Tự chọn toán 6
NS: 04/08/2010 ND:
Tuần: 1 +2 Tiết: 1+2
TẬP HỢP
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- Rèn HS kỉ năng viết tập hợp, viết tập hợp con của một tập hợp cho trước, sử dụng
đúng, chính xác các kí hiệu
, , , ,∈ ∉ ⊂ ⊃ ∅
.
- Sự khác nhau giữa tập hợp
*
,N N
- Biết tìm số phần tử của một tập hợp được viết dưới dạng dãy số cóquy luật.
- Vận dụng kiến thức toán học vào một số bài toán thực tế.
B> NỘI DUNG
Tiết 1
I. Ôn tập lý thuyết.
Câu 1: Hãy cho một số VD về tập hợp thường gặp trong đời sống hàng ngày và một số
VD về tập hợp thường gặp trong toán học?
Câu 2: Hãy nêu cách viết, các ký hiệu thường gặp trong tập hợp.
Câu 3: Một tập hợp có thể có bao nhiêu phần tử?
Câu 4: Có gì khác nhau giữa tập hợp
N
và
*
N
?
II. Bài tập
Dạng 1: Rèn kĩ năng viết tập hợp, viết tập hợp con, sử dụng kí hiệu
Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh”
a. Hãy liệt kê các phần tử của tập hợp A.
b. Điền kí hiệu thích hợp vào ô vuông
b ý A ; c ý A ; h ý A
Hướng dẫn
a/ A = {a, c, h, I, m, n, ô, p, t}
b/
b A∉
c A∈
h A∈
Lưu ý HS: Bài toán trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã
cho.
Bài 2: Cho tập hợp các chữ cái X = {A, C, O}
a/ Tìm chụm chữ tạo thành từ các chữ của tập hợp X.
b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X.
Hướng dẫn
a/ Chẳng hạn cụm từ “CA CAO” hoặc “CÓ CÁ”
b/ X = {x: x-chữ cái trong cụm chữ “CA CAO”}
Bài 3: Chao các tập hợp
A = {1; 2; 3; 4; 5; 6} ; B = {1; 3; 5; 7; 9}
a/ Viết tập hợp C các phần tử thuộc A và không thuộc B.
b/ Viết tập hợp D các phần tử thuộc B và không thuộc A.
c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B.
1
Tự chọn toán 6
d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B.
Hướng dẫn:
a/ C = {2; 4; 6}
b/ D = {5; 9}
c/ E = {1; 3; 5}
d/ F = {1; 2; 3; 4; 5; 6; 7; 8; 9}
Bài 4: Cho tập hợp A = {1; 2; a; b}
a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử.
b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử.
c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không?
Hướng dẫn
a/ {1} { 2} { a } { b}
b/ {1; 2} {1; a} {1; b} {2; a} {2; b} { a; b}
c/ Tập hợp B không phải là tập hợp con của tập hợp A bởi vì c
B∈
nhưng c
A∉
Tiết 2
Dạng 2: Các bài tập về xác định số phần tử của một tập hợp
Bài 1: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần
tử?
Hướng dẫn:
Tập hợp A có (999 – 100) + 1 = 900 phần tử.
Bài 2: Hãy tính số phần tử của các tập hợp sau:
a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số.
b/ Tập hợp B các số 2, 5, 8, 11, …, 296.
c/ Tập hợp C các số 7, 11, 15, 19, …, 283.
Hướng dẫn
a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử.
b/ Tập hợp B có (296 – 2 ): 3 + 1 = 99 phần tử.
c/ Tập hợp C có (283 – 7 ):4 + 1 = 70 phần tử.
Cho HS phát biểu tổng quát:
- Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử.
- Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử.
- Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp
của dãy là 3 có (d – c ): 3 + 1 phần tử.
Bài 3: Cha mua cho em một quyển số tay dày 256 trang. Để tiện theo dõi em đánh số
trang từ 1 đến 256. HỎi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay?
Hướng dẫn:
- Từ trang 1 đến trang 9, viết 9 số.
- Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số.
- Từ trang 100 đến trang 256 có (256 – 100) + 1 = 157 trang, cần viết 157 . 3 = 471 số.
Vậy em cần viết 9 + 180 + 471 = 660 số.
2
Tự chọn toán 6
Bài 4: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau.
Hướng dẫn:
- Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không
thoả mãn yêu cầu của bài toán.
Vậy số cần tìm chỉ có thể có dạng:
abbb
,
babb
,
bbab
,
bbba
với a
≠
b là cá chữ số.
- Xét số dạng
abbb
, chữ số a có 9 cách chọn ( a
≠
0)
⇒
có 9 cách chọn để b khác a.
Vậy có 9 . 8 = 71 số có dạng
abbb
.
Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến
10000 có đúng 3 chữ số giống nhau gồm 81.4 = 324 số.
NS: 04/09/2010 ND:
Tuần: 3+4 Tiết: 3+4
PHÉP CỘNG VÀ PHÉP NHÂN – PHÉP TRỪ VÀ PHÉP CHIA
Thời gian thực hiện: 2 tiết
A> MỤC TIÊU
- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.
- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh
và giải toán một cách hợp lý.
- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.
- Hướng dẫn HS cách sử dụng máy tính bỏ túi.
- Giới thiệu HS về ma phương.
B> NỘI DUNG
Tiết 3
I. Ôn tập lý thuyết.
Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?
Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?
II. Bài tập
Dạng 1: Các bài toán tính nhanh
Bài 1: Tính tổng sau đây một cách hợp lý nhất.
a/ 67 + 135 + 33
b/ 277 + 113 + 323 + 87
ĐS: a/ 235 b/ 800
Bài 2: Tính nhanh các phép tính sau:
a/ 8 x 17 x 125
b/ 4 x 37 x 25
ĐS: a/ 17000 b/ 3700
Bài 3: Tính nhanh một cách hợp lí:
a/ 997 + 86
b/ 37. 38 + 62. 37
3
Tự chọn toán 6
c/ 43. 11; 67. 101; 423. 1001
d/ 67. 99; 998. 34
Hướng dẫn
a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083
Sử dụng tính chất kết hợp của phép cộng.
Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số
hạng này đồng thời bớt đi số hạng kia với cùng một số.
b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700.
Sử dụng tính chất phân phối của phép nhân đối với phép cộng.
c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373.
67. 101= 6767
423. 1001 = 423 423
d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633
998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932
Bái 4: Tính nhanh các phép tính:
a/ 37581 – 9999
b/ 7345 – 1998
c/ 485321 – 99999
d/ 7593 – 1997
Hướng dẫn:
a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một
số vào số bị trừ và số trừ
b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347
c/ ĐS: 385322 d/ ĐS: 5596
Tiết 4
Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp
Bài 1: Tính 1 + 2 + 3 + … + 1998 + 1999
Hướng dẫn
- Áp dụng theo cách tích tổng của Gauss
- Nhận xét: Tổng trên có 1999 số hạng
Do đó
S = 1 + 2 + 3 + … + 1998 + 1999 = (1 + 1999). 1999: 2 = 2000.1999: 2 = 1999000
Bài 2: Tính tổng của:
a/ Tất cả các số tự nhiên có 3 chữ số.
b/ Tất cả các số lẻ có 3 chữ số.
Hướng dẫn:
a/ S
1
= 100 + 101 + … + 998 + 999
Tổng trên có (999 – 100) + 1 = 900 số hạng. Do đó
S
1
= (100+999).900: 2 = 494550
b/ S
2
= 101+ 103+ … + 997+ 999
Tổng trên có (999 – 101): 2 + 1 = 450 số hạng. Do đó
S
2
= (101 + 999). 450 : 2 = 247500
4
Tự chọn toán 6
Bài 3: Tính tổng
a/ Tất cả các số: 2, 5, 8, 11, …, 296
b/ Tất cả các số: 7, 11, 15, 19, …, 283
ĐS: a/ 14751
b/ 10150
Các giải tương tự như trên. Cần xác định số các số hạng trong dãy sô trên, đó là những
dãy số cách đều.
Bài 4: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng,
theo cột bằng 42.
Hướng dẫn:
5
1
5
1
0
12
1
5
1
0
17
16 14 12
11 1
8
13
Tự chọn toán 6
NS: 16/08/2010 ND:
Tuần: 5+6 Tiết: 5+6
LUỸ THỪA VỚI SỐ MŨ TỰ NHIÊN
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- Ôn lại các kiến thức cơ bản về luỹ thừa với số mũ tự nhiên như: Lũy thừa bậc n của số
a, nhân, chia hai luỹ thừa cùng có số, …
- Rèn luyện tính chính xác khi vận dụng các quy tắc nhân, chia hai luỹ thừa cùng cơ số
- Tính bình phương, lập phương của một số. Giới thiệu về ghi số cho máy tính (hệ nhị
phân).
- Biết thứ tự thực hiện các phép tính, ước lượng kết quả phép tính.
B> NỘI DUNG
Tiết 5
I. Ôn tập lý thuyết.
1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a
{
.
n
a a a a=
( n
≠
0). a gọi là cơ số, no gọi là số mũ.
2. Nhân hai luỹ thừa cùng cơ số
.
m n m n
a a a
+
=
3. Chia hai luỹ thừa cùng cơ số
:
m n m n
a a a
−
=
( a
≠
0, m
≥
n)
Quy ước a
0
= 1 ( a
≠
0)
4. Luỹ thừa của luỹ thừa
( )
n
m m n
a a
×
=
5. Luỹ thừa một tích
( )
. .
m
m m
a b a b=
6. Một số luỹ thừa của 10:
- Một nghìn: 1 000 = 10
3
- Một vạn: 10 000 = 10
4
- Một triệu: 1 000 000 = 10
6
- Một tỉ: 1 000 000 000 = 10
9
Tổng quát: nếu n là số tự nhiên khác 0 thì: 10
n
=
100 00
142 43
II. Bài tập
Dạng 1: Các bài toán về luỹ thừa
Bài 1: Viết các tích sau đây dưới dạng một luỹ thừa của một số:
a/ A = 8
2
.32
4
b/ B = 27
3
.9
4
.243
ĐS: a/ A = 8
2
.32
4
= 2
6
.2
20
= 2
26.
hoặc A = 4
13
b/ B = 27
3
.9
4
.243 = 3
22
Bài 2: Tìm các số mũ n sao cho luỹ thừa 3
n
thảo mãn điều kiện: 25 < 3
n
< 250
Hướng dẫn
6
n thừa số a
n thừa số 0
Tự chọn toán 6
Ta có: 3
2
= 9, 3
3
= 27 > 25, 3
4
= 41, 3
5
= 243 < 250 nhưng 3
6
= 243. 3 = 729 > 250
Vậy với số mũ n = 3,4,5 ta có 25 < 3
n
< 250
Bài 3: So sách các cặp số sau:
a/ A = 27
5
và B = 243
3
b/ A = 2
300
và B = 3
200
Hướng dẫn
a/ Ta có A = 27
5
= (3
3
)
5
= 3
15
và B = (3
5
)
3
= 3
15
Vậy A = B
b/
A = 2
300
= 3
3.100
= 8
100
và B = 3
200
= 3
2.100
= 9
100
Vì 8 < 9 nên 8
100
< 9
100
và A < B.
Ghi chú: Trong hai luỹ thừa có cùng cơ số, luỹ thừa nào có cơ số lớn hơn thì lớn hơn.
Tiết 6
Dạng 3: Thứ tự thực hiện các phép tính - ước lượng các phép tính
- Yêu cầu HS nhắc lại thứ tự thực hiện các phép tính đã học.
- Để ước lượng các phép tính, người ta thường ước lượng các thành phần của phép tính
Bài 1: Tính giá trị của biểu thức:
A = 2002.20012001 – 2001.20022002
Hướng dẫn
A = 2002.(20010000 + 2001) – 2001.(20020000 + 2002)
= 2002.(2001.10
4
+ 2001) – 2001.(2002.10
4
+ 2001)
= 2002.2001.10
4
+ 2002.2001 – 2001.2002.10
4
– 2001.2002
= 0
Bài 2: Thực hiện phép tính
a/ A = (456.11 + 912).37 : 13: 74
b/ B = [(315 + 372).3 + (372 + 315).7] : (26.13 + 74.14)
ĐS: A = 228 B = 5
Bài 3: Tính giá trị của biểu thức
a/ 12:{390: [500 – (125 + 35.7)]}
b/ 12000 –(1500.2 + 1800.3 + 1800.2:3)
ĐS: a/ 4 b/ 2400
Dạng 5: Tìm x
Tìm x, biết:
a/ 541 + (218 – x) = 735 (ĐS: x = 24)
b/ 96 – 3(x + 1) = 42 (ĐS: x = 17)
c/ ( x – 47) – 115 = 0 (ĐS: x = 162)
d/ (x – 36):18 = 12 (ĐS: x = 252)
7
Tự chọn toán 6
NS: ND:
Tuần: 7+8 Tiết: 7+8
DẤU HIỆU CHIA HẾT
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- HS được củng cố khắc sâu các kiến thức về dấu hiệu chia hết cho 2, 3, 5 và 9.
- Vận dụng thành thạo các dấu hiệu chia hết để nhanh chóng nhận ra một số, một tổng
hay một hiệu có chia hết cho 2, 3, 5, 9.
B> NỘI DUNG
Tiết 7
I. Ôn tập lý thuyết.
Câu 1: Nêu dấu hiệu chia hết cho 2, cho 5.
Câu 2: Nêu dấu hiệu chia hết cho 3, cho 9.
Câu 3: Những số như thế nào thì chia hết cho 2 và 3? Cho VD 2 số như vậy.
Câu 4: Những số như thế nào thì chia hết cho 2, 3 và 5? Cho VD 2 số như vậy.
Câu 5: Những số như thế nào thì chia hết cho cả 2, 3, 5 và 9? Cho VD?
II. Bài tập
Dạng 1:
Bài 1: Cho số
200A = ∗
, thay dấu * bởi chữ số nào để:
a/ A chia hết cho 2
b/ A chia hết cho 5
c/ A chia hết cho 2 và cho 5
Hướng dẫn
a/ A
M
2 thì *
∈
{ 0, 2, 4, 6, 8}
b/ A
M
5 thì *
∈
{ 0, 5}
c/ A
M
2 và A
M
5 thì *
∈
{ 0}
Bài 2: Cho số
20 5B = ∗
, thay dấu * bởi chữ số nào để:
a/ B chia hết cho 2
b/ B chia hết cho 5
c/ B chia hết cho 2 và cho 5
Hướng dẫn
a/ Vì chữ số tận cùng của B là 5 khác 0, 2, 4, 6, 8 nên không có giá trị nào của * để B
M
2
b/ Vì chữ số tận cùng của B là 5 nên B
M
5 khi *
∈
{0, 1, 2, 3,4, 5, 6, 7, 8, 9}
c/ Không có giá trị nào của * để B
M
2 và B
M
5
Bài 3: Thay mỗi chữ bằng một số để:
a/ 972 +
200a
chia hết cho 9.
b/ 3036 +
52 2a a
chia hết cho 3
Hướng dẫn
8
Tự chọn toán 6
a/ Do 972
M
9 nên (972 +
200a
)
M
9 khi
200a
M
9. Ta có 2+0+0+a = 2+a, (2+a)
M
9 khi a = 7.
b/ Do 3036
M
3 nên 3036 +
52 2a a
M
3 khi
52 2a a
M
3. Ta có 5+2+a+2+a = 9+2a, (9+2a)
M
3
khi 2a
M
3
⇒
a = 3; 6; 9
Bài 4: Điền vào dẫu * một chữ số để được một số chia hết cho 3 nhưng không chia hết
cho 9
a/
2002*
b/
*9984
Hướng dẫn
a/ Theo đề bài ta có (2+0+0+2+*)
M
3 nhưng (2+0+0+2+*) = (4+*) không chia hết 9
suy ra 4 + * = 6 hoặc 4 + * = 12 nên * = 2 hoặc * = 8.
Rõ ràng 20022, 20028 chia hết cho 3 nhưng không chia hết cho 9.
b/ Tương tự * = 3 hoặc * = 9.
Tiết 8
Dạng 2:
Bài 1: Viết tập hợp các số x chia hết cho 2, thoả mãn:
a/ 52 < x < 60
b/ 105
≤
x < 115
c/ 256 < x
≤
264
d/ 312
≤
x
≤
320
Hướng dẫn
a/
{ }
54,55,58x∈
b/
{ }
106,108,110,112,114x∈
c/
{ }
258,260,262,264x∈
d/
{ }
312,314,316,318,320x∈
Bài 2: Viết tập hợp các số x chia hết cho 5, thoả mãn:
a/ 124 < x < 145
b/ 225
≤
x < 245
c/ 450 < x
≤
480
d/ 510
≤
x
≤
545
Hướng dẫn
a/
{ }
125,130,135,140x∈
b/
{ }
225,230,235,240x∈
c/
{ }
455,460,465,470,475,480x∈
d/
{ }
510,515,520,525,530,535,540,545x∈
Bài 3: a/ Viết tập hợp các số x chia hết cho 3 thoả mãn: 250
≤
x
≤
260
b/ Viết tập hợp các số x chia hết cho 9 thoả mãn: 185
≤
x
≤
225
Hướng dẫn
a/ Ta có tập hợp các số: 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260
Trong các số này tập hợp các số chia hết cho 3 là {252, 255, 258}
9
Tự chọn toán 6
b/ Số đầu tiên (nhỏ nhất) lớn hơn 185 chia hết cho 9 là 189; 189 +9 = 198 ta viết tiếp số
thứ hai và tiếp tục đến 225 thì dừng lại có x
∈
{189, 198, 207, 216, 225}
Bài 4: Tìm các số tự nhiên x sao cho:
a/
(5)x B∈
và
20 30x≤ ≤
b/
13xM
và
13 78x< ≤
c/
x∈
Ư(12) và
3 12x< ≤
d/
35 xM
và
35x <
Hướng dẫn
a/ B(5) = {0, 5, 10, 15, 20, 25, 30, 35, …}
Theo đề bài
(5)x B∈
và
20 30x
≤ ≤
nên
{ }
20,25,30x∈
b/
13xM
thì
(13)x B∈
mà
13 78x
< ≤
nên
{ }
26,39,52,65,78x∈
c/ Ư(12) = {1; 2; 3; 4; 6; 12},
x∈
Ư(12) và
3 12x
< ≤
nên
{ }
3,4,6,12x∈
d/
35 xM
nên
x∈
Ư(35) = {1; 5; 7; 35} và
35x
<
nên
{ }
1;5;7x∈
NS: ND:
Tuần: 9+10 Tiết: 9+10
Chủ đề 5: ƯỚC VÀ BỘI
SỐ NGUYÊN TỐ - HỢP SỐ
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- HS biết kiểm tra một số có hay không là ước hoặc bội của một số cho trước, biết cách
tìm ước và bội của một số cho trước .
- Biết nhận ra một số là số nguyên tố hay hợp số.
- Biết vận dụng hợp lý các kiến thức về chia hết đã học để nhận biết hợp số.
B> NỘI DUNG
Tiết 9
I. Ôn tập lý thuyết.
Câu 1: Thế nào là ước, là bội của một số?
Câu 2: Nêu cách tìm ước và bội của một số?
Câu 3: Định nghĩa số nguyên tố, hợp số?
Câu 4: Hãy kể 20 số nguyên tố đầu tiên?
II. Bài tập
Dạng 1:
Bài 1: Tìm các ước của 4, 6, 9, 13, 1
Bài 2: Tìm các bội của 1, 7, 9, 13
Bài 3: Chứng tỏ rằng:
10
Tự chọn toán 6
a/ Giá trị của biểu thức A = 5 + 5
2
+ 5
3
+ … + 5
8
là bội của 30.
b/ Giá trị của biểu thức B = 3 + 3
3
+ 3
5
+ 3
7
+ …+ 3
29
là bội của 273
Hướng dẫn
a/ A = 5 + 5
2
+ 5
3
+ … + 5
8
= (5 + 5
2
) + (5
3
+ 5
4
) + (5
5
+ 5
6
) + (5
7
+ 5
8
)
= (5 + 5
2
) + 5
2
.(5 + 5
2
) + 5
4
(5 + 5
2
) + 5
6
(5 + 5
2
)
= 30 + 30.5
2
+ 30.5
4
+ 30.5
6
= 30 (1+ 5
2
+ 5
4
+ 5
6
)
M
3
b/ Biến đổi ta được B = 273.(1 + 3
6
+ … + 3
24
)
M
273
Bài 4: Biết số tự nhiên
aaa
chỉ có 3 ước khác 1. tìm số đó.
Hướng dẫn
aaa
= 111.a = 3.37.a chỉ có 3 ước số khác 1 là 3; 37; 3.37 khia a = 1.
Vậy số phải tìm là 111
(Nết a
≥
2 thì 3.37.a có nhiều hơn 3 ước số khác 1).
Tiết 10
Dạng 2:
Bài 1: Tổng (hiệu) sau là số nguyên tố hay hợp số:
a/ 3150 + 2125
b/ 5163 + 2532
c/ 19. 21. 23 + 21. 25 .27
d/ 15. 19. 37 – 225
Hướng dẫn
a/ Tổng lớn hơn 5 và chia hết cho 5, nên tổng là hợp số.
b/ Hiệu lớn hơn 3 và chia hết cho 3, nên hiệu là hợp số.
c/ Tổng lớn hơn 21 và chia hết cho 21 nên tổng là hợp số.
d/ Hiệu lớn hơn 15 và chia hết cho 15 nên hiệu là hợp số.
Bài 2: Chứng tỏ rằng các số sau đây là hợp số:
a/ 297; 39743; 987624
b/ 111…1 có 2001 chữ số 1 hoặc 2007 chữ số 1
c/ 8765 397 639 763
Hướng dẫn
a/ Các số trên đều chia hết cho 11
Dùng dấu hiệu chia hết cho 11 đê nhận biết: Nếu một số tự nhiên có tổng các chữ số
đứng ở vị trí hàng chẵn bằng tổng các chữ số ở hàng lẻ ( số thứ tự được tính từ trái qua
phải, số đầu tiên là số lẻ) thì số đó chia hết cho 11. Chẳng hạn 561, 2574,…
b/ Nếu số đó có 2001 chữ số 1 thì tổng các chữ số của nó bằng 2001 chia hết cho 3. Vậy
số đó chia hết cho 3. Tương tự nếu số đó có 2007 chữ số 1 thì số đó cũng chia hết cho 9.
c/ 8765 397 639 763 = 87654.100001 là hợp số.
Bài 3: a/ Tìm số tự nhiên k để số 23.k là số nguyên tố
b/ Tại sao 2 là số nguyên tố chẵn duy nhất?
Hướng dẫn
a/ Với k = 0 thì 23.k = 0 không là số nguyên tố
với k = 1 thì 23.k = 23 là số nguyên tố.
Với k>1 thì 23.k
M
23 và 23.k > 23 nên 23.k là hợp số.
11
Tự chọn toán 6
b/ 2 là số nguyên tố chẵn duy nhất, vì nếu có một số chẵn lớn hơn 2 thì số đó chia hết
cho 2, nên ước số của nó ngoài 1 và chính nó còn có ước là 2 nên số này là hợp số.
Bài 4 : Tìm một số nguyên tố, biết rằng số liền sau của nó cũng là một số nguyên tố
Hướng dẫn
Ta biết hai số tự nhiên liên tiếp bao giờ cũng có một số chẵn và một số lẻ, muốn cả hai
là số nguyên tố thì phải có một số nguyên tố chẵn là số 2. Vậy số nguyên tố phải tìm là 2.
NS: ND:
Tuần: 11 Tiết: 11
PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ
Thời gian thực hiện: 1 tiết.
A> MỤC TIÊU
- HS biết phân tích một số ra thừa số nguyên tố.
- Dựa vào việc phân tích ra thừa số nguyên tố, HS tìm được tập hợp của các ước của số
cho trước
- Giới thiệu cho HS biết số hoàn chỉnh.
- Thông qua phân tích ra thừa số nguyên tổ để nhận biết một số có bao nhiêu ước, ứng
dụng để giải một vài bài toán thực tế đơn giản.
B> NỘI DUNG
I. Ôn tập lý thuyết.
Câu 1: Thế nào là phân tích một số ra thừa số nguyên tố?
Câu 2: Hãy phân tích số 250 ra thừa số nguyên tố bằng 2 cách.
II. Bài tập
Bài 1: Phân tích các số 120, 900, 100000 ra thừa số nguyên tố
ĐS: 120 = 2
3
. 3. 5
900 = 2
2
. 3
2
. 5
2
100000 = 10
5
= 2
2
.5
5
Bài 2. Một số tự nhiên gọi là số hoàn chỉnh nếu tổng tất cả các ước của nó gấp hai lần
số đó. Hãy nêu ra một vài số hoàn chỉnh.
VD 6 là số hoàn chỉnh vì Ư(6) = {1; 2; 3; 6} và 1 + 2 + 3 + 6 = 12
Tương tự 48, 496 là số hoàn chỉnh.
Bài 3: Học sinh lớp 6A được nhận phần thưởng của nhà trường và mỗi em được nhận
phần thưởng như nhau. Cô hiệu trưởng đã chia hết 129 quyển vở và 215 bút chì màu. Hỏi
số học sinh lớp 6A là bao nhiêu?
Hướng dẫn
Nếu gọi x là số HS của lớp 6A thì ta có:
12
Tự chọn toán 6
129
M
x và 215
M
x
Hay nói cách khác x là ước của 129 và ước của 215
Ta có 129 = 3. 43; 215 = 5. 43
Ư(129) = {1; 3; 43; 129}
Ư(215) = {1; 5; 43; 215}
Vậy x
∈
{1; 43}. Nhưng x không thể bằng 1. Vậy x = 43.
NS: ND:
Tuần: 12+13 Tiết: 12+13
ƯỚC CHUNG VÀ BỘI CHUNG
ƯỚC CHUNG LỚN NHẤT - BỘI CUNG NHỎ NHẤT
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- Rèn kỷ năng tìm ước chung và bội chung: Tìm giao của hai tập hợp.
- Biết tìm ƯCLN, BCNN của hai hay nhiều số bằng cách phân tích các số ra thừa số
nguyên tố.
- Biết vận dụng ƯC, ƯCLN, BC, BCNN vào các bài toán thực tế đơn giản.
B> NỘI DUNG
Tiết 12
I. Ôn tập lý thuyết.
Câu 1: Ước chung của hai hay nhiều số là gi? x
∈
ƯC(a; b) khi nào?
Câu 2: Bội chung nhỏ nhất của hai hay nhiều số là gi?
Câu 3: Nêu các bước tìm UCLL
Câu 4: Nêu các bước tìm BCNN
II. Bài tập
Dạng 1:
Bài 1: Viết các tập hợp
a/ Ư(6), Ư(12), Ư(42) và ƯC(6, 12, 42)
b/ B(6), B(12), B(42) và BC(6, 12, 42)
ĐS:
a/ Ư(6) =
{ }
1;2;3;6
Ư(12) =
{ }
1;2;3;4;6;12
Ư(42) =
{ }
1;2;3;6;7;14;21;42
ƯC(6, 12, 42) =
{ }
1;2;3;6
b/ B(6) =
{ }
0;6;12;18;24; ;84;90; ;168;
13
Tự chọn toán 6
B(12) =
{ }
0;12;24;36; ;84;90; ;168;
B(42) =
{ }
0;42;84;126;168;
BC =
{ }
84;168;252;
Bài 2: Tìm ƯCLL của
a/ 12, 80 và 56
b/ 144, 120 và 135
c/ 150 và 50
d/ 1800 và 90
Hướng dẫn
a/ 12 = 2
2
.3 80 = 2
4
. 5 56 = 3
3
.7
Vậy ƯCLN(12, 80, 56) = 2
2
= 4.
b/ 144 = 2
4
. 3
2
120 = 2
3
. 3. 5 135 = 3
3
. 5
Vậy ƯCLN (144, 120, 135) = 3.
c/ ƯCLN(150,50) = 50 vì 150 chia hết cho 50.
d/ ƯCLN(1800,90) = 90 vì 1800 chia hết cho 90.
Bài 3: Tìm
a/ BCNN (24, 10)
b/ BCNN( 8, 12, 15)
Hướng dẫn
a/ 24 = 2
3
. 3 ; 10 = 2. 5
BCNN (24, 10) = 2
3
. 3. 5 = 120
b/ 8 = 2
3
; 12 = 2
2
. 3 ; 15 = 3.5
BCNN( 8, 12, 15) = 2
3
. 3. 5 = 120
Tiết 13
Dạng 3: Các bài toán thực tế
Bài 1: Một lớp học có 24 HS nam và 18 HS nữ. Có bao nhiêu cách chia tổ sao cho số
nam và số nữ được chia đều vào các tổ?
Hướng dẫn
Số tổ là ước chung của 24 và 18
Tập hợp các ước của 18 là A =
{ }
1;2;3;6;9;18
Tập hợp các ước của 24 là B =
{ }
1;2;3;4;6;8;12;24
Tập hợp các ước chung của 18 và 24 là C = A
∩
B =
{ }
1;2;3;6
Vậy có 3 cách chia tổ là 2 tổ hoặc 3 tổ hoặc 6 tổ.
Bài 2: Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, hoặc 25 người, hoặc 30
người đều thừa 15 người. Nếu xếp mỗi hàng 41 người thì vừa đủ (không có hàng nào
thiếu, không có ai ở ngoài hàng). Hỏi đơn vị có bao nhiêu người, biết rằng số người của
đơn vị chưa đến 1000?
Hướng dẫn
Gọi số người của đơn vị bộ đội là x (x
∈
N)
x : 20 dư 15
⇒
x – 15
M
20
14
Tự chọn toán 6
x : 25 dư 15
⇒
x – 15
M
25
x : 30 dư 15
⇒
x – 15
M
30
Suy ra x – 15 là BC(20, 25, 35)
Ta có 20 = 2
2
. 5; 25 = 5
2
; 30 = 2. 3. 5; BCNN(20, 25, 30) = 2
2
. 5
2
. 3 = 300
BC(20, 25, 35) = 300k (k
∈
N)
x – 15 = 300k
⇔
x = 300k + 15 mà x < 1000 nên
300k + 15 < 1000
⇔
300k < 985
⇔
k <
17
3
60
(k
∈
N)
Suy ra k = 1; 2; 3
Chỉ có k = 2 thì x = 300k + 15 = 615
M
41
Vậy đơn vị bộ đội có 615 người
NS: ND:
Tuần: 14+15 Tiết: 14+15
ÔN TẬP CHƯƠNG 1
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- Ôn tập các kiến thức đã học về cộng , trừ, nhân, chia và nâng lên luỹ thừa.
- Ôn tập các kiến thức đã học về tính chất chia hết của một tổng, các dấu hiệu chia hết
- Biết tính giá trị của một biểu thức.
- Vận dụng các kiến thức vào các bài toán thực tế
- Rèn kỷ năng tính toán cho HS.
B> NỘI DUNG
Tiết 14
I. Các bài tập trắc nghiệm tổng hợp
Câu 1: Cho hai tập hợp: X = {a; b; 1; 2}, Y = {2; 3; 4; 5; 7}. Hãy điền ký hiệu thích
hợp vào ô vuông:
a/ a ý X b/ 3 Xý
c/ b Yý d/ 2 Yý
Câu 2: Cho tập hợp A các số tự nhiên lớn hơn 2 và nhỏ hơn 10, tập hợp B các số tự
nhiên chẵn nhỏ hơn 12. Hãy điền kí hiệu thích hợp vào ô vuông:
a/ 12 B b/ 2 A
a/ 5 B a/ 9 A
Câu 3: Cho tập hợp A = {2; 3; 4; 5; 6}. Hãy điền chữ Đ(đúng), S (sai) vào các ô vuông
bên cạnh các cách viết sau:
a/ A = {2; 4; 6; 3 ; 5}
b/ A = {
| 7x N x∈ <
}
15
Tự chọn toán 6
c/ A = {
| 2 6x N x∈ ≤ ≤
}
d/ A = {
*| 7x N x∈ <
}
Câu 4: Hãy điền vào chỗ trống các số để mỗi dòng tạo nên các số tự nhiên liên tiếp tăng
dần:
a/ …, …, 2
b/ …, a, …
c/ 11, …, …, 14
d/ x – 1, … , x + 1
Câu 5: Cho ba chữ số 0, 2, 4. Số các số tự nhiên có ba chữ số khác nhau được viết bởi
ba chữ số đó là:
a/ 1 số
b/ 2 số
c/ 4 số
d/ 6 số
Câu 6: Cho tập hợp X = {3; 4; 5; …; 35}. Tập hợp X có mấy phần tử?
a/ 4
b/ 32
c/ 33
d/ 35
Câu 7: Hãy tính rồi điền kết quả vào các phép tính sau:
a/ 23.55 – 45.23 + 230 = …
b/ 71.66 – 41.71 – 71 = …
c/ 11.50 + 50.22 – 100 = …
d/ 54.27 – 27.50 + 50 =
Câu 8: Diền dấu X thích hợp để hoàn thành bảng sau:
Câu 9: Diền dấu X thích hợp để hoàn thành bảng sau:
Câu 10: Hãy điền các dấu thích hợp vào ô vuông:
a/ 3
2
2 + 4
b/ 5
2
3 + 4 + 5
c/ 6
3
9
3
– 3
2.
16
STT Câu Đúng Sai
1 3
3
. 3
7
= 3
21
2 3
3
. 3
7
= 3
10
3 7
2
. 7
7
= 7
9
4 7
2
. 7
7
= 7
14
STT Câu Đúng Sai
1 3
10
: 3
5
= 3
2
2 4
9
: 4
= 4
8
3 7
8
: 7
8
= 1
4 5
3
: 5
0
= 5
3
Tự chọn toán 6
d/ 1
3
+ 2
3
= 3
3
(1 + 2 + 3 + 4)
2
Tiết 15
II. Bài toán tự luận
Bài 1 Chứng tỏ rằng:
a/ 8
5
+ 2
11
chia hết cho 17
b/ 69
2
– 69. 5 chia hết cho 32.
c/ 8
7
– 2
18
chia hết cho 14
Hướng dẫn
a/ 8
5
+ 2
11
= 2
15
+ 2
11
= 2
11
(2
2
+ 1) = 2
11
. 17
M
17. Vậy 8
5
+ 2
11
chia hết cho 17
b/ 69
2
– 69. 5 = 69.(69 – 5) = 69. 64
M
32 (vì 64
M
32). Vậy 69
2
– 69. 5 chia hết cho 32.
c/ 8
7
– 2
18
= 2
21
– 2
18
= 2
18
(2
3
– 1) = 2
18
.7 = 2
17
.14
M
14.
Vậy 8
7
– 2
18
chia hết cho 14
Bài 2: Tính giá trị của biểu thức:
A = (11 + 159). 37 + (185 – 31) : 14
B = 136. 25 + 75. 136 – 6
2
. 10
2
C= 2
3
. 5
3
- {7
2
. 2
3
– 5
2
. [4
3
:8 + 11
2
: 121 – 2(37 – 5.7)]}
Hướng dẫn
A = 170. 37 + 154 : 14 = 6290 + 11 = 6301
B = 136(25 + 75) – 36. 100 = 136. 100 – 36. 100 = 100.(136 – 36) = 100. 100 = 10000
C= 733.
Bài 3: Số HS của một trường THCS là số tự nhiên nhỏ nhất có 4 chữ số mà khi chia số
đó cho 5 hoặc cho 6, hoặc cho 7 đều dư 1.
Hướng dẫn
Gọi số HS của trường là x (x
∈
N)
x : 5 dư 1
⇒
x – 1
M
5
x : 6 dư 1
⇒
x – 1
M
6
x : 7 dư 1
⇒
x – 1
M
7
Suy ra x – 1 là BC(5, 6, 7)
Ta có BCNN(5, 6, 7) = 210
BC(5, 6, 7) = 210k (k
∈
N)
x – 1 = 210k
⇔
x = 210k + 1 mà x số tự nhiên nhỏ nhất có 4 chữ số nên x
≥
1000
suy ra 210k + 1
≥
1000
⇔
k
≥
53
4
70
(k
∈
N) nên k nhỏ nhất là k = 5.
Vậy số HS trường đó là x = 210k + 1 = 210. 5 + 1 = 1051 (học sinh)
17
Tự chọn toán 6
NS: ND:
Tuần 16 Tiết 16 KIỂM TRA 45ph
I. Trắc nghiệm (5 đ)
Câu 1: Điền chữ Đ (đúng), chữ S (sai) vào ô vuông vạnh các cách viết sau:
a/ 5
∈
N
b/ -5
∈
N
c/ 0
∉
N
d/ -3
∈
Z
Câu 2: Hãy điền số thích hợp vào chỗ thiếu (…) để được các câu đúng
a/ Số đối của – 1 là số:…
b/ Số đối của 3 là số…
c/ Số đối của -25 là số…
d/ Số đối của 0 là số…
Câu 3: Điền dấu (>, <, =) thích hợp vào ô vuông
a/ 5 -3
b/ -5 -3
c/ |-2004| |2003|
d/ |-10| |0|
Câu 4: Sắp xếp các số nguyên sau theo thứ tự tăng dần:
a/ 12; -12; 34; -45; -2
b/ 102; -111; 7; -50; 0
c/ -21; -23; 77; -77; 23
d/ -2003; 19; 5; -45; 2004
Câu 5: Điền số thích hợp vào ô trống để hoàn thành bảng sao
Câu 6: Viết tiếp 3 số của mỗi dãy số sau:
a/ 3, 2, 1, …, …, …
b/ …, …, …., -19, -16, -13
c/ -2, 0, 2, …, …, …
d/ …, …, …, 1, 5, 9
Câu 7: Nối cột A và B để được kết quả đúng
18
x y x + y |x + y|
a/ 27 -28
b/ -33 89
c/ 123 -22
d / -321 222
Cột A Cột B
(-12)-(-15) -3
-28 11 + (-39)
27 -30 43-54
4 + (-15) 3
Tự chọn toán 6
Câu 8: Giá trị của biểu thức A = 2
3
. 3 + 2
3
.7 – 5
2
là:
a/ 25
b/ 35
c/ 45
d/ 55
II. Bài tập tự luận: (5 đ)
Bài 1: Tính (1 đ)
a/ (187 -23) – (20 – 180)
b/ (-50 +19 +143) – (-79 + 25 + 48)
Bài 2: Tính tổng: (1, 5đ)
a/ S
1
= 1 + (-2) + 3 + (-4) + … + 2001 + ( -2002)
b/ S
2
= 1 + (-3) + 5 + (-7) + … + (-1999) + 2001
c/ S
3
= 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + … + 1997 + (-1008) + (-1999) + 2000
Bài 3: Bỏ dấu ngoặc rồi thu gọn biểu thức: (1 đ)
a/ A = (a + b) – (a – b) + (a – c) – (a + c)
b/ B = (a + b – c) + (a – b + c) – (b + c – a) – (a – b – c)
Bài 4: 1/ Tìm x biết: (1, 5 đ)
a/ 5 – (10 – x) = 7
b/ - 32 - (x – 5) = 0
c/ - 12 + (x – 9) = 0
d/ 11 + (15 – x) = 1
HƯỚNG DẪN CHẤM
I. Trắc nghiệm: 5 điểm
- Mỗi ý đúng trong câu 1, 2, 3, 4, 6, 7, 8 đạt 0.15 điểm.
- Các câu 1, 2, 3, 4, 6, 7, 8 mỗi câu đúng đủ 4 ý đạt 0,6 đ.Câu 5 đúng tất cả 8 ý đạt 0,8 đ
Câu 1: Điền chữ Đ (đúng), chữ S (sai) vào ô vuông vạnh các cách viết sau:
a/ 5
∈
N Đ
b/ -5
∈
N S
c/ 0
∉
N S
d/ -3
∈
Z Đ
Câu 2: Hãy điền số thích hợp vào chỗ thiếu (…) để được các câu đúng
a/ Số đối của – 1 là số:…1
b/ Số đối của 3 là số…-3
c/ Số đối của -25 là số…-25
d/ Số đối của 0 là số…0
Câu 3: Điền dấu (>, <, =) thích hợp vào ô vuông
19
Tự chọn toán 6
a/ 5
>
-3
b/ -5
<
-3
c/ |-2004|
>
|2003|
d/ |-10|
>
|0|
Câu 4: Sắp xếp các số nguyên sau theo thứ tự tăng dần:
a/ -45; -12; -2; 12; 34
b/ -111; -50; 0; 7; 102
c/ -77; -23; -21; 23; 77
d/ -2003; -45; 5; 19; 2004
Câu 5: Điền số thích hợp vào ô trống để hoàn thành bảng sao
Câu 6: Viết tiếp 3 số của mỗi dãy số sau:
a/ 3, 2, 1, 0, -1, -2
b/ -28, -25, -22, -19, -16, -13
c/ -2, 0, 2, 4, 6, 8
d/ -11, -7, -3, 1, 5, 9
Câu 7: Nối cột A và B để được kết quả đúng
Câu 8: Giá trị của biểu thức A = 2
3
. 3 + 2
3
.7 – 5
2
là:
a/ 25
b/ 35
c/ 45
d/ 55
II. Bài tập tự luận ( 5 đ)
Bài 1: (1 đ)
a/ 324 b/ 118
Mỗi câu đúng 0, 5 đ.
Bài 2: (1, 5 đ)
20
x y x + y |x + y|
a/ 27 -28 -1 1
b/ -33 89 56 56
c/ 123 -22 121 121
d / -321 222 99 99
Cột ACột B(-12)-(-15)-3-2811 + (-39)27 -3043-
544 + (-15)3
Tự chọn toán 6
a/ S
1
= [1 + (-2)] + [3 + (-4)] + … + [2001 + ( -2002)] = (-1) + (-1) + …+ (-1) = -1001
b/ S
2
= [1 + (-3)] + [5 + (-7]) + … + [1997 + (-1999)] + 2001 = (-1000) + 2001 =1001
- Mỗi câu đúng 0.75 đ.
- Nết nhóm các số hạng đúng: 0.25 đ, nếu tính được tổng mỗi cặp đúng 0.25 đ, kết
quả đúng 0.25 đ.
Bài 3: (1 đ)
Hướng dẫn
a/ A = a + b – a + b + a – c – a – c = 2b -2c
b/ B = a + b – c + a – b + c – b – c + a – a + b + c
= a + a + a – a + b – b – b + b –c + c –c +c = 2a
- Bỏ dấu ngoặc đúng 0.5 đ.
- Rút gọn đúng 0.5 đ
Bài 4: (1, 5 đ)
1. a/ 5 – (10 – x) = 7
⇔
5 – 10 + x = 7
⇔
- 5 + x = 7
⇔
x = 7 + 5 = 12.
Thử lại 5 – (10 – 12) = 5 – 10 + 12 = 7
Vậy x = 12 đúng là nghiệm.
b/ - 32 – (x -5) = 0
⇔
- 32 – x + 5 = 0
⇔
- 27 – x = 0
⇔
x = - 27
c/ x = 21
d/ x = 25
- Mỗi câu đúng 0.75 đ.
- Mỗi câu chuyển vế đúng 0.5 đ.
- Kết quả 0.25 đ.
21
Tự chọn toán 6
22
Tự chọn toán 6
NS: ND:
Tuần 17 tiết17
TẬP HỢP Z CÁC SÔ NGUYÊN
Thời gian thực hiện: 2 tiết.
A> MỤC TIÊU
- Củng cố khái niệm Z, N, thứ tự trong Z.
- Rèn luyện về bài tập so sánh hai só nguyên, cách tìm giá trị tuyệt đối, các bài toán tìm
x.
B> NỘI DUNG
I. Câu hỏi ôn tập lý thuyết
Câu 1: Lấy VD thực tế trong đó có số nguyên âm, giải thích ý nghĩa của số nguyên âm
đó.
Câu 2: Tập hợp Z các số nguyên bao gồm những số nào?
Câu 3: Cho biết trên trục số hai số đối nhau có đặc điểm gì?
Câu 4: Nói tập hợp Z bao gồm hai bộ phận là số tự nhiên và số nguyên âm đúng không?
Câu 5: Nhắc lại cách so sánh hai số nguyên a và b trên trục số?
II. Bài tập
Bài 1: Cho tập hợp M = { 0; -10; -8; 4; 2}
a/ Viết tập hợp N gồm các phần tử là số đối của các phần tử thuộc tập M.
b/ Viết tập hợp P gồm các phần tử của M và N
Hướng dẫn
a/ N = {0; 10; 8; -4; -2}
b/ P = {0; -10; -8; -4; -2; 10; 8; 4; 2}
Bài 2: Trong các câu sau câu nào đúng? câu nào sai?
a/ Mọi số tự nhiên đều là số nguyên.
b/ Mọi số nguyên đều là số tự nhiên.
c/ Có những số nguyên đồng thời là số tự nhiên.
d/ Có những số nguyên không là số tự nhiên.
e/ Số đối của 0 là 0, số đối của a là (–a).
g/ Khi biểu diễn các số (-5) và (-3) trên trục số thì điểm (-3) ở bên trái điểm (-5).
h/ Có những số không là số tự nhiên cũng không là số nguyên.
ĐS: Các câu sai: b/ g/
Bài 3: Trong các câu sau câu nào đúng? câu nào sai?
a/ Bất kỳ số nguyên dương nào xũng lớn hơn số nguyên ân.
b/ Bất kỳ số tự nhiên nào cũng lớn hơn số nguyên âm.
c/ Bất kỳ số nguyên dương nào cũng lớn hơn số tự nhiên.
d/ Bất kỳ số tự nhiên nào cũng lớn hơn số nguyên dương.
e/ Bất kỳ số nguyên âm nào cũng nhỏ hơn 0.
ĐS: Các câu sai: d/
Bài 4: a/ Sắp xếp các số nguyên sau theo thứ tự tăng dần
2, 0, -1, -5, -17, 8
23
Tự chọn toán 6
b/ Sắp xếp các số nguyên sau theo thứ tự giảm dần
-103, -2004, 15, 9, -5, 2004
Hướng dẫn
a/ -17. -5, -1, 0, 2, 8
b/ 2004, 15, 9, -5, -103, -2004
Bài 5: Trong các cách viết sau, cách viết nào đúng?
a/ -3 < 0
b/ 5 > -5
c/ -12 > -11
d/ |9| = 9
e/ |-2004| < 2004
f/ |-16| < |-15|
ĐS: Các câu sai: c/ e/ f/
Tuần 18 THI HỌC KÌ II
NS: ND:
Tuần: 19+20 Tiết: 19+20
CỘNG, TRỪ HAI SỐ NGUYÊN
Thời gian thực hiện: 6 tiết.
A> MỤC TIÊU
- ÔN tập HS về phép cộng hai số nguyên cùng dấu, khác dấu và tính chất của phép cộng
các số nguyên
- HS rèn luyện kỹ năng trừ hai số nguyên: biến trừ thành cộng, thực hiện phép cộng.
- Rèn luyện kỹ năng tính toán hợp lý, biết cách chuyển vế, quy tắc bỏ dấu ngoặc.
B> NỘI DUNG
Tiết 19:
I. Câu hỏi ôn tập lí thuyết:
Câu 1: Muốn cộng hai số nguyên dương ta thực hiện thế nằo? Muốn cộng hai số
nguyên âm ta thực hiện thế nào? Cho VD?
Câu 2: Nếu kết quả tổng của hai số đối nhau? Cho VD?
Câu 3: Muốn cộng hai số nguyên khác dấu không đối nhau ta làm thế nào?
Câu 4: Phát biểu quy tắc phép trừ số nguyên. Viết công thức.
24
Tự chọn toán 6
II. Bài tập
Dạng 1:
Bài 1: Trong các câu sau câu nào đúng, câu nào sai? Hãy chữa câu sai thành câu đúng.
a/ Tổng hai số nguyên dương là một số nguyên dương.
b/ Tổng hai số nguyên âm là một số nguyên âm.
c/ Tổng của một số nguyên âm và một số nguyên dương là một số nguyên dương.
d/ Tổng của một số nguyên dương và một số nguyên âm là một số nguyên âm.
e/ Tổng của hai số đối nhau bằng 0.
Hướng dẫn
a/ b/ e/ đúng
c/ sai, VD (-5) + 2 = -3 là số âm.
Sửa câu c/ như sau:
Tổng của một số nguyên âm và một số nguyên dương là một số nguyên dương khi và
chỉ khi giá trị tuyệt đối của số dương lớn hơn giá trị tuyệt đối của số âm.
d/ sai, sửa lại như sau:
Tổng của một số dương và một số âm là một số âm khi và chỉ khi giá trị tuyệt đối của
số âm lớn hơn giá trị tuyệt đối của số dương.
Bài 2: Tính nhanh:
a/ 234 - 117 + (-100) + (-234)
b/ -927 + 1421 + 930 + (-1421)
ĐS: a/ 17 b/ 3
Bài 3: Tính:
a/ 11 - 12 + 13 – 14 + 15 – 16 + 17 – 18 + 19 – 20
b/ 101 – 102 – (-103) – 104 – (-105) – 106 – (-107) – 108 – (-109) – 110
Hướng dẫn
a/ 11 - 12 + 13 – 14 + 15 – 16 + 17 – 18 + 19 – 20
= [11 + (-12)] + [13 + (-14)] + [15 + (-16)] + [17 + (-18)] + [19 + (-20)]
= (-1) + (-1) + (-1) + (-1) + (-1) = -5
b/ 101 – 102 – (-103) – 104 – (-105) – 106 – (-107) – 108 – (-109) – 110
= 101 – 102 + 103 – 104 + 105 – 106 + 107 – 108 + 109 – 110
= (-1) + (-1) + (-1) + (-1) + (-1) = -5
Bài 4: a/ Tính tổng các số nguyên âm lớn nhất có 1 chữ số, có 2 chữ số và có 3 chữ số.
b/ Tính tổng các số nguyên âm nhỏ nhất có 1 chữ số, có 2 chữ số và có 3 chữ số.
c/ Tính tổng các số nguyên âm có hai chữ số.
Hướng dẫn
a/ (-1) + (-10) + (-100) = -111
b/ (-9) + (-99) = (-999) = -1107
Tiết 20
Dạng 2: BT áp dụng quy tắc bỏ dấu ngoặc, chuyển vế
Bài 1: Rút gọn biểu thức
25