a
0
+ a
1
+ a
2
+ . . . + a
n
+ . . . ,
a
i
i = 0, 1, 2, . . . , n, . . .
+∞
n =0
a
n
.
n
0
∈ N.
+∞
n =n
0
a
n
a
0
+ a
1
+ a
2
+ . . . + a
n
+ . . . ,
a
i
i = 0, 1, 2, . . . , n, . . .
+∞
n =0
a
n
.
n
0
∈ N.
+∞
n =n
0
a
n
S
n
=
n
k=0
a
k
= a
0
+ a
1
+ a
2
+ . . . + a
n
+∞
n=0
a
n
.
+∞
n=0
a
n
S
S
n
+∞
n=1
. S
+∞
n=0
a
n
.
S
n
=
n
k=0
a
k
= a
0
+ a
1
+ a
2
+ . . . + a
n
+∞
n=0
a
n
.
+∞
n=0
a
n
S
S
n
+∞
n=1
. S
+∞
n=0
a
n
.
1 +
1
2
+
1
4
+ . . . +
1
2
n
+ . . . =
+∞
n =0
1
2
n
.
S
n
= 1+
1
2
+
1
4
+. . .+
1
2
n
=
1 −
1
2
n+1
1 −
1
2
= 2
1 −
1
2
n +1
lim
n →+∞
S
n
= lim
n →+∞
2
1 −
1
2
n +1
= 2.
1 +
1
2
+
1
4
+ . . . +
1
2
n
+ . . . =
+∞
n =0
1
2
n
.
S
n
= 1+
1
2
+
1
4
+. . .+
1
2
n
=
1 −
1
2
n+1
1 −
1
2
= 2
1 −
1
2
n +1
lim
n →+∞
S
n
= lim
n →+∞
2
1 −
1
2
n +1
= 2.
1 +
1
2
+
1
4
+ . . . +
1
2
n
+ . . . =
+∞
n =0
1
2
n
.
S
n
= 1+
1
2
+
1
4
+. . .+
1
2
n
=
1 −
1
2
n+1
1 −
1
2
= 2
1 −
1
2
n +1
lim
n →+∞
S
n
= lim
n →+∞
2
1 −
1
2
n +1
= 2.
+∞
n =0
a
n
S
n
+∞
n =1
n → +∞,
+∞
n =0
q
n
, q ∈ R.
+∞
n =0
a
n
S
n
+∞
n =1
n → +∞,
+∞
n =0
q
n
, q ∈ R.
S
n
= 1 + q + q
2
+ . . . + q
n
=
1 − q
n+1
1 − q
, q = 1
n + 1, q = 1
|q| = 1 lim
n→∞
S
n
= lim
n→∞
1 − q
n+1
1 − q
=
lim
n→∞
1
1 − q
−
q
n+1
1 − q
=
1
1 − q
, |q| < 1
∞, |q| > 1
q = 1 lim
n→∞
S
n
= lim
n→∞
n + 1 = ∞
q = −1 lim
k→∞
S
2k+1
= 0, lim
k→∞
S
2k
= 1.
|q| < 1
∞
n=0
q
n
=
1
1 − q
.
S
n
= 1 + q + q
2
+ . . . + q
n
=
1 − q
n+1
1 − q
, q = 1
n + 1, q = 1
|q| = 1 lim
n→∞
S
n
= lim
n→∞
1 − q
n+1
1 − q
=
lim
n→∞
1
1 − q
−
q
n+1
1 − q
=
1
1 − q
, |q| < 1
∞, |q| > 1
q = 1 lim
n→∞
S
n
= lim
n→∞
n + 1 = ∞
q = −1 lim
k→∞
S
2k+1
= 0, lim
k→∞
S
2k
= 1.
|q| < 1
∞
n=0
q
n
=
1
1 − q
.
S
n
= 1 + q + q
2
+ . . . + q
n
=
1 − q
n+1
1 − q
, q = 1
n + 1, q = 1
|q| = 1 lim
n→∞
S
n
= lim
n→∞
1 − q
n+1
1 − q
=
lim
n→∞
1
1 − q
−
q
n+1
1 − q
=
1
1 − q
, |q| < 1
∞, |q| > 1
q = 1 lim
n→∞
S
n
= lim
n→∞
n + 1 = ∞
q = −1 lim
k→∞
S
2k+1
= 0, lim
k→∞
S
2k
= 1.
|q| < 1
∞
n=0
q
n
=
1
1 − q
.
+∞
n=1
1
n(n + 1)
S
n
=
1
1.2
+
1
2.3
+ . . . +
1
n(n + 1)
.
1
n(n + 1)
=
1
n
−
1
n + 1
, n ∈ N.
S
n
=
1
1
−
1
2
+
1
2
−
1
3
+ . . . +
1
n
−
1
n + 1
= 1 −
1
n + 1
.
lim
n→∞
S
n
= lim
n→∞
1 −
1
n + 1
= 1.
+∞
n=1
1
n(n + 1)
S
n
=
1
1.2
+
1
2.3
+ . . . +
1
n(n + 1)
.
1
n(n + 1)
=
1
n
−
1
n + 1
, n ∈ N.
S
n
=
1
1
−
1
2
+
1
2
−
1
3
+ . . . +
1
n
−
1
n + 1
= 1 −
1
n + 1
.
lim
n→∞
S
n
= lim
n→∞
1 −
1
n + 1
= 1.
+∞
n=1
1
n(n + 1)
S
n
=
1
1.2
+
1
2.3
+ . . . +
1
n(n + 1)
.
1
n(n + 1)
=
1
n
−
1
n + 1
, n ∈ N.
S
n
=
1
1
−
1
2
+
1
2
−
1
3
+ . . . +
1
n
−
1
n + 1
= 1 −
1
n + 1
.
lim
n→∞
S
n
= lim
n→∞
1 −
1
n + 1
= 1.
+∞
n=1
1
n(n + 1)
S
n
=
1
1.2
+
1
2.3
+ . . . +
1
n(n + 1)
.
1
n(n + 1)
=
1
n
−
1
n + 1
, n ∈ N.
S
n
=
1
1
−
1
2
+
1
2
−
1
3
+ . . . +
1
n
−
1
n + 1
= 1 −
1
n + 1
.
lim
n→∞
S
n
= lim
n→∞
1 −
1
n + 1
= 1.
+∞
n=1
1
n(n + 1)
S
n
=
1
1.2
+
1
2.3
+ . . . +
1
n(n + 1)
.
1
n(n + 1)
=
1
n
−
1
n + 1
, n ∈ N.
S
n
=
1
1
−
1
2
+
1
2
−
1
3
+ . . . +
1
n
−
1
n + 1
= 1 −
1
n + 1
.
lim
n→∞
S
n
= lim
n→∞
1 −
1
n + 1
= 1.
+∞
n =1
a
n
lim
n →+∞
a
n
= 0.
+∞
n =1
a
n
⇔ lim
n →+∞
S
n
= S.
lim
n →+∞
a
n
= lim
n →+∞
(S
n
− S
n −1
) =
= lim
n →+∞
S
n
− lim
n →+∞
S
n −1
= S − S = 0
lim
n→+∞
a
n
= 0
+∞
n=1
a
n
+∞
n =1
a
n
lim
n →+∞
a
n
= 0.
+∞
n =1
a
n
⇔ lim
n →+∞
S
n
= S.
lim
n →+∞
a
n
= lim
n →+∞
(S
n
− S
n −1
) =
= lim
n →+∞
S
n
− lim
n →+∞
S
n −1
= S − S = 0
lim
n→+∞
a
n
= 0
+∞
n=1
a
n
+∞
n =1
a
n
lim
n →+∞
a
n
= 0.
+∞
n =1
a
n
⇔ lim
n →+∞
S
n
= S.
lim
n →+∞
a
n
= lim
n →+∞
(S
n
− S
n −1
) =
= lim
n →+∞
S
n
− lim
n →+∞
S
n −1
= S − S = 0
lim
n→+∞
a
n
= 0
+∞
n=1
a
n
+∞
n =1
a
n
lim
n →+∞
a
n
= 0.
+∞
n =1
a
n
⇔ lim
n →+∞
S
n
= S.
lim
n →+∞
a
n
= lim
n →+∞
(S
n
− S
n −1
) =
= lim
n →+∞
S
n
− lim
n →+∞
S
n −1
= S − S = 0
lim
n→+∞
a
n
= 0
+∞
n=1
a
n
+∞
n=1
1
√
n
lim
n→+∞
a
n
= lim
n→+∞
1
√
n
= 0.
S
n
= 1 +
1
√
2
+ . . . +
1
√
n
n.
1
√
n
=
√
n, n ∈ N
lim
n→+∞
S
n
lim
n→+∞
√
n = +∞ ⇒ lim
n→+∞
S
n
= +∞
+∞
n=1
1
√
n
+∞
n=1
1
√
n
lim
n→+∞
a
n
= lim
n→+∞
1
√
n
= 0.
S
n
= 1 +
1
√
2
+ . . . +
1
√
n
n.
1
√
n
=
√
n, n ∈ N
lim
n→+∞
S
n
lim
n→+∞
√
n = +∞ ⇒ lim
n→+∞
S
n
= +∞
+∞
n=1
1
√
n
+∞
n=1
1
√
n
lim
n→+∞
a
n
= lim
n→+∞
1
√
n
= 0.
S
n
= 1 +
1
√
2
+ . . . +
1
√
n
n.
1
√
n
=
√
n, n ∈ N
lim
n→+∞
S
n
lim
n→+∞
√
n = +∞ ⇒ lim
n→+∞
S
n
= +∞
+∞
n=1
1
√
n