i.
Các công việc trên có thể thực hiện bằng chƣơng trình máy tính.
2.1.2. Ví dụ 2.1:
Một bài kiểm tra gồm 3 câu hỏi, điểm của các câu hỏi lần lƣợt là 2, 3, 5
(T(Q
1
)=2, T(Q
2
)=3, T(Q
3
)=5)
Một giáo viên đã đánh giá bài làm của một học sinh và ghi vào bảng nhƣ sau:
Thứ tự
Điểm mờ
Mức
0%
20%
40%
60%
80%
100%
Câu hỏi 1
0
0
0
0.5
0.8
1
Câu hỏi 2
0
0.3
0.4
0.9
0.5
0
Câu hỏi 3
0
0.1
0.3
0.7
0.5
0
Tổng số điểm:
Theo thuật toán trên ta tính đƣợc điểm cho học sinh này nhƣ sau:
Bƣớc 1:
- S(
E
,
1
F
) =
2 2 2 2 2 2 2
0.5 x 0.9 0.8 x 1 1 x 1
ax(0.8 0.9 1 1 ,0.5 0.8 1 )m
=
2.25
3.45
S(
V
,
1
F
) =
1.97
2.9
; S(
G
,
1
F
) =
0.97
1.89
; S(
S
,
1
F
) =
0.46
1.89
; S(
U
,
1
F
) =
0.1
2.2
- Max {S(
E
,
1
F
), S(
V
,
1
F
), S(
G
,
1
F
), S(
S
,
1
F
), S(
U
,
1
F
)} = S(
V
,
1
F
)
=> mức g
1
=B
- P(g
1
) = 80.
1
1
[ ( ). ( )]
100
n
ii
i
T Q P g
10
- S(
E
,
2
F
) =
1.63
3.45
; S(
V
,
2
F
) =
1.58
2.9
; S(
G
,
2
F
) =
1.36
1.66
;
S(
S
,
2
F
) =
1.12
1.53
; S(
U
,
2
F
) =
0.64
2.2
- Max {S(
E
,
2
F
), S(
V
,
2
F
), S(
G
,
2
F
), S(
S
,
2
F
), S(
U
,
2
F
)} = S(
G
,
2
F
)
=> mức g
2
= C
- P(g
2
) = 60.
- S(
E
,
3
F
) =
1.37
3.45
; S(
V
,
3
F
) =
1.32
2.9
; S(
G
,
3
F
) =
1.08
1.66
;
S(
S
,
3
F
) =
0.83
1.53
; S(
U
,
3
F
) =
0.36
2.2
- Max {S(
E
,
3
F
), S(
V
,
3
F
), S(
G
,
3
F
), S(
S
,
3
F
), S(
U
,
3
F
)} = S(
G
,
3
F
)
=> mức g
3
= C
- P(g
3
) = 60.
Bƣớc 2: Tính tổng số điểm theo công thức sau:
Tổng số điểm =
1
(2 x 80 3 x 60 5 x 60)
100
= 6.4 (nhƣ bảng dƣới đây)
Thứ tự
Điểm mờ
Mức
0%
20%
40%
60%
80%
100%
Câu hỏi 1
0
0
0
0.5
0.8
1
B
Câu hỏi 2
0
0.3
0.4
0.9
0.5
0
C
Câu hỏi 3
0
0.1
0.3
0.7
0.5
0
C
Tổng số điểm: 6.4
Nhận xét: Phƣơng pháp chấm điểm đã trình bày ở trên vẫn còn 2 hạn chế:
- Thứ nhất: Việc sử dụng hàm S để tính độ tƣơng tự giữa các tập mờ chuẩn và
tập mờ là điểm của mỗi câu hỏi cần khá nhiều thời gian, nhất là với số lƣợng câu hỏi
lớn;
- Thứ hai: Trong thuật toán trên để tính g
i
chúng ta đã tìm max {S(
E
,
i
F
),
S(
V
,
i
F
), S(
G
,
i
F
), S(
S
,
i
F
), S(
U
,
i
F
)}. Tuy nhiên có khả năng xảy ra là F
i
≠ F
j
11
nhƣng max{(Y, F
i
)} = max{(Y, F
j
)}, Y{
E
,
V
,
G
,
S
,
U
}, tức là g
i
=g
j
, điều này dẫn
đến việc đánh giá là không công bằng.
Để khắc phục các nhƣợc điểm trên ta có phƣơng pháp mới để đánh giá bài làm
của học sinh nhƣ sau.
2.2. Phương pháp mới để đánh giá bài làm của học sinh [7]
- Giả sử có 11 cấp để đánh giá độ thỏa mãn với mỗi câu trả lời của học sinh nhƣ bảng
sau:
Cấp thỏa mãn
Độ thỏa mãn
EG (Extremely good - Tuyệt vời)
100%
VVG (Very very good - Rất rất tốt)
91% - 99%
VG (Very good - Rất tốt)
81% - 90%
G (Good - Tốt)
71% - 80%
MG (More or less good - Khá tốt)
61% - 70%
F (Fair - Trung bình)
51% - 60%
MB (More or less bad - Khá yếu)
41% - 50%
B (Bad - Yếu)
25% - 40%
VB (Very bad - Rất yếu)
10% - 24%
VVB (Very very bad - Kém)
1% - 9%
EM (Extremely bad - Cực kém)
0%
Bảng 2.3: 11 cấp độ đánh giá độ thỏa mãn
Đặt X = {EG, VVG, VG, G, MG, F, MB, B, VB, VVB, EB},
và T : X -> [0, 1] là hàm đo độ thỏa mãn cao nhất của mỗi cấp thỏa mãn. Từ bảng 2.4
ta có:
T(EG) = 1, T(VVG) = 0.99, T(VG) = 0.90, T(G) = 0.80, T(MG) = 0.70,
T(F) = 0.60, T(MB) = 0.50, T(B) = 0.40, T(VB) = 0.24, T(VVB) = 0.09,
và T(EB) = 0. (1)
12
Trang chấm điểm mờ mở rộng (Extended fuzzy grade sheet):
Thứ
tự
Cấp thỏa mãn
Độ
thỏa
mãn
EG
VVG
VG
G
MG
F
MB
B
VB
VVB
EB
Câu
hỏi 1
Câu
hỏi 2
Câu
hỏi n
Tổng số điểm:
Bảng 2.4: Trang chấm điểm mờ mở rộng
Trang chấm điểm mờ mở rộng là một ma trận gồm 13 cột và n dòng (n là số câu
hỏi của bài kiểm tra)
Cột 1 ghi các câu hỏi từ 1 đến n;
Trên mỗi dòng, từ cột thứ 2 đến cột 12 ghi điểm mờ ứng với câu đã ghi ở cột 1
(điểm mờ đƣợc biểu thị bởi tập mờ trên không gian nền X = {EG, VVG, VG, G, MG,
F, MB, B, VB, VVB, EB}); cột cuối cùng ghi độ thỏa mãn của câu hỏi đó;
Ô ở dòng cuối cùng là tổng điểm của bài kiểm tra.
Ví dụ 2.2:
Thứ
tự
Cấp thỏa mãn
Độ
thỏa
mãn
EG
VVG
VG
G
MG
F
MB
B
VB
VVB
EB
Câu
hỏi 1
0
0.9
0.8
0.5
0
0
0
0
0
0
0
Tổng số điểm:
Bảng 2.5: Ví dụ về trang chấm điểm mờ mở rộng
13
Trong bảng 2.4, ta thấy cấp thỏa mãn của câu hỏi 1 của học sinh đƣợc biểu thị
bởi tập mờ F(Q
1
) trên không gian nền X (X = {EG, VVG, VG, G, MG, F, MB, B, VB,
VVB, EB}), và F(Q
1
) = {0/EG, 0.9/VVG, 0.8/VG, 0.5/G, 0/MG, 0/F, 0/MB, 0/B,
0/VB, 0/VVB, 0/EB}, tức là cấp độ thỏa mãn của bài làm của học sinh ở câu hỏi 1 là
90% rất rất tốt, 80% rất tốt và 30% tốt.
2.2.1. Thuật toán mới đánh giá bài làm của học sinh:
Bƣớc 1:
Giả sử điểm mờ cho câu hỏi i (Q
i
) của học sinh đƣợc ghi nhƣ ở bảng 2.6
Thứ
tự
Cấp thỏa mãn
Độ
thỏa
mãn
EG
VVG
VG
G
MG
F
MB
B
VB
VVB
EB
Câu
hỏi i
y
1
y
2
y
3
y
4
y
5
y
6
y
7
y
8
y
9
y
10
y
11
Tổng số điểm:
Bảng 2.6: Điểm mờ cho câu hỏi i trong trang chấm điểm mờ mở rộng
Với y
i
[0,1], i = 1,2, , 11.
Từ (1) ta có T(EG) = 1, T(VVG) = 0.99, T(VG) = 0.90, T(G) = 0.80, T(MG) = 0.70,
T(F) = 0.60, T(MB) = 0.50, T(B) = 0.40, T(VB) = 0.24, T(VVB) = 0.09 và T(EB) =
0.
Độ thỏa mãn D(Q
i
) của câu hỏi i đƣợc tính bằng công thức:
D(Q
i
) =
1 2 11
1 2 11
x ( ) x ( ) x ( )
y T EG y T VVG y T EB
y y y
(2)
D(Q
i
) [0,1], D(Q
i
) lớn thể hiện độ thỏa mãn cao.
Xét ví dụ 2.2, điểm cho câu hỏi 1 của học sinh đƣợc ghi trong bảng 2.5. Từ
công thức (1) ta có T(VVG)=0.99, T(VG)=0.90 và T(G)=0.80. Áp dụng công thức (2)
ta tính đƣợc độ thỏa mãn D(Q
1
) của câu trả lời của học sinh với câu hỏi 1 là:
D(Q
1
) =
0.9x0.99 0.8x0.90 0.5x0.80
0.9 0.8 0.5
14
= 0.9141
Bƣớc 2:
Giả sử bài kiểm tra có n câu hỏi, tổng số điểm là 100.
Gọi S
i
là điểm dành cho câu hỏi thứ i (Q
i
), với 0≤ S
i
≤ 100 (1≤ i ≤ n) và
1
n
i
i
S
= 100.
Giả sử độ thỏa mãn của câu hỏi i (Q
i
) tƣơng ứng là DQ
i
) (1≤ i ≤ n), khi đó điểm
đánh giá toàn bài của học sinh đƣợc tính theo công thức:
Tổng số điểm =
1
x ( )
n
ii
i
S D Q
(3)
Sau đây là ví dụ minh họa cho quá trình đánh giá này.
2.2.2. Ví dụ 2.3:
Xét một bài kiểm tra có tổng số điểm là 100, gồm 4 câu hỏi, điểm của mỗi câu
hỏi là:
Câu hỏi 1: 20 điểm
Câu hỏi 2: 30 điểm
Câu hỏi 3: 25 điểm
Câu hỏi 4: 25 điểm
và điểm của một học sinh đƣợc cho nhƣ trong bảng dƣới đây:
Thứ
tự
Cấp thỏa mãn
Độ
thỏa
mãn
EG
VVG
VG
G
MG
F
MB
B
VB
VVB
EB
Câu
hỏi 1
0
0.8
0.9
0
0
0
0
0
0
0
0
Câu
hỏi 2
0
0
0
0.6
0.9
0.5
0
0
0
0
0
Câu
hỏi 3
0
0
0.7
0.8
0.5
0
0
0
0
0
0
Câu
hỏi 4
0
0
0
0
0
0
0
0.5
0.9
0.2
0
Tổng số điểm =
15
Bƣớc 1:
Theo công thức (1) và áp dụng công thức (2) ta có:
D(Q
1
) =
0.8 x ( ) 0.9 x ( )
0.8 0.9
T VVG T VG
=
0.8 x 0.99 0.9 x 0.90
0.8 0.9
= 0.9424
D(Q
2
) =
0.6 x ( ) 0.9 x ( ) 0.5 x ( )
0.6 0.9 0.5
T G T MG T F
=
0.6 x 0.80 0.9 x 0.70 0.5 x 0.60
0.6 0.9 0.5
= 0.705
D(Q
3
) =
0.8 x ( ) 0.7 x ( ) 0.5 x ( )
0.8 0.7 0.5
T VG T G T MG
=
0.8 x 0.90 0.7 x 0.80 0.5 x 0.70
0.8 0.7 0.5
= 0.815
D(Q
4
) =
0.5 x ( ) 0.9 x ( ) 0.2 x ( )
0.5 0.9 0.2
T B T VB T VVB
=
0.5 x 0.40 0.9 x 0.24 0.2 x 0.09
0.5 0.9 0.2
= 0.27125
Bƣớc 2:
Áp dụng công thức (3), tổng số điểm của học sinh này là:
20 x D(Q
1
) + 30 x D(Q
2
) + 25 x D(Q
3
) + 25 x D(Q
4
)
= 20 x 0.9424 + 30 x 0.705 + 25 x 0.815 + 25 x 0.27125
= 67.154
= 67
16
Thứ
tự
Cấp thỏa mãn
Độ thỏa
mãn
EG
VVG
VG
G
MG
F
MB
B
VB
VVB
EB
Câu
hỏi 1
0
0.8
0.9
0
0
0
0
0
0
0
0
0.9424
Câu
hỏi 2
0
0
0
0.6
0.9
0.5
0
0
0
0
0
0.705
Câu
hỏi 3
0
0
0.8
0.7
0.5
0
0
0
0
0
0
0.815
Câu
hỏi 4
0
0
0
0
0
0
0
0.5
0.9
0.2
0
0.27125
Tổng số điểm = 67
2.2.3. Chƣơng trình máy tính
Tệp dữ liệu vào: dlvao_C2.m
m=4; %So cau hoi
n=11; %11 cap danh gia
%Do thoa man cao nhat cua moi cap
T=[1 0.99 0.90 0.80 0.70 0.60 0.50 0.40 0.24 0.09 0];
%Diem cho moi cau hoi
S= [20;
30;
25;
25];
%Trang cham diem mo
A= [0 0.8 0.9 0 0 0 0 0 0 0 0;
0 0 0 0.6 0.9 0.5 0 0 0 0 0;
0 0 0.8 0.7 0.5 0 0 0 0 0 0;
0 0 0 0 0 0 0 0.5 0.9 0.2 0];
Tệp chƣơng trình: chuong2.m
dlvao_C2;
%Tinh do thoa man D cua moi cau hoi
17
for i=1:m
t1=0;
for j=1:n
t1=t1+T(j)*A(i,j);
end;
D(i)=t1/sum(A(i,:));
end;
%Tinh tong so diem cua hoc sinh
KQ=0;
for i=1:m
KQ=KQ+S(i)*D(i);
end;
Nhận xét:
- Với thuật toán này do việc cải tiến các bƣớc tính toán và cấu trúc trang tính
điểm mờ (Fuzzy grade sheet) nên quá trình tính toán đơn giản, nhanh hơn và cho ra kết
quả tƣơng tự;
- Việc tính độ thỏa mãn của mỗi câu hỏi theo công thức (2) chính xác hơn, đảm
bảo công bằng hơn trong đánh giá;
- Ta có thể mở rộng trang chấm điểm mờ để đánh giá bài làm của học sinh chi
tiết hơn, chính xác hơn bằng cách thêm các tiêu chí cho mỗi câu hỏi, cụ thể nhƣ phần
trình bày dƣới đây:
2.3. Một phương pháp đánh giá tổng quát: [7]
Bƣớc 1:
Giả sử bài kiểm tra có n câu hỏi với thang điểm 100:
Câu hỏi 1: S
1
điểm;
Câu hỏi 2: S
2
điểm;
Câu hỏi n: S
n
điểm.
Với mỗi câu hỏi, ta sẽ đánh giá theo 4 tiêu chuẩn:
C
1
: Độ chính xác;
18
C
2
: Đầy đủ;
C
3
: Ngắn gọn, súc tích;
C
4
: Rõ ràng, mạch lạc.
và quy định trọng số của các tiêu chuẩn là:
Tiêu chuẩn C
1
có trọng số w
1
Tiêu chuẩn C
2
có trọng số w
2
Tiêu chuẩn C
3
có trọng số w
3
Tiêu chuẩn C
4
có trọng số w
4
(Trong đó: w
i
[0,1], 1 ≤ i ≤ 4).
Ngƣời đánh giá sử dụng bảng chấm điểm mờ mở rộng tổng quát nhƣ hình dƣới
đây:
Thứ
tự
Tiêu
chuẩn
Cấp thỏa mãn
Độ
thỏa
mãn
của
tiêu
chuẩn
Độ
thỏa
mãn
của
câu
hỏi
EG
VVG
VG
G
MG
F
MB
B
VB
VVB
EB
Câu
hỏi
1
C
1
D(C
11
)
P(Q
1
)
C
2
D(C
12
)
C
3
D(C
13
)
C
4
D(C
14
)
Câu
hỏi
2
C
1
D(C
21
)
P(Q
2
)
C
2
D(C
22
)
C
3
D(C
23
)
C
4
D(C
24
)
Câu
hỏi
n
C
1
D(C
n1
)
P(Q
n
)
C
2
D(C
n2
)
C
3
D(C
n3
)
C
4
D(C
n4
)
Bảng 2.7: Trang chấm điểm mờ mở rộng tổng quát
Độ thỏa mãn của câu hỏi i về các tiêu chuẩn C
1
, C
2
, C
3
và C
4
ký hiệu lần lƣợt là
D(C
i1
), D(C
i2
), D(C
i3
) và D(C
i4
), đƣợc tính theo công thức (2) của phần 2.2,
0≤D(C
i1
)≤1, 0≤D(C
i2
)≤1, 0≤D(C
i3
)≤1, 0≤D(C
i4
)≤1 với 1 ≤ i ≤ n
19
Bƣớc 2: Độ thoản mãn P(Q
i
) của câu hỏi i đƣợc tính theo công thức:
P(Q
i
) =
1 1 2 2 3 3 4 4
1 2 3 4
w x D( ) w x D( ) w x D( ) w x D( )
w w w w
i i i i
C C C C
Ở đây P(Q
i
) [0,1], với 1 ≤ i ≤ n.
Tổng điểm toàn bài đƣợc tính bằng công thức:
Tổng số điểm =
1
x ( )
n
ii
i
S P Q
Nhƣ vậy, việc sử dụng trang chấm điểm mờ mở rộng tổng quát sẽ đánh giá chi
tiết hơn, chính xác hơn. Ta cũng có thể áp dụng trang chấm điểm mờ mở rộng tổng
quát (bảng 2.7) để đánh giá toàn diện học sinh, cụ thể nhƣ sau:
- Về cấu trúc của trang không thay đổi.
- Dòng 1: Đánh giá về kết quả học tập (tiêu chuẩn 1: C1).
- Dòng 2: Đánh giá về ý thức chuyên cần trong học tập (tiêu chuẩn 2: C2).
- Dòng 3: Đánh giá về động cơ thái độ học tập (tiêu chuẩn 3: C3)
…
Tùy theo đối tƣợng học sinh (học sinh chuyên, học sinh phổ thông, học sinh bổ
túc, học sinh dân tộc nội trú ) và mục tiêu giáo dục mà quyết định trọng số cho các
tiêu chuẩn, ví dụ với các trƣờng trung học phổ thông có thể sử dụng trọng số sau:
- Tiêu chuẩn C1 có trọng số W1 = 0.5
- Tiêu chuẩn C2 có trọng số W2 = 0.2
- Tiêu chuẩn C3 có trọng số W3 = 0.3
Kết quả đánh giá quy về thang điểm 10, sau đó xếp hạng nhƣ sau:
- Từ 9.5 điểm trở lên xếp loại xuất sắc;
- Điểm từ 8.0 đến dƣới 9.5 xếp loại giỏi;
- Từ 6.5 đến cận dƣới 8.0 xếp loại khá;
- Từ 5.0 đến dƣới 6.5 xếp loại trung bình;
- Từ 3.0 đến dƣới 5.0 xếp loại yếu;
- Từ 0 đến dƣới 3.0 xếp loại kém.
Việc nhập và tính tổng số điểm, đánh giá học sinh có thể làm trong bảng tính
(nhƣ MS. Excel).
20
Chƣơng 3. ĐÁNH GIÁ KẾT QUẢ HỌC TẬP CỦA HỌC SINH
BẰNG CÁCH SỬ DỤNG HÀM THUỘC VÀ LUẬT MỜ
3.1. Đặt vấn đề:
Ở chƣơng 2 chúng ta đã có một phƣơng pháp mới để chấm điểm bài kiểm tra
của học sinh, đánh giá kết quả học tập của học sinh bằng trang chấm điểm mờ mở
rộng. Phƣơng pháp này đảm bảo chính xác hơn, công bằng hơn trong đánh giá. Trong
chƣơng này chúng ta xét một phƣơng pháp nữa, dùng hàm thuộc và luật mờ để đánh
giá kết quả học tập của học sinh, một cách hữu ích để phân biệt thứ tự xếp hạng những
học sinh có điểm số nhƣ nhau. Phƣơng pháp này xét đến cả độ khó, độ phức tạp của
câu hỏi nên đảm bảo tính chính xác, công bằng trong đánh giá học sinh.
3.2. Thuật toán: [6]
Giả sử có m câu hỏi và n học sinh trả lời những câu hỏi này. Đặt Q
i
là câu hỏi
thứ i, S
j
là học sinh thứ j, 1≤i≤m và 1≤j≤n. Ta có ma trận về độ chính xác và ma trận
về thời gian trả lời nhƣ sau:
11 12 1
2
21 22
12
n
n
m m mn
a a a
a
aa
A
a a a
11 12 1
2
21 22
12
n
n
m m mn
t t t
t
tt
T
t t t
Ở đây a
ij
biểu
thị độ chính xác trong câu trả lời của học sinh S
j
đối với câu hỏi
Q
i
, a
ij
[0,1]; t
ij
là thời gian trả lời của học sinh S
j
đối với câu hỏi Q
i
, t
ij
[0,1], 1≤i≤m
và 1≤j≤n.
Đặt G là ma trận điểm của các câu hỏi của bài kiểm tra:
Q
1
Q
2
Q
m
S
1
S
2
S
n
Q
1
Q
2
Q
m
S
1
S
2
S
n
21
1
2
m
g
g
G
g
với g
i
là điểm của câu hỏi Q
i
, g
i
[1,100], 1≤i≤m.
Đặt IM là ma trận xác định độ quan trọng, C là ma trận về độ phức tạp của các câu hỏi:
11 12 13 14 15
22 23 24 25
21
1 2 3 4 5
m m m m m
im im im im im
im im im im
im
IM
im im im im im
11 12 13 14 15
21 22 23 24 25
1 2 3 4 5
m m m m m
c c c c c
c c c c c
C
c c c c c
với ImS
1
, ImS
2
, ImS
3
, ImS
4
và ImS
5
là các cấp độ quan trọng: ImS
1
= "thấp",
ImS
2
="khá thấp", ImS
3
= "trung bình", ImS
4
= "khá cao" và ImS
5
= "cao". im
ij
là độ
thuộc của độ quan trọng của câu hỏi Q
i
vào cấp độ quan trọng ImS
j
, im
ij
[0,1], 1≤i≤m
và 1≤j≤5; CS
1
, CS
2
, CS
3
, CS
4
và CS
5
thể hiện các cấp độ phức tạp: CS
1
= "thấp", CS
2
= "khá thấp", CS
3
= "trung bình", CS
4
= "khá cao" và CS
5
= "cao"; c
ij
là độ thuộc của
độ phức tạp của câu hỏi Q
i
vào cấp độ phức tạp CS
j
, c
ij
[0,1], 1≤i≤m và 1≤j≤5.
Theo ma trận về độ chính xác A và ma trận điểm G, chúng ta có thể tính tổng
điểm TS
j
của học sinh thứ j nhƣ sau:
ij
1
x
m
ji
i
TS a g
với 1≤j≤n (1)
Nếu có nhiều học sinh có cùng tổng điểm, phƣơng pháp đƣợc trình bày dƣới
đây có thể xếp hạng chúng, cụ thể nhƣ sau:
Bƣớc 1:
Q
1
Q
2
Q
m
Q
1
Q
2
Q
m
ImS
1
ImS
2
ImS
3
ImS
4
ImS
5
Q
1
Q
2
Q
m
CS
1
CS
2
CS
3
CS
4
CS
5
22
Dựa vào ma trận về độ chính xác A và ma trận thời gian trả lời T, tính độ chính
xác trung bình AvgA
i
và thời gian trả lời trung bình AvgT
i
cho câu hỏi Q
i
:
ij
1
n
j
i
a
AvgA
n
;
ij
1
n
j
i
t
AvgT
n
với 1≤i≤m (2)
Sau đó làm mờ chúng dựa vào 5 tập mờ "thấp", "khá thấp", "trung bình", "khá
cao" và "cao" nhƣ trên hình 3.1 và tính độ thuộc của chúng vào mỗi tập mờ một cách
tƣơng ứng.
Hình 3.1: Hàm thuộc của các tập mờ "thấp", "khá thấp", "trung bình",
"khá cao" và "cao"
Ta có ma trận mờ FA cho độ chính xác trung bình và ma trận mờ FT cho thời
gian trả lời trung bình nhƣ sau:
11 12 13 14 15
22 23 24 25
21
1 2 3 4 5
m m m m m
fa fa fa fa fa
fa fa fa fa
fa
FA
fa fa fa fa fa
Q
1
Q
2
Q
m
FAS
1
FAS
2
FAS
3
FAS
4
FAS
5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X
1.0
0.8
0.6
0.4
0.2
thấp khá thấp trung bình khá cao cao
23
11 12 13 14 15
22 23 24 25
21
1 2 3 4 5
m m m m m
ft ft ft ft ft
ft ft ft ft
ft
FT
ft ft ft ft ft
với FAS
1
, FAS
2
, FAS
3
, FAS
4
và FAS
5
lần lƣợt biểu thị các tập mờ "thấp", "khá
thấp", "trung bình", "khá cao" và "cao", fa
ij
là giá trị thuộc của độ chính xác trung bình
của câu hỏi Q
i
vào tập FAS
j
, fa
ij
[0,1], 1≤i≤m và 1≤j≤5; FTS
1
, FTS
2
, FTS
3
, FTS
4
và
FTS
5
lần lƣợt biểu thị các tập mờ "ngắn", "khá ngắn", "trung bình", "khá dài" và "dài",
ft
ij
là giá trị thuộc của thời gian trả lời trung bình của câu hỏi Q
i
vào tập FTS
j
,
ft
ij
[0,1], 1≤i≤m và 1≤j≤5.
Bƣớc 2:
Để đánh giá độ khó của mỗi câu hỏi ta sử dụng những luật mờ trên bảng 3.2. Ta
có thể cho độ chính xác và thời gian trả lời những trọng số khác nhau, trong luận văn
này tôi chọn trọng số của độ chính xác là 0.6 và trọng số của thời gian trả lời là 0.4.
Thời gian
trả lời
Độ chính xác
Thấp
Khá thấp
Trung bình
Khá cao
Cao
Ngắn
Trung bình
Khá thấp
Khá thấp
Thấp
Thấp
Khá ngắn
Khá cao
Trung
bình
Khá thấp
Khá thấp
Thấp
Trung bình
Khá cao
Khá cao
Trung bình
Khá thấp
Khá thấp
Khá dài
Cao
Khá cao
Khá cao
Trung bình
Khá thấp
Dài
Cao
Cao
Khá cao
Khá cao
Trung bình
Bảng 3.2: Ma trận luật mờ suy ra mức khó
Dựa vào ma trận mờ FA và FT, những luật mờ trong bảng 3.2 và trọng số của
độ chính xác và thời gian trả lời, ta tiến hành suy luận mờ để suy ra mức khó của câu
hỏi Q
i
thể hiện bằng một vectơ
1 2 3 4 5
.
i
i i i i i
DQ
d d d d d
với 1 ≤ i ≤ m, đƣợc tính nhƣ sau:
Q
1
Q
2
Q
m
FTS
1
FTS
2
FTS
3
FTS
4
FTS
5
thấp khá thấp trung bình khá cao cao
24
Theo bảng 3.2, ta tìm đƣợc những luật mờ suy ra mức khó của câu hỏi Q
i
là "thấp" nhƣ
sau:
Nếu độ chính xác là "khá cao" và thời gian trả lời là "ngắn" thì mức khó là
"thấp",
Nếu độ chính xác là "cao" và thời gian trả lời là "ngắn" thì mức khó là "thấp",
Nếu độ chính xác là "cao" và thời gian trả lời là "khá ngắn" thì mức khó là
"thấp",
Từ đó ta tính d
i1
theo công thức:
d
i1
=max{(0.6 x fa
i4
+ 0.4 x ft
i1
), (0.6 x fa
i5
+ 0.4 x ft
i1
),
(0.6 x fa
i5
+ 0.4 x ft
i2
)} (3)
d
i1
là độ thuộc của độ khó của câu hỏi Q
i
vào tập mờ "thấp", d
i1
[0,1], 1≤i≤m.
Theo bảng 3.2, ta tìm đƣợc những luật mờ suy ra mức khó của câu hỏi Q
i
là "khá thấp"
nhƣ sau:
Nếu độ chính xác là "khá thấp" và thời gian trả lời là "ngắn" thì mức khó là
"khá thấp",
Nếu độ chính xác là "trung bình" và thời gian trả lời là "ngắn" thì mức khó là
"khá thấp",
Nếu độ chính xác là "trung bình" và thời gian trả lời là "khá ngắn" thì mức khó
là "khá thấp",
Nếu độ chính xác là "khá cao" và thời gian trả lời là "khá ngắn" thì mức khó là
"khá thấp",
Nếu độ chính xác là "khá cao" và thời gian trả lời là "trung bình" thì mức khó là
"khá thấp",
Nếu độ chính xác là "cao" và thời gian trả lời là "trung bình" thì mức khó là
"khá thấp",
Nếu độ chính xác là "cao" và thời gian trả lời là "khá dài" thì mức khó là "khá
thấp",
Từ đó ta tính d
i2
theo công thức:
d
i2
=max{(0.6 x fa
i2
+ 0.4 x ft
i1
), (0.6 x fa
i3
+ 0.4 x ft
i1
),
(0.6 x fa
i3
+ 0.4 x ft
i2
), (0.6 x fa
i4
+ 0.4 x ft
i2
),
(0.6 x fa
i4
+ 0.4 x ft
i3
), (0.6 x fa
i5
+ 0.4 x ft
i3
), (4)