Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
1
ĐỀ CƯƠNG ÔN TẬP
MÔN TOÁN 8 HỌC KÌ II
A. PHẦN ĐẠI SỐ
I. Phương trình bậc nhất một ẩn
1 . Phương trình bậc nhất một ẩn
1.1. Định nghĩa: Phương trình bậc nhất một ẩn là phương trình có dạng:
ax + b = 0 (với a và b là hai số đã cho và a
0)
Phương trình có nghiệm duy nhất:
b
x
a
- Nếu a = 0, b ≠ 0 : pt vô nghiệm
- Nếu a = 0, b = 0 : pt vô số nghiệm
1.2. Cách giải
Chuyển hạng tử chứa ẩn sang vế trái, hạng tử tự do (không chứa ẩn) sang vế phải. Sau
đó thu gọn rồi tìm x.
*Chú ý: Khi chuyển vế hạng tử nào thì phải đổi dấu số hạng đó.
1.3. Ví dụ: Giải các pt sau
2 – 4 0
4
)
2
4
2
2
2
a x
x
x
x
S
2 – 4 5 5
2 5 5 4
3 9
3
3
b)
x x
x x
x
x
S
2. Phương trình đưa về phương trình bậc nhất
2.1. Phương trình có chứa dấu ngoặc
a. Cách giải: thực hiện phá ngoặc bằng cách nhân các thừa số trong cùng hạng tử hoặc
nếu đằng trước dấu ngoặc là “dấu trừ” thì phải đổi dấu các hạng tử trong ngoặc đó.
b. Ví dụ: Giải pt:
10 – (5 3) 4 3
10 – 5 + 3 4 12
5 + 3 4 12
5 4 12 3
9
9
x x x
x x x
x
S
x x
x x
2.2. Phương trình có mẫu là số
a. Cách giải
Bước 1: Quy đồng, khử mẫu hai vế.
Bước 2: Giải phương trình vừa tìm được.
b. Ví dụ: Giải phương trình
2 2 1 5
( :6)
2 6 3
3( 2) (2 1) 5.2
x x
MSC
x x
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
2
3 6 2 1 10
3 2 10 6 1
5
5
x x
x x
x
S
3. Phương trình tích
3.1. Định nghĩa: phương trình tích là phương trình có dạng:
A(x). B(x) = 0
Cách giải: A(x) = 0 hoặc B(x) = 0
* Mở rộng:
( ) 0
(. 0
) 0
( ) 0
A x
BA x B x
x
x xC
C
* Nếu phương trình có bậc từ bậc hai trở lên và chưa có dạng tích thì phải đưa
phương trình về dạng phương trình tích bằng cách phân tích thành nhân tử.
3.2. Ví dụ: Giải phương trình
a) (2 1)(3 2) 0
2 1 0
3 2 0
1
2
2
3
1 2
;
2 3
x x
x
x
x
x
S
b) 2 ( 1) 3( 1) 0
( 1)(2 3) 0
1 0
2 3 0
1
3
2
3
1;
2
x x x
x x
x
x
x
x
S
3
2
c) 4 0
( 4) 0
( 2)(x 2) 0
0
2 0
2 0
0
2
2
0; 2;2
x x
x x
x x
x
x
x
x
x
x
S
4. Phương trình chứa ẩn ở mẫu
4.1 Cách giải
Phân tích các mẫu thức thành nhân tử (nếu được).
Bước 1: Tìm ĐKXĐ: điều kiện của biến để tất cả mẫu thức khác không.
Bước 2: Quy đồng, khử mẫu hai vế.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Kết luận: các giá trị nào của ẩn thỏa mãn ĐKXĐ chính là nghiệm của
phương trình. Nghiệm không thỏa (nghiệm ngoại lai) thì loại bỏ đi.
4.2. Ví dụ: Giải phương trình:
a)
1
3
1
1
1
2
2
x
xx
)1)(1(
3
1
1
1
2
xxxx
(1)
ĐKXĐ:
101
101
xx
xx
2
2 5
)
2 2 4
x x
b
x x x
2 5
2 2 ( 2)( 2)
x x
x x x x
(2)
ĐKXĐ:
202
202
xx
xx
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
3
MTC:
)1)(1(
xx
(1) 2( 1) 1( 1) 3
2 2 1 3
3 3
x x
x x
x
6
x
(tmđk)
6
S
MTC:
)2)(2(
xx
(2)
5)2(2)2(
xxxx
2 2
2
2
2
2 2 4 5
6 5 0
6 5 0
5 5 0
( 1) 5( 1) 0
( 1)( 5) 0
1 0 1 ( )
5 0 5 ( )
1;5
x x x x
x x
x x
x x x
x x x
x x
x x tm
x x tm
S
5. Phương trình chứa dấu giá trị tuyệt đối
Kiến thức cần nhớ:
0
0
a neáu a
a
a neáu a
Ví dụ: Giải các phương trình sau
a)
3 4
x x
●
3 3 3 0 0
x x x x
Ta có: 3x = x + 4
3x – x = 4
2x = 4
x = 2 (nhận)
●
3 3 3 0 0
x x x x
Ta có: -3x = x + 4
-3x – x = 4
- 4x = 4
x = -1 (nhận)
Vậy
1;2
S
b)
3 9 2x x
●
3 3 3 0 3
x x x x
Ta có: x - 3 = 9 – 2x
x + 2x = 9 + 3
3x = 12
x = 4 (nhận)
●
3 ( 3) 3 0 3
x x x x
Ta có: - (x – 3) = 9 – 2x
- x + 3 = 9 – 2x
- x + 2x = 9 - 3
x = 6 (loại)
Vậy
4
S
6. Giải bài toán bằng cách lập phương trình
6. 1. Cách giải chung
* Bước 1: Lập phương trình (gồm các công việc sau):
Chọn ẩn số (ghi rõ đơn vị) và đặt điều kiện cho ẩn;
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;
Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
* Bước 2: Giải pt: Tuỳ từng phương trình mà chọn cách giải ngắn gọn và phù hợp.
* Bước 3: Trả lời : Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào
thỏa mãn điều kiện của ẩn, nghiệm nào không rồi kết luận.
- Các dạng bài thường gặp: toán về số, phần trăm; toán chuyển động; toán năng xuất.
Trong từng dạng toán thường có 3 đại lượng tham gia là: đại lượng đã biết; đại lượng
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
4
cần phải đi tìm và đại lượng trung gian và ta cũng luôn lập phương trình qua đại
lượng trung gian đó. Do đo, khi giải ta có thể lập bảng như sau:
Các sự vật, sự việc
trong đề bài
ĐL đã biết
(1)
ĐL đi tìm
(2)
ĐL trung gian
Số thứ nhất Xe máy Kế hoạch
….
….
Mối quan hệ của 1 và 2
Số thứ hai Ô tô Thực tế
….
….
Mối quan hệ của 1 và 2
6.2. Ví dụ:
Một xe máy khởi hành từ Hà Nội đi Nam Định với vận tốc 35 km/h. Sau đó 24 phút,
trên cùng tuyến đường đó, một ô tô xuất phát từ Nam Định đi Hà Nội với vận tốc 45 km/h.
Biết quãng đường Nam Định - Hà Nội dài 90 km. Hỏi sau bao lâu kể từ khi xe máy khởi
hành, hai xe gặp nhau?
Giải: 24 phút =
5
2
giờ
Gọi x (h) là thời gian hai xe gặp nhau kể từ khi xe máy khởi hành ( x >
5
2
)
ĐL đã biết
Vận tốc (km/h)
ĐL đi tìm
Thời gian đi (h)
ĐL trung gian
Quãng đường đi (km)
Xe máy 35 x 35x
Ô tô 45
x -
5
2
45(x -
5
2
)
Hai xe đi ngược chiều gặp nhau nghĩa là đến lúc đó tổng quãng đường hai xe đi được
đúng bằng quãng đường Nam Định - Hà Nội. Ta có phương trình : 35x + 45(x -
5
2
) = 90
Giải phương trình tìm được: x =
7
1 1 21'
20
h h
II. Bất phương trình bậc nhất một ẩn
1. Định nghĩa: Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b
0, ax + b
0)
với a và b là hai số đã cho và a
0 , được gọi là bất phương trình bậc nhất một ẩn .
2. Cách giải: Tương tự như cách giải phương trình đưa về bậc nhất rồi biểu diễn nghiệm
trên trục số.
* Chú ý :
- Khi chuyển vế hạng tử thì phải đổi dấu số hạng đó.
- Khi chia cả hai về của bất phương trình cho số âm phải đổi chiều bất phương trình.
3. Ví dụ: Giải bất phương trình và biểu diễn tập nghiệm trên trục số
a) 2x – 3 > 0
2 – 4 0
2 4
2
x
x
x
Biễu diễn tập nghiệm trên trục số
b) -3x – 15
0
3 – 15 0
3 15
15
3
5
x
x
x
x
Biễu diễn tập nghiệm trên trục số
50
0 2
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
5
B. PHẦN HÌNH HỌC
I. Định lí Ta - lét
1. Định lí Ta-let trong tam giác : Nếu một đường thẳng cắt hai cạnh của một tam giác và
song song với cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
C'
B
A
C
B'
GT
ABC: B’C’ //BC
KL
' 'AB AC
AB AC
;
' '
' '
AB AC
B B C C
;
' 'B B C C
AB AC
2. Định lí đảo của ĐL Ta-let: Nếu một đường thẳng cắt hai cạnh của một tam giác và định
ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn
lại.
C'
B
A
C
B'
GT
ABC ; B’
AB;C’
AC
' '
' '
AB AC
B B C C
KL
B’C’ //BC
3. Hệ quả của định lí Ta-let : Nếu một đường thẳng cắt hai cạnh của một tam giác và song
song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh
của tam giác đã cho.
C'
B
A
C
B'
GT
ABC : B’C’ // BC;
(B’
AB ; C’
AC)
KL
' ' ' 'AB AC B C
AB AC BC
II. Tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc
chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với 2 cạnh kề hai đoạn ấy.
D
B
A
C
GT
ABC: AD là phân giác của
BAC
KL
AB
AC
DB
DC
III. Tam giác đồng dạng
1. Các trường hợp tam giác đồng dạng
a) Định lí về hai tam giác đồng dạng: Nếu một đường thẳng cắt hai cạnh của một
tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với
tam giác đã cho.
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
6
M N / / BC A M N ABC
*Lưu ý: Định lí cũng đúng đối với trường hợp đường
thẳng cắt phần kéo dài hai cạnh của tam giác và song
song với cạnh còn lại
b) Các trường hợp đồng dạng của hai tam giác: 3 trường hợp
*Trường hợp 1: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia
thì hai tam giác đó đồng dạng.
B'
A'
C'
B
A
C
GT
ABC vµ A'B'C' cã:
AC BC
AB
A 'B' A 'C' B 'C'
KL
ABC A 'B'C'(c.c.c)
*Trường hợp 2: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia
và hai góc tạo bởi các cạnh đó bằng nhau thì hai tam giác đồng dạng.
B'
A'
C'
B
A
C
GT
ABC vµ A'B'C' cã:
BC
AB
A 'B' B 'C'
B B'
KL
ABC A 'B'C'(c.g.c)
* Trường hợp 3: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác
kia thì hai tam giác đồng dạng.
B'
A'
C'
B
A
C
GT
ABC vµ A'B'C' cã:
A A '
B B'
KL
ABC A 'B'C'(g.g )
2. Các trường hợp đồng dạng của hai tam giác vuông
* Trường hợp 1: Nếu hai tam giác vuông có một góc nhọn bằng nhau thì chúng đồng
dạng.
A
C
C'
A'
B
B'
GT
0
ABC vµ A'B'C' cã:
A A ' 90
C C'
KL
ABC A 'B'C'(g.g)
a
N
M
C
B
A
S
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
7
*Trường hợp 2: Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc
vuông của tam giác vuông kia thì hai tam giác đó đồng dạng.
A
C
C'
A'
B
B'
GT
Hai tam gi¸c vu«ng ABC vµ A'B'C' cã:
AC
AB
A 'B' A 'C'
KL
ABC A 'B'C'
* Trường hợp 3: Nếu cạnh góc vuông và cạnh huyền của tam giác vuông này tỉ lệ với
cạnh góc vuông và cạnh huyền của tam giác vuông kia thì hai giác đó đồng dạng.
Hai tam gi¸c vu«ng ABC vµ A'B'C' cã:
BC
AB
ABC A 'B 'C'(c.c.c)
A 'B' B 'C'
IV. Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng
- Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.
- Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
A 'B 'C' ABC theo tØ sè k
2
A 'B'C'
ABC
S
A 'H'
k vµ k
AH S
V. Công thức tính thể tích, diện tích xung quanh, diện tích toàn phần của hình hộp chữ
nhật, hình lập phương, hình lăng trụ đứng
Hình Diện tích xung
quanh
Diện tích toàn
phần
Thể tích
- Lăng trụ đứng: Hình có các
mặt bên là hìn chữ nhật, đáy là
một đa giác.
- Lăng trụ đều: là hình lăng trụ
có đáy là đa giác đều.
S
xq
= 2p.h
P: nửa chu vi đáy
h: chiều cao
S
tp
= S
xq
+ 2S
đ
V = S.h
S: diện tích đáy
h : chiều cao
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
8
Hình Diện tích xung
quanh
Diện tích toàn
phần
Thể tích
- Hình hộp chữ nhật: hình có
6 mặt là hình chữ nhật.
S
xq
= 2(a+b).h
a, b : hai đáy
h: chiều cao
S
tp
= 2(ab+ac+bc)
V = abc
- Hình lập phương: là hình có
6 mặt là hình vuông (3 kích
thước bằng nhau).
S
xq
= 4a
2
a: cạnh hình lập
phương
S
tp
= 6a
2
V = a
3
- Hình chóp đều: là hình chóp
có mặt đáy là đa giác đều, các
mặt bên là các tam giác cân
bằng nhau có chung đỉnh.
S
xq
= p.d
p : nửa chu vi đáy
d: chiều cao của mặt
bên
S
tp
= S
xq
+ S
đ
V =
1
3
S.h
S: diện tích đáy
h : chiều cao
VI. Hệ thức lượng trong tam giác vuông (học ở lớp 9)
2
b ab'
2
c ac '
2 2 2
a b c
(Pi_ta_go)
bc = ah
2
h b'c '
2 2 2
1 1 1
b c h
VII. Diện tích các hình (nhắc lại)
a
H
h
b'
b
c'
c
C
B
A
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
9
.S a b
2
S a
1
S ah
2
1
S ah
2
1
S ah
2
1
S (a b)h EF.h
2
.S a h
1 2
1
S d d
2
C. PHẦN BÀI TẬP
I. Phương trình và bất phương trình
Bài 1. Giải các phương trình bậc nhất sau
a) 3x - 2 = 2x – 3 b) 2x + 3 = 5x + 9 c) 5 - 2x = 7
d) 10x + 3 - 5x = 4x +12 e) 11x + 42 - 2x = 100 - 9x - 22
Bài 2. Giải các phương trình sau
a) 2x –(3 - 5x) = 4(x + 3) b) x(x + 2) = x(x + 3) c) 2(x - 3) + 5x(x - 1) = 5x
2
Bài 3. Giải các phương trình sau
a/
x
xx
2
3
5
6
13
2
23
c/
2
2x
3
x
4x
5
4x
b/
3
3
4x5
7
2x6
5
3x4
d/
5
5
2x4
3
1x8
6
2x5
Bài 4. Giải các phương trình sau
a) (2x + 1)(x - 1) = 0
b) (x +
2
3
)(x -
1
2
) = 0
c) (3x - 1)(2x - 3)(x + 5) = 0
d) 3x - 15 = 2x(x - 5) e) x
2
– x = 0 f) x
2
– 2x + 1 – 4 = 0
g) x
3
– 9x = 0 h) x
2
– x = 4x - 6 i) (x + 1)(x + 4) =(2 - x)(x + 2)
Bài 5. Giải các phương trình sau
a)
7 3 2
1 3
x
x
b)
2(3 7 ) 1
1 2
x
x
c)
1 3
3
2 2
x
x x
d)
8 1
8
7 7
x
x x
d
1
d
2
h
a
h
a
F
E
b
h
a
h
a
a
a
b
h
a
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
10
Bài 6. Giải các phương trình sau
a)
2
5 5 20
5 5 25
x x
x x x
b)
1
1
2
1
1
2
x
x
xx
c)
2
2( 3) 2( 1) ( 1)( 3)
x x x
x x x x
d)
x
x
x
x
x
4
13
4
12
16
76
5
2
Bài 7. Giải các phương trình sau
a)
|5 − 2x| = 1 – x;
b)
|8 − x| = x
2
+ x;
c)
|−2x| = 4x – 3;
d)
|5x – 2| = |1 – x|;
e)
|x – 1| + |1 – x| = 10;
f)
|x + 1| + |x + 2| + |x + 3| = 2006x
Bài 8. Giải và biểu diễn tập nghiệm trên trục số các bất phương trình sau
a) 2x + 2 > 4 b)
3 2 5x
c) 10 - 2x > 2 d)
1 2 3x
Bài 9. Giải các bất phương trình sau
a) 10x + 3 – 5x
14x + 12 b) (3x - 1) < 2x + 4 c) 4x – 8
3(2x - 1) –
2x + 1
d) x
2
– x(x + 2) > 3x – 1 e)
3
2
5
23 xx
f)
23
1
6
2 xxx
II. Giải bài toán bằng cách lập phương trình
Bài 1.
Hai thư viện có cả tất cả 20.000 cuốn sách. Nếu chuyển từ thư viện thứ nhất sang thư viện thứ hai
2.000 cuốn sách thì số sách của hai thư viện bằng nhau. Tính số sách lúc đầu ở mỗi thư viện .
Giải: Gọi x (cuốn) là số sách ban đầu của thư viện I (2000 < x <20000).
Lúc đầu Lúc chuyển Phương trình
Thư viện I
x x - 2000
Thư viện II
20000 - x 20000 – x + 2000
x – 2000 = 20000 – x + 2000
ĐS: Số sách lúc đầu ở thư viện thứ nhất 12000; thứ hai là 8000.
Bài 2. Số lúa ở kho thứ nhất gấp đôi số lúa ở kho thứ hai. Nếu bớt ở kho thứ nhất đi 750 tấn và
thêm vào kho thứ hai 350 tấn thì số lúa ở trong hai kho sẽ bằng nhau. Hỏi lúc đầu mỗi kho có bao
nhiêu tấn lúa.
Giải: Gọi x .
Lúa
Lúc đầu Lúc thêm , bớt
Phương trình
Kho I
Kho II
ĐS: Lúc đầu kho I có 2200 tấn, kho II có 1100 tấn.
Bài 3. Mẫu số của một phân số lớn hơn tử số của nó là 5. Nếu tăng cả tử mà mẫu của nó thêm 5
đơn vị thì được phân số mới bằng phân số
2
3
.Tìm phân số ban đầu.
Giải: Gọi x .
Lúc đầu Lúc tăng Phương trình
Tử số
Mẫu số
ĐS: Phân số là 5/10.
Bài 4. Năm nay, tuổi bố gấp 4 lần tuổi Hoàng. Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi Hoàng.
Hỏi năm nay Hoàng bao nhiêu tuổi ?
Giải: Gọi x .
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
11
Năm nay 5 năm sau Phương trình
Tuổi Hoàng
Tuổi Bố
ĐS: Năm nay Hoàng 10 tuổi.
Bài 5. Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Lúc về người đó đi với vận tốc
12km/h nên thời gian về lâu hơn thời gian đi là 45 phút. Tính quãng đường AB?
Giải: Đổi thời gian:
3
45'
4
h
Gọi x .
Vì thời gian về lâu hơn thời gian đi là
3
4
h
nên ta có phương trình:
ĐS: Quãng đường AB dài 45 km.
Bài 6. Lúc 6 giờ sáng, một xe máy khởi hành từ A để đến B. Sau đó 1 giờ, một ôtô cũng xuất phát
từ A đến B với vận tốc trung bình lớn hớn vận tốc trung bình của xe máy 20km/h. Cả hai xe đến
B đồng thời vào lúc 9h30’sáng cùng ngày. Tính độ dài quãng đường AB và vận tốc trung bình
của xe máy?
Giải:Gọi x .
ĐS: Vận tốc của xe máy là 50 km/h, của ôtô là 50 + 20 = 70 km/h.
Bài 7. Một ca nô xuôi dòng từ bến A đến bến B mất 6 giờ và ngược dòng từ bến B về bến A mất
7 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h.
Giải:Gọi x .
ĐS: Phương trình: 6(x + 2) = 7(x - 2)
Bài 8. Tìm một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu
thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu là 370.
ĐS: Số ban đầu là 48.
Bài 9. Một tổ sản xuất theo kế hoạch mỗi ngày phải sản suất 50 sản phẩm. Khi thực hiện, mỗi
ngày tổ đã sản xuất được 57 sản phẩm. Do đó, tổ đã hoàn thành trước kế hoạch 1 ngày và còn
vượt mức 13 sản phẩm. Hỏi theo kế hoạch, tổ phải sản xuất bao nhiêu sản phẩm ?
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
12
Giải:Gọi x .
Đáp số: Theo kế hoạch, tổ phải sản xuất ………… sản phẩm.
Bài 10. Một bác thợ theo kế hoạch mỗi ngày làm 10 sản phẩm. Do cải tiến kỹ thuật mỗi ngày bác
đã làm được 14 sản phẩm. Vì thế, bác đã hoàn thành kế hoạch trước 2 ngày và còn vượt mức dự
định 12 sản phẩm. Tính số sản phẩm bác thợ phải làm theo kế hoạch?
Giải:Gọi x .
III. Hình học
Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm .Vẽ đường cao AH của
ADB .
a) Tính DB b) Chứng minh
ADH ~
ADB
c) Chứng minh AD
2
= DH.DB d) Chứng minh
AHB ~
BCD
e) Tính độ dài đoạn thẳng DH , AH .
Bài 2 : Cho
ABC vuông ở A, có AB = 6cm, AC = 8cm .Vẽ đường cao AH .
a) Tính BC b) Chứng minh
ABC ~
AHB
c) Chứng minh AB
2
= BH.BC .Tính BH , HC
d) Vẽ phân giác AD của góc A ( D
BC) .Tính DB
Bài 3 : Cho hình thanh cân ABCD có AB // DC và AB < DC, đường chéo BD vuông góc với
cạnh bên BC. Vẽ đường cao BH, AK.
a) Chứng minh
BDC ~
HBC b) Chứng minh BC
2
= HC .DC
c) Chứng minh
AKD ~
BHC d) Cho BC = 15cm , DC = 25 cm .Tính HC , HD
e) Tính diện tích hình thang ABCD.
Bài 4 Cho
ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và
đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.
a) Chứng minh
ADB ~
AEC
b) Chứng minh HE.HC = HD.HB
c) Chứng minh H, K, M thẳng hàng
d)
ABC phải có điều kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
Bài 5 : Cho tam giác cân ABC (AB = AC) .Vẽ các đường cao BH , CK , AI .
a) Chứng minh BK = CH
b) Chứng minh HC.AC = IC.BC
c) Chứng minh KH //BC
d) Cho biết BC = a , AB = AC = b .Tính độ dài đoạn thẳng HK theo a và b .
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
13
MỘT SỐ ĐỀ THI THAM KHẢO
Đề 1: Đề thi năm học 2013 – 2014
Câu 1: (1điểm)
Phương trình bậc nhất một ẩn là gì?
Áp dụng: Giải phương trình : 7 + 2x = 22 – 3x
Câu 2: (1điểm)
Viết công thức tính diện tích xung quanh của hình lăng trụ đứng.
Áp dụng: Tính diện tích xung quanh của hình lăng trụ đứng, đáy là tam giác vuông có
hai cạnh góc vuông là 3cm và 4cm, chiều cao là 9cm.
Câu 3: (1điểm)
Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 3 + 7x > 4
Câu 4: (1,5điểm)
Giải phương trình sau:
)2)(2(
4
2
5
2
3
xxxx
.
Câu 5: (2,5 điểm)
Một người đi xe máy từ Thị trấn Tân Hiệp đến An Minh với vận tốc 40km/h.
Lúc đi ngược về với vận tốc 30km/h. Do đó thời gian về nhiều hơn thời gian đi là 40 phút.
Tính quãng đường Thị trấn Tân Hiệp – An Minh.
Câu 6: (3 điểm)
Cho hình chữ nhật ABCD có AB= 8cm, BC = 6cm. Kẻ đường cao AH của tam giác
ADB.
a) Chứng minh AHB BCD.
b) Tính độ dài các đoạn thẳng BD và AH.
c) Tính diện tích tam giác AHB.
HẾT
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
14
Đề 2: Đề thi năm học 2012 – 2013
Câu 1 (2,5 đ):
Giải các phương trình sau:
) 2(3 4) 5 5 1
1 2 1
)
1 2
5 4 3 2
) 4
99 98 97 96
a x x
b
x x
x x x x
c
Câu 2 (1đ):
Giải và biểu diễn tập nghiệm trên trục số các bất phương trình sau:
a) 5x – 3 3x + 1
b) 2x + 5 > 7x + 15
Câu 3 (2đ):
Một người đi xe máy khởi hành lúc 6 giờ 30 phút từ A dự định đến B lúc 10 giờ 30
phút. Do khởi hành với vận tốc lớn hơn 5 km/h nên đến B sóm hơn 30 phút. Tính quãng
đường AB.
Câu 4 (2đ):
Cho tam giác ABC, trung tuyến CM. Gọi G là trọng tâm của tam giác, qua G kẻ đường
thẳng song song với AB cắt AC tại D, cắt BC tại E.
a) Cho AC = 6cm; BC = 8cm. Tính CD; CE
b) Nếu AB = 10cm thì AG = ?
Câu 5 (1,5đ):
Cho hình chóp tứ giác đều S.ABCD có cạnh 8cm; đường cao SO = 3cm. Tính diện tích
xung quang, thể tích của hình chóp.
HẾT
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
15
Đề 3: Đề thi năm học 2010 – 2011
A. LÝ THUYẾT (2đ) ( Học sinh chọn một trong hai câu sau)
Câu 1.
a) Nêu các bước để giải phương trình chứa ẩn ở mẫu ?
a) Áp dụng: Giải phương trình
3
5
52
x
x
Câu 2.
a) Nêu định lý về tính chất đường phân giác của tam giác.
b) Ghi giả thiết, kết luận và vẽ hình minh họa cho câu a).
B. BÀI TOÁN (8đ)
Bài 1: (2.5 điểm) Giải các phương trình, bất phương trình sau:
432)
8228)
01)
7253)
2
xd
xxc
xb
xxa
Bài 2: (1.5 điểm)
Một người đi xe đạp từ A đến B với vận tốc trung bình là 15km/h. Lúc về A, người đó
chỉ đi với vận tốc trung bình là 12km/h, nên thời gian về nhiều hơn thời gian đi là 1 giờ. Tính
độ dài quãng đường AB.
Bài 3: (2.5 điểm)
Cho ABC có AB = 6cm; AC = 8cm và BC = 10cm
a) Chứng minh rằng : ABC vuông tại A.
b) Vẽ đường cao AH Chứng minh rằng : AH
2
= HB . HC
Bài 4: (1.5 điểm)
Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy là 10 cm. Chiều cao hình chóp là
12 cm. Hãy tính thể tích hình chóp.
HẾT
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
16
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
17
ĐÁP ÁN
Đề 1: Đề thi năm học 2013 – 2014
Câu Đáp Án Điểm
Câu 1
(1 điểm)
HS nêu đúng như SGK
Áp dụng giải phương trình 7 + 2x = 22 – 3x
2x + 3x = 22 – 7
5x = 15
x = 3
Vậy tập nghiệm của phương trình là S =
3
0,5 điểm
0,25 điểm
0,25 điểm
Câu 2
(1 điểm)
Công thức: S
xq
= 2p.h (p là nửa chu vi đáy, h là chiều cao).
Áp dụng định lý pytago vào tam giác vuông ABC, ta có:
BC
2
= AB
2
+ AC
2
BC =
52543
22
(cm)
Diện tích xung quanh:
S
xq
= 2p.h =(3+4+5).9=108(cm
2
)
0,5 điểm
0,25 điểm
0,25 điểm
Câu 3
(1 điểm)
Giải bất phương trình 3+7x >4
7x > 4 - 3
7x > 1
x >
7
1
Vậy nghiệm của bất phương trình là x>
7
1
Biểu diễn tập nghiệm trên trục số
0,25 điểm
0,25 điểm
0,5 điểm
Câu 4
(1,5 điểm)
Giải phương trình:
)2)(2(
4
2
5
2
3
xxxx
(1)
ĐKXĐ:
2
x
và
2
x
(1)
)2)(2(
4
2
5
2
3
xxxx
.
Quy đồng rồi khử mẫu ta được
3(x-2) – 5(x+2) = 4
3x – 6 – 5x – 10 =4
-2x = 4 + 16
-2x = 20
x = -10 (TMĐK)
Vậy tập nghiệm của phương trình đã cho là S =
10
0,25 điểm
0,25 điểm
0,25 điểm
0,5 điểm
0,25điểm
Câu 5
(2,5 điểm)
Gọi x (km) là độ dài quãng đường Thị trấn Tân Hiệp – An Minh.
ĐK : x > 0
0,25 điểm
7
1
0
///////////////////////////
(
B
F
A
E
D
9cm
3cm
4cm
C
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
18
Vận tốc lúc đi là 40km/h nên thời gian đi là
h
x
40
.
Vận tốc lúc về là 30km/h nên thời gian về là
h
x
30
.
Do thời gian về nhiều hơn thời gian đi là 40 phút nên ta có phương trình :
Đổi 40 phút =
h
3
2
3
2
4030
xx
4x – 3x = 2.40
x = 80 (TMĐK)
Trả lời: Độ dài quãng đường Thị trấn Tân hiệp - An Minh là 80km
0,25 điểm
0,25 điểm
0,25 điểm
0,25 điểm
0,5 điểm
0,5 điểm
0,25 điểm
Bài 6
(3điểm)
a) AHB BCD có:
0
90 CH
(gt)
BDCABH
(soletrong)
Do đó : AHB BCD(g.g)
b) Áp dụng định lý Pytago vào tam giác vuông ABD, ta có:
BD
2
= AB
2
+ AD
2
BD
2
= 8
2
+ 6
2
= 64 + 36 = 100
BD = 100 = 10cm
Ta có: AHB BCD (cmt)
Tỉ số đồng dạng:
BD
AB
BC
AH
.
Suy ra:
.8,4
10
6.8.
cm
BD
BCAB
AH
c) Ta có: AHB BCD theo tỉ số đồng dạng:
.
5
4
6
8,4
BC
AH
k
)(248.6.
2
1
2
1
2
cmDCBCS
BCD
2
2 2
4 16
.24 .24 15,36( )
5 25
AHB
AHB
BCD
S
k S cm
S
Lưu ý : HS làm cách khác đúng vẫn cho điểm tối đa.
0,5 điểm
0,25 điểm
0,25 điểm
0,5 điểm
0,5 điểm
0,5 điểm
0,25 điểm
0,25 điểm
A
B
C
D
H
6cm
8cm
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
19
Đề 2: Đề thi năm học 2012 – 2013
Câu
Nội dung Đểm
1
4
4
58156
15586
155)43(2)
S
x
xx
xx
xxa
2
1
0)2)(1(
023
422
)1(2.2)1(2
1;0:
2
1
1
21
)
2
2
x
x
xx
xx
xxxx
xxxx
xxĐKXĐ
xx
b
94
0
96
1
97
1
98
1
99
1
0)94(
0
96
1
97
1
98
1
99
1
)94(
0
96
94
97
94
98
94
99
94
441
96
2
1
97
3
1
98
4
1
99
5
4
96
2
97
3
98
4
99
5
)
x
dox
x
xxxx
xxxx
xxxx
c
a)1đ
b)1đ
c)1đ
2
a) 5x – 3 3x + 1 b) 2x + 5 > 7x + 15
5x – 3x 1 + 3 2x – 7x >15 – 5
2x 4 -5x > 10
x 2 x < - 2
0 2 -2 0
0,5
0,5
3
Gọi x(km) là quãng đường AB (x > 0) thì vận tốc theo dự định là
4
x
(10h30’ – 6h30’ =
4h) ; vận tốc thực tế là
5,3
x
(4h – 30’=3,5h).
Theo bài ra ta có phương trình :
5
45,3
xx
Giải phương trình ta có x = 140 (TM ĐK)
Vậy quãng đường AB dài 140km
0,5
0,5
0,5
0,5
4 Vẽ hình, ghi GT – KL
a) Vì DE // AB
3
2
CM
CG
BC
CE
AC
CD
(G là trọng tâm)
)(
3
16
);(4
3
2
86
CMCECMCD
CECD
b) Ta có 10
2
= 6
2
+ 8
2
AB
2
= BC
2
+ AC
2
ABC vuông tại A
CM =
cm
AB
5
2
10
2
(trung tuyến thuộc cạnh huyền)
CG =
)(
3
10
5
3
2
cm
0,25
0,25
0,5
0,5
0,25
0,25
5 Vẽ hình
Gọi I là trung điểm của CD thì SI là trung đoạn
OI = CD : 2 = 8 : 2 = 4 (cm)
Tam giác vuông SOI có SI =
52543
2222
OISO
V = Sh = 8
2
. 3 = 192 (cm
3
)
S
xq
= pd = 2.8.5 = 200 (cm
2
)
0,25
0,25
0,25
0,25
0,25
0,25
C
D
A
M
B
E
G
A
S
D
C
I
O
B
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
20
Đề 3: Đề thi năm học 2010 – 2011
Câu Nội dung Điểm
Câu 1:
(2điểm)
a) SGK toán 8 tập II (trang 21)
b) Áp dụng giải phương trình sau
:
3
5
52
x
x
(1)
ĐKXĐ:
5
x
)5(352
5
)5(3
5
52
)1(
xx
x
x
x
x
)(20
20
51532
15352
Nhânx
x
xx
xx
20S
1
0.25
0.25
0.25
0.25
Câu 2:
(2điểm)
a) SGK toán 8 tập II (trang 65)
b) SGK toán 8 tập II (trang 66)
1
1
Bài 1
(2.5điểm)
2
2
5723
7253)
S
x
xx
xxa
1;1
1
1
01
01
0)1)(1(
01)
2
S
x
x
x
x
xx
xb
) 8 2 2 8
8 2 8 2
10 10
1
1
c x x
x x
x
x
S x x
) 2 3 4
2 3 4
(2 3) 4
2 3 4 2 7
2 3 4 2 1
7
(
1 7
2
;
1
2 2
(
2
d x
x
x
x x
x x
x
S
x
nhaän)
nhaän)
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
21
Bài 2
(1.5điểm)
Gọi độ dài quãng đường AB là x (km) ( x > 0)
Thời gian đi từ A đến B là:
15
x
(giờ)
Thời gian đi từ B về A là :
12
x
(giờ)
Theo giả thiết thời gian lúc về nhiều hơn thời gian lúc đi 1 giờ nên ta có
phương trình sau:
)(60
1803
15.121215
1
1512
Nhânx
x
xx
xx
Vậy quãng đường AB dài 60 (km)
0.25
0.25
0.25
0.25
0.25
0.25
Bài 3
(2,5điểm)
a) CM:
ABC vuông tại A
Ta có:
)100(
)(100
8436
86
)(10010
222
2222
22
cmACABBC
cm
ACAB
cmBC
Vậy
ABC vuông tại A
b) CM:
2
.AH HB HC
+ Xét 2v : HAC và ABC
Có:
chungC
ˆ
ABC
HAC (1)
+ Xét 2v:HBA và ABC
Có :
chungB
ˆ
ABC
HBA (2)
Từ (1) và (2) HAC
HBA (t/c bắc cầu)
2
. .
. ( )
HA HC
HB HA
HA HA HB HC
Hay AH HB HC
ñpcm
0.5
0.5
0.5
0.25
0.25
0.5
Bài 4
(1,5điểm)
Áp dụng công thức: V =
3
1
S
đ
.h trong đó:
S
đ
= )(10010
222
cma
)(12 cmh
Vậy
)(40012.100
3
1
3
cmV
0.5
0.5
0.5
A
B
H
C
6cm
10cm
8cm
GT
KL
ABC
AB = 6(cm)
AC = 8(cm)
BC = 10(cm)
a) CMR
ABC vuông tại A
b)
HCHBHA .
2
A
B
C
D
S
O
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
22
HƯỚNG DẪN GIẢI VÀ ĐÁP ÁN
I. Phương trình và bất phương trình
Bài 1. Giải các phương trình bậc nhất sau
a) 3x - 2 = 2x – 3 b) 2x + 3 = 5x + 9 c) 5 - 2x = 7
d) 10x + 3 - 5x = 4x +12 e) 11x + 42 - 2x = 100 - 9x - 22
Bài 2. Giải các phương trình sau
a) 2x –(3 - 5x) = 4(x + 3) b) x(x + 2) = x(x + 3) c) 2(x - 3) + 5x(x - 1) = 5x
2
Bài 3. Giải các phương trình sau
a/
x
xx
2
3
5
6
13
2
23
c/
2
2x
3
x
4x
5
4x
b/
3
3
4x5
7
2x6
5
3x4
d/
5
5
2x4
3
1x8
6
2x5
Bài 4. Giải các phương trình sau
a) (2x + 1)(x - 1) = 0
b) (x +
2
3
)(x -
1
2
) = 0
c) (3x - 1)(2x - 3)(x + 5) = 0
d) 3x - 15 = 2x(x - 5) e) x
2
– x = 0 f) x
2
– 2x + 1 – 4 = 0
g) x
3
– 9x = 0 h) x
2
– x = 4x - 6 i) (x + 1)(x + 4) =(2 - x)(x + 2)
Bài 5. Giải các phương trình sau
a)
7 3 2
1 3
x
x
b)
2(3 7 ) 1
1 2
x
x
c)
1 3
3
2 2
x
x x
d)
8 1
8
7 7
x
x x
Bài 6. Giải các phương trình sau
a)
2
5 5 20
5 5 25
x x
x x x
b)
1
1
2
1
1
2
x
x
xx
c)
2
2( 3) 2( 1) ( 1)( 3)
x x x
x x x x
d)
x
x
x
x
x
4
13
4
12
16
76
5
2
Bài 7. Giải các phương trình sau
a)
|5 − 2x| = 1 – x;
b)
|8 − x| = x
2
+ x;
c)
|−2x| = 4x – 3;
d)
|5x – 2| = |1 – x|
2
5 2 0
5
1 0 1
x x
x x
e)
|x – 1| + |1 – x| = 10;
f)
|x + 1| + |x + 2| + |x + 3| = 2006x
g)
|5x – 2| = |1 – x|
2
5 2 0
5
1 0 1
x x
x x
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
23
Bảng xét dấu
x
2
5
1
5x – 2
- 0 + || +
1 – x
+ || + 0 -
Bài 8. Giải và biểu diễn tập nghiệm trên trục số các bất phương trình sau
a) 2x + 2 > 4 b)
3 2 5x
c) 10 - 2x > 2 d)
1 2 3x
Bài 9. Giải các bất phương trình sau
a) 10x + 3 – 5x
14x + 12 b) (3x - 1) < 2x + 4 c) 4x – 8
3(2x - 1) –
2x + 1
d) x
2
– x(x + 2) > 3x – 1 e)
3
2
5
23 xx
f)
23
1
6
2 xxx
II. Giải bài toán bằng cách lập phương trình
Bài 1. Hai thư viện có cả tất cả 20.000 cuốn sách. Nếu chuyển từ thư viện thứ nhất sang thư viện
thứ hai 2.000 cuốn sách thì số sách của hai thư viện bằng nhau. Tính số sách lúc đầu ở mỗi thư
viện .
Giải: Gọi x (cuốn) là số sách ban đầu của thư viện I (2000 < x <20000).
Lúc đầu Lúc chuyển Phương trình
Thư viện I
x x - 2000
Thư viện II
20000 - x 20000 – x + 2000
x – 2000 = 20000 – x + 2000
ĐS: Số sách lúc đầu ở thư viện thứ nhất 12000; thứ hai là 8000.
Bài 2. Số lúa ở kho thứ nhất gấp đôi số lúa ở kho thứ hai. Nếu bớt ở kho thứ nhất đi 750 tấn và
thêm vào kho thứ hai 350 tấn thì số lúa ở trong hai kho sẽ bằng nhau. Hỏi lúc đầu mỗi kho có bao
nhiêu tấn lúa .
Lúa
Lúc đầu Lúc thêm , bớt
Phương trình
Kho I
Kho II
ĐS: Lúc đầu kho I có 2200 tấn, kho II có 1100 tấn.
Bài 3. Mẫu số của một phân số lớn hơn tử số của nó là 5. Nếu tăng cả tử mà mẫu của nó thêm 5
đơn vị thì được phân số mới bằng phân số
2
3
.Tìm phân số ban đầu .
Lúc đầu Lúc tăng Phương trình
Tử số
Mẫu số
5 2
10 3
x
x
ĐS: Phân số là 5/10.
Bài 4. Năm nay, tuổi bố gấp 4 lần tuổi Hoàng. Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi Hoàng.
Hỏi năm nay Hoàng bao nhiêu tuổi ?
Năm nay 5 năm sau Phương trình
Tuổi Hoàng
Tuổi Bố
4x + 5 = 3(x + 5)
ĐS: Năm nay Hoàng 10 tuổi.
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
24
Bài 5. Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Lúc về người đó đi với vận tốc
12km/h nên thời gian về lâu hơn thời gian đi là 45 phút. Tính quãng đường AB?
Đổi thời gian:
3
45'
4
h
Gọi x (km) là độ dài quãng đường AB (x > 0). (Hoặc x > 9)
Vận tốc
(km/h)
Quãng đường
(km)
Thời gian
(h)
Đi 15 x
15
x
Về 12 x
12
x
Vì thời gian về lâu hơn thời gian đi là
3
4
h
nên ta có phương trình:
3
12 15 4
x x
ĐS: Quãng đường AB dài 45 km.
Bài 6. Lúc 6 giờ sáng, một xe máy khởi hành từ A để đến B. Sau đó 1 giờ, một ôtô cũng xuất phát
từ A đến B với vận tốc trung bình lớn hớn vận tốc trung bình của xe máy 20km/h. Cả hai xe đến
B đồng thời vào lúc 9h30’sáng cùng ngày. Tính độ dài quãng đường AB và vận tốc trung bình
của xe máy?
Giải:
S V t(h)
Xe máy
3,5x x 3,5
Ô tô
2,5(x + 20) x+20 2,5
ĐS: Vận tốc của xe máy là 50 km/h, của ôtô là 50 + 20 = 70 km/h.
Bài 7. Một ca nô xuôi dòng từ bến A đến bến B mất 6 giờ và ngược dòng từ bến B về bến A mất
7 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h.
Ca nô V (km/h) S(km) t(h)
Nước yên lặng
x
Xuôi dòng
Ngược dòng
ĐS: Phương trình: 6(x + 2) = 7(x - 2)
Bài 8. Tìm một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu
thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu là 370.
ĐS: Số ban đầu là 48.
( Thêm bài toán tìm số)
Bài 9. Một tổ sản xuất theo kế hoạch mỗi ngày phải sản suất 50 sản phẩm. Khi thực hiện, mỗi
ngày tổ đã sản xuất được 57 sản phẩm. Do đó, tổ đã hoàn thành trước kế hoạch 1 ngày và còn
vượt mức 13 sản phẩm. Hỏi theo kế hoạch, tổ phải sản xuất bao nhiêu sản phẩm ?
Năng suất
( sản phẩm /ngày )
Số ngày
(ngày)
Số sản phẩm
(sản phẩm)
Kế hoạch
x
Thực hiện
Phương trình :
50
x
-
13
57
x
= 1
Đề cương ôn tập toán 8 – HK 2 Năm học 2014 - 2015
NTP – THA5
25
Bài 10. Một bác thợ theo kế hoạch mỗi ngày làm 10 sản phẩm. Do cải tiến kỹ thuật mỗi ngày bác
đã làm được 14 sản phẩm. Vì thế, bác đã hoàn thành kế hoạch trước 2 ngày và còn vượt mức dự
định 12 sản phẩm. Tính số sản phẩm bác thợ phải làm theo kế hoạch?
Năng suất
( sản phẩm /ngày )
Số ngày
(ngày)
Số sản phẩm
(sản phẩm)
Kế hoạch
Thực hiện
BÀI TẬP LUYỆN TẬP
Bài 1: Cho hình chữ nhật ABCD có AB = 8cm , BC = 6cm .Vẽ đường cao AH của
ADB .
a) Tính DB
b) Chứng minh
ADH ~
ADB
c) Chứng minh AD
2
= DH.DB
d) Chứng minh
AHB ~
BCD
e) Tính độ dài đoạn thẳng DH , AH .
Bài 2 : Cho
ABC vuông ở A , có AB = 6cm , AC = 8cm .Vẽ đường cao AH .
c) Tính BC
c) Chứng minh
ABC ~
AHB
c) Chứng minh AB
2
= BH.BC .Tính BH , HC
c) Vẽ phân giác AD của góc A ( D
BC) .Tính DB
Bài 3 : Cho hình thanh cân ABCD có AB // DC và AB< DC , đường chéo BD vuông góc với
cạnh bên BC .Vẽ đường cao BH , AK .
a) Chứng minh
BDC ~
HBC
b) Chứng minh BC
2
= HC .DC
c) Chứng minh
AKD ~
BHC
d) Cho BC = 15cm , DC = 25 cm .Tính HC , HD .
e) Tính diện tích hình thang ABCD.
Bài 4 Cho
ABC , các đường cao BD , CE cắt nhau tại H .Đường vuông góc với AB tại B và
đường vuông góc với AC tại C cắt nhau ở K .Gọi M là trung điểm của BC .
e) Chứng minh
ADB ~
AEC
f) Chứng minh HE.HC = HD.HB
g) Chứng minh HS , K , M thẳng hàng
h)
ABC phải có điều kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
Bài 5 : Cho tam giác cân ABC (AB = AC) .Vẽ các đường cao BH , CK , AI .
e) Chứng minh BK = CH
f) Chứng minh HC.AC = IC.BC
g) Chứng minh KH //BC
h) Cho biết BC = a , AB = AC = b .Tính độ dài đoạn thẳng HK theo a và b .
Bài 6 : Cho hình thang vuông ABCD (
0
90 DA
) có AC cắt BD tại O .