Sáng kiến kinh nghiệm : Một số Phương pháp dạy toán diện tích Lớp 5
Phần mở đầu
1. Đặt vấn đề
Toán học với tư cách là môn khoa học nghiên cứu một số mặt của thế
giới hiện thực có hệ thống kiến thức cơ bản và phương pháp nhận thức rất
cần thiết cho đời sống sinh hoạt và lao động, môn toán có nhiều khả năng để
phát triển tư duy logic, bồi dưỡng và phát triển những thao tác trí tuệ cần
thiết để nhận thức thế giới hiện thực như trừu tượng hóa, khái quát hóa, phân
tích và tổng hợp, so sánh, dự đoán, chứng minh và bác bỏ. Nó có vai trò to
lớn trong việc rèn luyện phương pháp suy nghĩ, phương pháp suy luận,
phương pháp giải quyết vấn đề có căn cứ khoa học, toàn diện chính xác.
Môn toán có nhiều tác dụng trong việc phát triển trí thông minh, tư duy độc
lập, linh hoạt sáng tạo trong việc hình thành về rèn luyện nề nếp, phong cách
và tác phong làm việc khoa học …
Trong chương trình toán tiểu học, nội dung các yếu tố hình học được
đưa ngay từ lớp 1. Các khái niệm hình học ở lớp 1 chỉ hình thành ở mức biểu
tượng, sau đó nâng dần theo nguyên tắc đồng tâm. Đến lớp 4 khái niệm diện
tích mới được hình thành rõ nét (như diện tích hình vuông, diện tích hình
chữ nhật, đo diện tích). Còn diện tích các hình như: Hình tam giác, hình
thang, hình tròn, diện tích hình xung quanh, diện tích toàn phần của hình hộp
thì mới được đưa vào ở lớp 5. Nội dung các hoạt động hình học khá phong
phú. Vẽ hình, cắt hình, ghép, gấp hình, tính diện tích… Hỗ trợ việc giảng
dạy số học và ứng dụng thực tế. Mặt khác, tạo tiền đề cho học sinh học lên
trên.
Thực tế các bài toán diện tích là khó đối với học sinh tiểu học. Cái khó
là tư duy học sinh đang ở thao tác cụ thể là chủ yếu, mà các em đã phải xem
xét sự vật hiện tượng trong mối liên hệ tổng thể, liên tục. Mặt khác, hệ thống
thành công thức tính diện tích các hình. Đồng thời phải vận dụng công thức
đó nhuần nhuyễn khi giải bài toán diện tích. Vì vậy, học sinh thường gặp
khó khăn hay lẫn lộn các thuộc tính và khái niệm, các công thức số đo, đơn
vị đo. Do vậy việc giải toán của học sinh phụ thuộc vào phương pháp dạy
học của người thầy.
Xuất phát từ những lý do và thực tế trên cùng với mong muốn nâng cao
hiệu quả của việc dạy toán diện tích ở trưởng Tiểu học tôi đang công tác mà
tôi đã chọn đề tài này.
2. Mục đích.
Trường Tiểu học Thiệu Quang Giáo viên : Hàn Văn Hoạt
- 1 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Gúp phn nõng cao hiu qu ca vic dy v hc toỏn din tớch
trng tiu hc.
Nội dung
I. Cơ sở lý luận
1. Tầm quan trọng của toán diện tích
Qua giải toán diện tích trí tuệ của học sinh tiểu học đợc phát triển
thể hiện qua khả năng phân tích tổng hợp, rèn luyện t duy linh hoạt, có
thể nói khả năng giải toán diện tích nói riêng và giải toán nói chung đợc
xem là khả năng riêng biệt, đặc trng nhất trong hoạt động trí tuệ của con
ngời. Việc giải toán diện tích là hình thức tốt để đào sâu kiến thức,
củng cố rèn luyện kỹ năng, kỹ xảo giúp học sinh tự mình đi đến kiến thức
một cách độc đáo sáng tạo. Đây là một hình thức tốt nhất để học sinh tự
đánh giá mình và để thầy cô đánh giá học sinh về năng lực và mức độ
tiếp thu, sự vận động các kiến thức đã học. Mặt khác, giải toán diện tích
gây hứng thú học tập cho học sinh, phát triển tốt các đức tính nh: kiên trì,
dũng cảm, thông minh, quyết đoán.
2. Mục đích của việc dạy học các yếu tố diện tích.
Giúp học sinh tích lũy một số biểu tợng chính xác về các hình, làm
quen với diện tích, có kỹ năng về nhận dạng và vẽ hình chính xác, có kỹ
năng phân tích tổng hợp các hình đơn giản, giúp học sinh củng cố và hiểu
biết sâu hơn về kiến thức số học, qua đó học sinh phát triển năng lực
phân tích, trừu tợng hóa, trí tởng tợng không gian và củng cố các kiến thức
về hình học nh: (2 đờng thẳng song song, 2 đờng thẳng vuông góc ) vẽ
đúng các hình bằng thớc kẻ, biết tính chu vi, diện tích.
II. Kết quả điều tra khảo sát thực tiễn.
1. Phơng pháp dạy toán diện tích ở trởng tiểu học:
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 2 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Qua thơi gian giảng dạy, tiếp xúc, nghiên cứu chơng trình dự giờ tại tr-
ờng, tôi thấy cần coi trọng đổi mới phơng pháp dạy học. Trờng đã tổ chức
chuyên đề đổi mới phơng pháp dạy học toán diện tích theo mô hình Dạy
học hớng tập trung vào học sinh. Ngời giáo viên là chủ thể của hoạt động
dạy với 2 chức năng truyền đạt và chỉ đạo tổ chức. Ngời học là đối tợng
(khách thể) của hoạt động học tập với 2 chức năng tiếp thu và tự chỉ đạo,
tự tổ chức.
Tuy nhiên mô hình này chỉ đợc sử dụng gần đây và đang áp dụng
tốt ở các tiết luyện tập. Còn việc dạy khái niệm còn rơi vào thuyết trình
nhiều, giáo viên hỏi học sinh giơ tay phát biểu, học sinh này trả lời sai thì
gọi học sinh khác.
Phơng pháp này cha bao quát đợc các đối tợng học sinh, cha phát huy
hết khả năng sáng tạo của học sinh, học sinh còn thụ động.
Qua dự giờ phân tích, đánh giá phơng pháp dạy khái niệm diện tích
các hình thì mức độ hiểu bài, hiểu khái niệm còn máy móc.
Số học sinh làm đợc các bài tập ứng dụng chỉ đạt 50%, khoảng 25%
học sinh cha hiểu bài.
Sau khi dự giờ một số tiết dạy khác chúng tôi đã đợc chọn ra một phơng
pháp dạy phù hợp và trực tiếp dạy thử nghiệm lớp 5.
Diện tích hình thang
V1:
- Giáo viên phát biểu đề toán.
- Mỗi học sinh lấy hình thang đã chuẩn bị. Hãy xác định trên
hình thang các yếu tố: Đỉnh, đáy, cạnh bên, chiều cao?
- Tóm tắt bài toán.
Hình thang: Đáy lớn: 12 cm
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 3 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Đáy bé: 8cm
Chiều cao: 5 cm
S = ?
Học sinh tự ghi vào hình vẽ đã chuẩn bị
V2: Hãy suy nghĩ tìm cách tính diện tích hình thang đó?
Chúng ta hãy biến đổi hình thang về hình mà đã biết công thức
tính diện tích.
Các nhóm trao đổi sau đó trình bày kết quả.
Học sinh biến đổi đa hình thang về hình tam giác.
V3: Giúp đỡ học sinh biến đổi đa hình thang về hình tam giác về
hình chữ nhật.
V4: Ghi kết quả thảo luận:
Nhóm 1:
1. Cắt theo AM
2. Đặt B C A N
3. S = S ADN =
2
1
x DN x AH =
2
1
x (12 + 8) x 5 = 50 (cm
2
)
Nhóm 2: Lấy M, N, Q chính giữa các cạnh AB, AD, BC
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 4 -
M
BAD
D CH N
QN
M
BAD
D CH S
P
Sáng kiến kinh nghiệm : Một số Phương pháp dạy toán diện tích Lớp 5
C¾t h×nh thang theo MN, MQ ghÐp ®Ó B ≡ C, A ≡ D ⇒ S = S
MPS
Trường Tiểu học Thiệu Quang Giáo viên : Hàn Văn Hoạt
- 5 -
BAD
D CH
H
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Nhóm 3:
Cắt theo AC -> S = S ADC + S ABC
Nhóm 4:
S = S ABQP + S DEFC = 8x 2.5 + 12x2.5 = 50 (cm
2
)
Chọn một cách trình bày.
Qua kết quả yêu cầu học sinh khái quát và phát biểu quy tắc.
Công thức:
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 6 -
D C
H
2
(a+b) x h
S =
F
P
NM
Q
BA
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
3. áp dụng:
- Tính diện tích hình thang trong các trờng hợp
a) b = 5 m; a = 16 m; h = 14 m;
b) a = 4,7 m; b = 0,4 m; h = 1,1 m;
c) a = 8,2 m; b = 1,7 m; h = 3/4 m;
Sau tiết dạy thử nghiệm (lớp 5A) theo phơng pháp trên và lớp đối
chứng dạy theo phơng pháp cũ (5B).
Tôi tiến hành kiểm tra cho 2 lớp bằng bài tập tơng tự.
Kết quả:
- Lớp thử nghiệm (5A): Điểm trung bình trở lên 81.5%
- Lớp đối chứng (5B): Điểm trung bình trở lên 67,8 %
Mức độ phân tán của lớp đối chứng lớn hơn độ phân tán của lớp thử
nghiệm nhiều.
Để tìm hiểu xem học sinh lớp 5 Tiểu học đã hiểu về đơn vị đo
diện tích một xemtimet vuông cha. Tôi đã dùng hệ thống câu hỏi sau:
a. Xentimet vuông là diện tích của một hình vuông có cạnh dài 1 cm.
Một Xentimet vuông ghi là 1 cm
2
.
b. Xentimet vuông là diện tích của một hình vuông có cạnh dài 10
cm
Một Centimet vuông ghi là 1 cm.
Ghi Đ vào ô trả lời đúng.
Trong thời gian 8 phút sau khi đã phát phiếu cho học sinh Tôi thu lại
phiếu đã phát.
- Số học sinh trả lời sai: 30%
- Số học sinh lỡng lự (không trả lời): 10.2%
- Số học sinh trả lời đúng: 59.8%
Tôi đã tiến hành kiểm tra 2 nhóm bằng bài tập sau:
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 7 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Bài toán: Cho hình thang ABCD nh hình vẽ. M, N là trung điểm lần
lợt các cạnh AB, CD.
a. So sánh S ADNM với S MNCB
b. Đờng cao AH = 5 cm. AB = 8cm;
CD = 10cm
Tính S ABCD.
c. Kéo dài CF.
Tính CF biết S MNCB tăng thêm 35 cm
2
.
(Thời gian 35 phút).
Kết quả:
Điểm trung bình trở lên của lớp thử nghiệm lớn hơn lớp đối chứng.
III. Một số phơng pháp nhằm nâng cao hiệu quả dạy học toán diện tích ở tr-
ờng tiểu học.
1. Phơng pháp dạy toán diện tích (hớng tập trung vào học sinh)
Bài dạy toán thờng có 2 phần: Dạy lý thuyết và luyện tập giải bài tập.
Từ xa đến nay trong phần luyện tập giải bài tập, chúng ta vẫn tổ chức
cho học sinh làm việc bằng tay.
Nhng phần dạy lý thuyết, giáo viên chủ yếu đang dùng phơng pháp
đàm thoại (Thầy hỏi trò trả lời), nhận xét để dẫn dắt học sinh đến
kiến thức mới. Cách dạy này không thoả mãn đợc một cách chắc chắn yêu
cầu:
Tất cả học sinh đều phải làm việc. Do vậy dạy bài mới cần phải đ-
ợc thao tác hoá.
Thứ nhất: Chuyển từ hình thức đàm thoại thông thờng sang hình
thức đàm thoại mới là bút đàm. Trong đó giáo viên nêu câu hỏi dới dạng
lệnh làm việc, còn học sinh trả lời giáo viên tất cả mọi học sinh đều phải
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 8 -
C F
BA M
D N
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
làm việc - nh thể học sinh nào không chịu suy nghĩ làm việc là giáo viên
biết ngay để nhắc nhở.
Nhờ có việc thao tác hoá này mà giáo viên tổ chức đợc cho tất cả học
sinh phải làm việc và kiểm soát đợc từng quá trình làm việc đó.
Thứ hai: Chuyển từ hình thức trực quan Thầy làm, trò xem sang
hình thức trực quan Trò làm Thầy xem.
ở Tiểu học, các em chỉ biết tiếp thu các kiến thức hình học trực tiếp,
dựa trên các hoạt động thực hành đo đạc, tô vẽ, cắt ghép, gấp hình.
Do vậy phơng tiện trực quan trong việc dạy toán diện tích là không
thể thiếu đợc.
2. Một số cách cắt ghép hình:
Khi hớng dẫn học sinh giải bài tập cắt, ghép hình giáo viên tổ chức
thực hành cắt ghép hình theo quy trình dới đây:
- Vẽ hình trên giấy kẻ ô vuông (sao cho có thể nhận thấy hình vẽ
và bao gồm bao nhiêu ô vuông).
- Nhận xét hình vẽ và các đặc điểm của hình đã cho (diện
tích, số ô vuông, hình dạng, góc cạnh).
- Đối chiếu với các yêu cầu của hình phải tạo thành, có yêu cầu nào
đợc thoả mãn từ hình vẽ trên lới ô vuông.
- Xác định bộ phận nào của hình cần phải cắt, ghép (bao gồm
các ô có liên quan). Phân tích và so sánh mối quan hệ giữa các ô
vuông, chú ý sử dụng các đỉnh và các cạnh của hình ban đầu
để tạo ra hình mới.
- Cắt ghép các ô vuông liên quan dựa trên sự phân tích của bớc
trên.
3. Phơng pháp dùng tỷ số:
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 9 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Trong một số bài toán hình học ngời ta có thể dùng tỷ số các số đo
đoạn thẳng, tỷ số các số đo diện tích nh một phơng tiện để tính toán,
giải thích lập luận, cũng nh so sánh các giá trị về độ dài đoạn thẳng. Về
diện tích hoặc thể tích. Điều này cũng thờng đợc thể hiện dới hình
thức sau: (chẳng hạn đối với hình tam giác).
a. Hai hình tam giác có diện tích bằng nhau: nếu có 2 đáy bằng nhau
thì chiều cao bằng nhau. Hoặc nếu có 2 chiều cao bằng nhau thì 2 đáy
bằng nhau.
b. Hình tam giác có diện tích bằng nhau. Nếu đáy của hình 1 lớn gấp
bao nhiêu lần đấy của hình 2 thì chiều cao của hình 2 lớn gấp bấy nhiều
lần chiều cao của hình 1.
c. Hai hình tam giác có 2 đáy (hoặc chiều cao) bằng nhau nếu diện
tích của hình tam giác 1 lớn gấp bao nhiêu lần diện tích của tam giác 2 thì
chiều cao (đáy) của hình tam giác 1 cũng lớn gấp bấy nhiêu lần chiều cao
của tam giác 2 và ngợc lại.
4. Phơng pháp thực hiện phép tính trên số đo diện tích và các
thao tác tổng hợp trên hình.
Có những bài toán hình học đòi hỏi phải biết vận dụng thao tác phân
tích. Tổng hợp trên hình đồng thời với việc tính toán trên số đo diện
tích. Điều đó đợc thể hiện nh sau:
a. Một hình đợc chia thành nhiều hình nhỏ thì diện tích của nó
bằng tổng diện tích các hình nhỏ đợc chia.
b. Hai hình có diện tích bằng nhau mà cùng có phần chung thì 2
phần còn lại có diện tích bằng nhau.
c. Nếu ghép thêm một hình vào 2 hình có diện tích bằng nhau thì
sẽ đợc hai hình mới có diện tích bằng nhau.
5. Một số phơng pháp giảng dạy giải toán diện tích:
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 10 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
a. Với các loại toán điển hình, giáo viên cần hớng dẫn học sinh giải cẩn
thận, tập luyện trên nhiều ví dụ tơng tự. Để giải các bài toán này học sinh
cần thực hiện các điều sau:
+ Nêu rõ yêu cầu và tóm tắt đợc bài toán, phát hiện ra các tình huống
quen thuộc, chuyển bài toán, phát biểu dới dạng bài toán quen thuộc.
+ Giải bài toán theo quy trình quen thuộc.
+ Luôn chú ý đến khai thác bài toán, lập hệ thống bài toán liên quan,
tiến tới lập hồ sơ bài toán.
b. Với các bài tập tính toán.
+ Yêu cầu nắm chắc công thức, hiểu từng đối tợng trong công thức.
Biết tìm các thành phần cha biết từ các thành phần đã cho.
+ Giải quyết từng nội dung, từng thành phần để đi đến giải quyết
bài toán.
c. Với bài tập giải bằng phơng pháp đại số.
+ Hớng dẫn học sinh phiên dịch bài toán sang bài toán quen thuộc.
+ Tìm hiểu nội dung bài toán.
+ Phải giải bài toán tìm hiểu bài toán một cách tổng thể tránh vội
vàng đi ngay vào chi tiết.
6. Dạy đại lợng diện tích:
Dạy các đại lợng diện tích cần sử dụng nhiều phơng pháp trực quan
để thấy tính chất công tính, đơn điệu của các đại lợng này. Khi sắp
xếp các nội dung hoạt động tơng tự với các nội dung về dạy đại lợng độ dài
có thể đa các tình huống định hớng hành động bằng tơng tự hoặc sử
dụng đại lợng độ dài nh mô hình, mô hình đoạn thẳng.
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 11 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Kết luận
Dựa trên cơ sở lý luận và thông qua thực tiễn, công tác giảng dạy của
mình Với mục đích góp phần nâng cao hiệu quả của việc dạy học toán
nói chung và dạy học toán diện tích nói riêng Trong quá trình giảng dạy
tôi đã tìm tòi, học hỏi, tham khảo tài liệu để rút ra những phơng pháp
dạy toán diện tích ở trờng tiểu học.
Rất mong đợc quý cấp trên, các thầy, cô giáo, bạn bè đồng nghiệp
chân thành góp thêm ý kiến cho tôi. Để tôi đợc học hỏi thêm, tích luỹ thêm
để tôi hoàn thành tốt nhiệm vụ giảng dạy của mình.
Tôi xin chân thành cảm ơn !
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 12 -
Sỏng kin kinh nghim : Mt s Phng phỏp dy toỏn din tớch Lp 5
Mục lục
Trang
1.
Đặt vấn đề
1
2. Mục đích 2
Nội dung 2
I. Cơ sở lý luận 2
1. Tầm quan trọng của toán diện tích 2
2. Mục đích của việc dạy học các yếu tố diện tích 2
II. Kết quả điều tra khảo sát thực tiễn 2
1. Phơng pháp dạy toán diện tích ở trờng tiểu học 2
Diện tích hình thang
3
2. áp dụng 7
III. Một số phơng pháp nhằm nâng cao hiệu quả dạy học toán
diện tích ở trờng Tiểu học 7
1. Phơng pháp dạy toán diện tích (hớng tập trung vào học
sinh) 7
2. Một số cách cắt ghép hình 8
3. Phơng pháp dùng tỷ số 8
4. Phơng pháp thực hiện phép tính trên số đo diện tích và
các thao tác tổng hợp trên hình 9
5. Một số phơng pháp giảng dạy giải toán diện tích 9
6. Dạy đại lợng diện tích 10
Kết luận
11
Trng Tiu hc Thiu Quang Giỏo viờn : Hn Vn Hot
- 13 -