Tải bản đầy đủ (.pdf) (12 trang)

SKKN Việc sử dụng bất đẳng thức bunhiacopxki vào giải một số bài toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (474.43 KB, 12 trang )













SÁNG KIẾN KINH NGHIỆM

VIỆC SỬ DỤNG BẤT ĐẲNG THỨC
BUNHIACOPXKI VÀO GIẢI MỘT SỐ BÀI
TOÁN




PHẦN I
ĐẶT VẤN ĐỀ
I . Lý do chọn đề tài:
- Trong những năm gần đây, Đảng và nhà nước ta luôn quan tâm đến giáo dục,
từng bước có những cải cách giáo dục từ bậc mầm non đến đại học và sau đại học
nhằm đưa nền giáo dục nước nhà phát triển ngang tầm khu vực. Trong chương trình
giáo dục trung học phổ thông,môn toán là môn học quan trọng, là thành phần không
thể thiếu của nền văn hóa phổ thông của con người mới. Môn toán có tiềm năng có
th
ể khai thác góp phần phát triển năng lực trí tuệ chung, rèn luyện và phát triển các


thao tác tư duy và các phẩm chất tư duy.
Trong quá trình giải toán ở nhà trường cũng như trong các kỳ thi học sinh sinh giỏi
các cấp, chuyên đề về bất đẳng thức là một chuyên đề hay và lý thú chính vì vậy mà
nó thường xuyên có mặt trong các kỳ thi chọn học sinh giỏi các cấp đặc biệt là cấp
THCS và kỳ thi vào lớp 10.
Trong chuyên đề về bất đẳng thức thì việc sử
dụng các bất đẳng thức cơ bản để giải
các loại toán và bài toán khác là khá hiệu quả thông qua đó mà lời giải được đơn
giản hơn, thu được kết quả nhanh chóng. Bất đẳng thức Bunhiacopski là một bất
đẳng thức kinh điển như vậy. Vì vậy nếu khai thác bất đẳng thức này vào việc giải
các bài toán khác thì có thể đem lại kết qua nhiều mặt, kích thích tính sáng tạo của
học sinh.V
ới ý nghĩ như vậy tôi giới thiệu “việc sử dụng bất đẳng thức
bunhiacopxki vào giải một số bài toán ”


II. PHẠM VI ĐỀ TÀI

Tuy nội dung đề cập khá rộng và các bài toán dạng này cũng phong phú song trong
khuôn khổ thời gian có hạn tôi chỉ nêu ra một số bài toán điển hình và sắp xếp trình
tự từ đơn giản đến phức tạp.
III. ĐỐI TƯỢNG

Đề tài này được áp dụng cho học sinh khá giỏi THCS lớp 8-9.
IV. MỤC ĐÍCH

Nhằm mục đích nâng cao mở rộng hiểu biết cho học sinh nhất là việc bồi dưỡng học
sinh giỏi, giúp các em hiểu sâu sắc hơn về bất đẳng thức.Qua đó giúp học sinh có
điều kiện hoàn thiện các phương pháp về bất đẳng thứcvà rèn luyện tư duy sáng tạo
cho học sinh.








PHẦN II
NỘI DUNG
I. CƠ SỞ LÝ LUẬN KHOA HỌC
1. CƠ SỞ LÝ LUẬN KHOA HỌC.
- Trong chương trình giáo dục trung học phổ thông,môn toán là môn học quan
trọng, là thành phần không thể thiếu của nền văn hóa phổ thông của con người mới.
Môn toán có tiềm năng có thể khai thác góp phần phát triển năng lực trí tuệ chung,
rèn luyện và phát triển các thao tác tư duy và các phẩm chất tư duy.
Trong quá trình giải toán ở nhà trường cũng như trong các kỳ thi học sinh sinh giỏi
các cấp, chuyên đề về bất đẳ
ng thức là một chuyên đề hay và lý thú chính vì vậy mà
nó thường xuyên có mặt trong các kỳ thi chọn học sinh giỏi các cấp, đặc biệt là cấp
THCS và kỳ thi vào lớp 10.
- Đứng trước một bài toán có thể có nhiều cách giải khác nhau song việc tìm ra
một lời giải hợp lý, ngắn gọn, thú vị và độc đáo là một việc không dễ thông qua đó
mà thu được kết quả nhanh chóng. Bất đẳng thức Bunhiacopski là một bất đẳng
thức kinh đi
ển như vậy. Vì vậy nếu khai thác bất đẳng thức này vào việc giải các bài
toán khác thì có thể đem lại kết qủa nhiều mặt, kích thích tính sáng tạo của học sinh.
2. ĐỐI TƯỢNG PHỤC VỤ
đề tài này dùng để giảng dạy cho các học sinh tham gia thi học sinh giỏi lớp 8-9.
3. NỘI DUNG PHƯƠNG PHÁP NGHIÊN CỨU
A. ¸p dơng bt ®¼ng thc Bunhiacopski ®Ĩ chng minh c¸c bt ®¼ng thc

I. Chứng minh các bất đẳng thức đại số
- Để chứng minh các bất đẳng thức có khi áp dụng ngay và cũng nhiều khi phải
biến đổi bài toán để đưa về trường hợp thích hợp rồi mới sử dụng. Sau dây là 3 kỹ
thuật thường gặp:
+Đánh giá từ vế lớn sang vế nhỏ và ngược lại.
+Dồn phối hợp.
+Kỹ thuật nghịch đảo.

1. Đánh giá từ vế lớn sang vế nhỏ và ng
ược lại.
Ví dụ 1: Cho
2 ba
, a,bR
Chứng minh rằng:

44
ba
2
Lời giải:
Ta viết a
4+
b
4
=









22
2
222
)(11
2
1
2
1
ba

Ap dụng bất đẳng thức Bunhiacopski

22.
8
1
2
1
4
4
22
 ba (đfcm)



Ví dụ 2: cho
3
4
)1()1()1(  ccbbaa


Chứng minh rằng:
41

 cba

Lờigiải:
Tư giả thiết ta có:

)())(111(
3
1
)()1()1()1(
3
4
222222222
cbacbacbacbaccbbaa 

B.C.S

)(
3
1
2
cbacba 

04)(3
2
 cbacba
0)4)(1(  cbacba

41  cba

Ví dụ 3: cho x,y
R . Chứng minh rằng nếu x,y>0 và x+y=1 thì
2
25
)
1
()
1
(
22

y
y
x
x
Lời giải:
Ta sử dụng )(2)(
222
baba 
2
)(
2
22
ba
ba




Khi đó ta có:
2222
)
1
1(
2
1
)
11
(
2
1
)
1
()
1
(
xyy
y
x
x
y
y
x
x 
mà 4
1
4
1
4121 

xy
xyxyxyyx
vậy
2
25
)41(
2
1
)
1
()
1
(
222

y
y
x
x

2. Kỹ thuật dồn phối hợp

Ví dụ 1: Cho 3x-4y=7 Chứng minh rằng:
743
22
 yx
Lời giải:
Ta viết



49)43()2(3)43(
22222
 yxyx
Ví dụ 2: Cho a,b,c,p,q là 5 số dương tùy ý. Chứng minh rằng
qpqbpa
c
qapc
b
cqbp
a







3


Lời giải
)(. qcpba
qcpb
a
a 







)(. qapcb
qapc
b
b 



)(. qbpac
qbpa
c
c 



Gọi S là vế trái ta có:

))(()()()()(
2
cabcabqpSqbpacqapcbqcpbaScba  (2)

2
)(
3
1
cbacabcab 
(3)
Vì (3)
2
222222

2
)(
222))(()(2)(3
)()(3
cba
cabcabcbacbacabcabcabcabcabcab
cbacabcab




Từ (2), (3)
22
).(
3
1
).()( cbaqpScba 

qp
S


3
(đpcm)
Ví dụ 3:
Cho 0 zyx Chứng minh rằng:
222
222
zyx
y

xz
x
zy
z
yx
 (1)
Lời giải : Xét hai dãy số:
y
xz
x
zy
z
yx
,, và
x
yz
z
xy
y
zx
,,

Ta có:
2222
222222
)()).(( zyx
x
yz
z
xy

y
zx
y
xz
x
zy
z
yx

(2)
Xét hiệu
0))()()((
1
(
1
232323232323
222222


zxyzxyxzzyyx
xyz
yzxyzxxzzyyx
xyzx
yz
z
xy
y
zx
y
xz

x
zy
z
yx
A

x
yz
z
xy
y
zx
y
xz
x
zy
z
yx
222222

(3)
Từ (2), (3) suy ra đpcm

3. Kỹ thuật nghịch đảo

Dạng 1
2
1
2
1

2
1
)())((



n
i
i
n
i
i
i
n
i
i
x
y
x
y 0

i
y
Chứng minh:



Ta viết




n
i
n
i
i
i
i
i
n
i
n
i
i
i
n
i
i
i
i
n
i
i
x
y
x
y
y
x
y

y
x
y
1
2
1
2
2
2
11
2
2
1
2
1
)()).(()(.)()((

Ví dụ Chứng minh rằng
0,,
2
222








cba

cba
ba
c
ac
b
cb
a
(1)
Lời giải
Ta có

2
222
)()()()( cba
ba
c
ac
b
cb
a
baaccb 














2)(2
)(
2222
cba
cba
cba
ba
c
ac
b
cb
a 











Ví dụ 2 Chứng minh rằng

cba

cba
c
bac
b
acb
a






222
(1)
 a,b,c là độ dài cạch của ABC
Lời giải



2
)()1(.)()()( cbaVTcbabacacb 
cbaVT  )1(

Ví dụ 3: Chứng minh rằng
cba
cba
ba
c
ac
b

cb
a
,,
2
222333








(1)
Lời giải:
2
)1(
222444
cba
cbca
c
babc
b
acab
a 









Theo bất đẳng thức B.C.S :

2222
)()1(.)()()( cbaVTcbcabcbaacab 
Mặt khác ta có:
cabcabcba 
222

2)(2
))((
)1(
222222
cba
cabcab
cabcabcba
VT






Dạng 2
2
111
)())(.(




n
i
i
n
i
i
i
n
i
ii
x
y
x
yx
0, 

ii
yx
Chứng minh:
Theo bất đẳng thức B.C.S ta có:






























n
i
i
n
i
i
i
n
i

ii
n
i
i
i
n
i
ii
x
y
x
yx
y
x
yxVT
1
2
2
111
22
1
)( )(.).(
Ví dụ 1 Chứng minh rằng
0,,
2
3







cba
ba
c
ac
b
cb
a




Lời giải:
Ta viết



)(3)()1(.)()()(
2
cabcabcbaVTbacacbcba 
2
3
)(2
)(3




cabcab

cabcab
VT
(Đpcm)
Ví dụ 2: Chứng minh rằng:
3
2
32323232









 cba
d
bad
c
adc
b
dcb
a

Lời giải:
Ta có






2
)(
32
).32( dcba
dcb
a
dcba

Ta sẽ chứng minh


2
)(
2
3
)32( dcbadcba

0)()()()()(
)(3)(2
22222
2222


dccbdacaba
dcbacdbdbcadacab

II. Chứng minh các bất đẳng thức hình học
Cho

ABC có AB=c, AC=b, BC=a. Chứng minh rằng
0)()()(
222
 acaccbcbbaba (1)
Lời giải:
Theo ký hiệu như hình vẽ thì luôn tồn tại x,y,z>0
Sao cho a=x+z
b=z+x
c=x+y
0)(
0))(()())(()())(()()1(
333
222


zyxxyzyxxzzy
zxzyyxyzyxxzxyxzzy


zyx
z
x
y
z
x
y

222

Theo bất đẳng thức B.C.S

2
222
)())(( zyx
z
x
y
z
x
y
zyx 

zyx
z
x
y
z
x
y

222
(đpcm)
Ví dụ 2:
ABC có AB=c, AC=b, BC=a. p là nửa chu vi. Chứng minh rằng
)(
35
36
2222
p
abc
pcba 

(1)
Lời giải










cb
abccba
cba
2
2
2
)(
35
36
()1(
2
222

2222
)(9)(35 cbacba 
(2)
x
A

C
B
z
x
y
y
z



Theo CôSi:
3222222
3 cbacba 

3
3 abccba 
cba
abc
cba


72
)(8
222
(3)
Từ (2)và (3) suy ra ĐPCM. (dấu bằng xẩy ra khi
ABC

đều)
Ví dụ 3:

Cho đường tròn nội tiếp tiếp xúc với 3 cạch của
ABC

tại M,N,P. Chứng minh rằng:
S
(MNP)
4
S


(S- Diện tích tam giác)
Lời giải:
Đặt S
(ANP)
=S
1
; S
(BPM)
=S
2
, S
(CMN)
=S
3

Ta phải chứng minh:
4
3
321



S
SSS
(1)
2
222
).(
)()()(
pcabcab
ab
cp
ca
bp
bc
ap













4
3

)(4
)(
)1(
2




cabcab
cba
VT

4
3
321


S
SSS

4
1
)(

S
S
MNP
(Dấu “=” xẩy ra khi
ABC


đều)

B. Sư dơng bt ®¼ng thc BUNHIACOPSKI ®Ĩ gi¶ng c¸c bµi to¸n cc trÞ ®¹i s :
Sử dụng kết quả:
a. Nếu
Cxaxaxa
nn



2211
, C là hằng số thì
22
2
2
1
2
22
2
2
1

) (
n
n
aaa
C
xxxMin




Dấu “=” xẩy ra khi
n
n
x
a
x
a
x
a


2
2
1
1

b. Nếu
ConstCxxx
n

222
2
2
1

thì
22
2
2

12211
||) (
nnn
aaaCxaxaxaMax 

Dấu “=”xẩy ra khi
0
2
2
1
1

n
n
x
a
x
a
x
a

Ví dụ 1: Cho
1
22
 yx tìm
)11.( xyyxMax 

Lời giải:
A
P

N
M
BC





222))(11(
2)1()1()(11.
2222
2222


yx
yxxyyxxyyxA

2
2
22  yxMaxA

Ví dụ 2: Cho
91636
22
 yx Tìm Max, Min của A=(y-2x+5)
Lời giải:
Theo bất đẳng thức Bunhiacopski ta có:

22222
)2()

4
1
()
3
1
(1636 xyyx 








4
5
2
4
5
)2(
16
25
2
 xyxy
4
25
52
4
15
 xy


)
20
9
,
5
2
(
4
25
)52(  yxxyMax
)
20
9
,
5
2
(
4
15
)52(  yxxyMin
Ví dụ 3: cho x,y, z thỏa mãn xy+yz+zx=4 Tìm MinA biết A=x
4
+y
4
+z
4

Lời giải:
Từ giả thiết 4

2
=(xy+yz+zx)
2


(x
2
+y
2
+z
2
)(y
2
+z
2
+x
2
)
Suy ra: (x
2
+y
2
+z
2
)
2
 4
2

16))(111(

444222
 zyx
3
16
444
 zyx
3
2
3
16
 zyxMinA

Ví dụ 4: Cho x,y,z thỏa mãn x,y,z
1

 và x+y+z=1. Tìm MaxA biết
zyxA  111
Lời giải: Theo B.C.S ta có
324.3)111)(111(111
222
 zyxzyxA
3
1
32  zyxMaxA

Ví dụ 5: cho









20
25
16
22
22
yvxu
vu
yx

Tìm Max (x+v)
Lời giải: Ap dụng bất đẳng thức B.C.S ta có:



2025.20))((20
2222
 vuyxyvxu
yuxv
v
y
u
x
yvxu  20

Mặt khác
2222222222222

)(22)()()()(41 vxxvvxyuvxuyvxvuyx 
41 vx













20
25
16
41)(
22
22
yvxu
yu
vu
yx
vxMax

41
2020
20)( 



vx
uvxy

41
20
y
,
41
16
x
,
41
25
z

Ví dụ 6: Tìm các cặp số (x,y) x,y>0 để
x
y
y
x
x
y
y
x
x
y
y
x

A 
2
2
2
2
4
4
4
4
đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Lời giải:
Đặt
2 t
x
y
y
x
t
2
2
2
2
2
2
 t
x
y
y
x
, 24

24
4
4
4
4
 tt
x
y
y
x



2)3)(2()2(2)2(45
2222224
 tttttttttA
Do
13,42
22
 ttt
24)2()2(2
22
 ttttA
yxMinA  2
C. Một số bài tập áp dụng

1. Cho
ABC
(a,b,c). Chứng minh:
cba

cba
c
bac
b
acb
a







2. Cho a,b,c,d >0 . Chứng minh rằng:
2






 ba
d
ad
c
dc
b
cb
a


3. Cho
ABC (a,b,c). Chứng minh rằng:
pcpbpapp 3
4. Cho
ABC nhọn. H là trực tâm. Chứng minh
2222
)( cbaCHBHAH 
5. Cho
ABC (a,b,c). Chứng minh: 3








cba
c
bca
b
acb
a

6. Cho 2 số x,y thỏa mãn 2x+5y=7
Tìm giá trị nhỏ nhất của:



a, A=x

2
+y
2

b, B=2x
2
+5y
2

7. Cho x,y,z thỏa mãn x
2
+y
2
+z
2
=1. Tìm Max = x+2y+3z
Cho a+b+c=1 và vế trái có nghĩa. Chứng minh
21141414  cba
8. Có tồn tại hay không 3 số: a
 1, b 1, c 1 thỏa mãn điều kiện:
)1(111  abccba

9. Cho x, y, z

0 thỏa mãn điều kiện x+y+z=1 . Tìm giá trị nhỏ nhất của các biểu
thức
a, A=x
2
+y
2

+z
2

b, B=x
4
+y
4
+z
4

10. Cho: a, b,c


4
3
và a+b+c=3 . Chứng minh:
73343434  cba

11. Tìm giá trị nhỏ nhất của hàm số:
mxyzzxyzxyzyxf




),,(
Trong đó x

0, y

0, z


0, x+y+z=1.
12. Tìm giá trị lớn nhất của hàm số:f(x,y)=2
yx 
Trong đó x
 0, y  0, 1
33
 yx
4. KẾT QỦA
Đề tài này đã được thực hiện giảng dạy khi tôi tham gia dạy đội tuyển học sinh
giỏi lớp 8-9 vòng huyện và vòng tỉnh. Trong quá trình học đề tài này, học sinh thực
sự thấy tự tin khi gặp các bài toán về bất đẳng thức, tạo hứng thú với học toán, tạo
cho học sinh niềm đam mê, yêu thích môn toán, mở ra cho học sinh cách nhìn nhận,
vận dụng, linh hoạt, sáng tạo các kiến thức đã h
ọc, tạo nền cho học sinh tự học tự
nghiên cứu.
5. GIẢI PHÁP MỚI
- Bài toán nói chung rất đa dạng và phong phú. Mỗi bài toán lại có rất nhiều
cách giải khác nhau, việc lựa chọn sử dụng linh hoạt các kiến thức đã học sẽ làm
cho học sinh phát triển tư duy sáng tạo. Chuyên đề này chỉ mang tính chất gợi mở
cung cấp cho học sinh cách nhìn mới, phát huy sự sáng tạo. Do đó học sinh cần có
thêm nhiều th
ời gian để sưu tầm các tài liệu tham khảo liên quan.
II. THỰC TIỄN GIẢNG DẠY

1. QUÁ TRÌNH ÁP DỤNG
- Bằng một chút vốn hiểu biết và kinh nghiệm giảng dạy một số năm, tôi đã hệ
thống được một số kiến thức liên quan, sưu tầm và tích lũy được một số bài tập phù
hợp theo mức độ từ dễ đến khó để cho học sinh tham khảo tự giải.
2. HIỆU QUẢ KHI ÁP DỤNG

- Sau khi học sinh học xong chuyên đề này học sinh thấy tự tin h
ơn, hứng thú
hơn, tạo cho hóc sinh niềm đam mê, yêu thích môn toán, mở ra một cách nhìn nhận,



vận dụng, linh hoạt, sáng tạo các kiến thức đã học, tạo nền cho học sinh tự học tự
nghiên cứu.
3. BÀI HỌC KINH NGHIỆM
- Từ thực tế giảng dạy chuyên đề này, một kinh nghiệm được rút ra là: trước hết
học sinh phải nắm chắc các kiến thức cơ bản vận dụng linh hoạt các kiến thức này.
Từ đó mới dạy các chuyên đề m
ở rộng, nâng cao, khắc sâu kiến thức một cách hợp
ly với các đối tựợng học sinh nhằm bồi dưỡng năng khiếu, rèn kỹ năng cho học
sinh.
Chuyên đề này chủ yếu đưa ra các bài tập có sử dụng bất đẳng thức B.C.S từ đó
hình thành kỹ năng, phương pháp giải. Do đó khi giảng dạy phải cung cấp nhiều
dạng bài tập khác nhau để phát triển tư duy học sinh.
4. KIẾ
N NGHỊ
- Phòng giáo dục nên tổ chức thường xuyên các lớp chuyên đề, các cuộc hội
thảo chuyên đề để giáo viên các trừờng có thể trao đổi, bàn luận nhất là vấn đề bồi
dưỡng học sinh giỏi để nâng cao chất lượng, thay đổi thứ hạng về giáo dục của
huyện nhà so vối các huyện thị khác trong tỉnh.

PHẦN C
KẾT LUẬN
- Một bài toán có thể có rất nhiều cách giải song việc tìm ra một lời giải hợp lý,
ngắn gọn thú vị và độc đáo là một việc không dễ.Do đó đây chỉ là một chuyên đề
trong hàng chuyên đề, một phương pháp trong hàng vạn phương pháp để giúp phát

triển tư duy, sự sáng tạo của học sinh. Giáo viên trước hết phải cung cấp cho học
sinh nắm chắc các kiến thức cơ bản sau đó là cung cấp cho h
ọc sinh cách nhìn, cách
vân dụng linh hoạt cáckiến thưc cơ bản đó, phân tích tìm ra hướng giải, bắt đầu từ
đâu và bắt đầu như thế nào là rất quan trọng để học sinh không sợ khi đứng trước
một bài toán khó mà dần dần tạo sự tự tin, gây hứng thú say mê môn toán, từ đó tạo
cho học sinh tác phong tự học tự nghiên cứu.
Tuy nội dung đề cập khá rộng song trong khuôn khổ thời gian hạn hẹn ngườ
i viết
cũng chỉ chỉ ra được các ví dụ, bài toán điển hình.
- Rất mong sự đóng góp ý kiến của các bạn quan tâm và đồng nghiệp để
chuyên đề này được đầy đủ hoàn thiện hơn.
Xin chân thành cám ơn!

×