Tải bản đầy đủ (.doc) (22 trang)

bài tập về con lắc lò xo

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (520.41 KB, 22 trang )

Sỏng kin kinh nghim ti: Phõn loi cỏc bi tp v con lc lũ xo
A. Lời nói đầu
Trong nhiều năm giảng dạy ở THPT tôi thấy rằng việc phân loại các dạng bài tập ở
từng phần cho học sinh là rất quan trọng.
Để giúp các em học sinh tiếp thu kiến thức tốt chuẩn bị cho các kỳ thi quan trọng,
đặc biệt là thi Đại học. Tôi xin trình bầy kinh nghiệm của bản thân khi dạy bài toán con
lắc lò xo bằng đề tài Phân loại các bài tập về con lắc lò xo .
Bài toán về con lắc lò xo các em cũng đã gặp ở chơng trình vật lý lớp 10, lên lớp
12 các em tiếp tục nghiên cứu nhng phải sử dụng các kiến thức của lớp 10. Trong đề
tài này tôi đã phân loại bài tập và hệ thống bài tập từ lớp 10 đến lớp 12 để các em học
sinh tiếp thu có hệ thống nhằm giúp các em tiếp cận kiến thức đợc dễ dàng hơn.
Mỗi chủ đề bài tập đều đợc chia làm các phần cụ thể:
Phần 1: Các kiến thức cần nhớ.
Phần 2: Bài tập ví dụ có lời giải.
Phần 3: Bài tập áp dụng các em tự giải.
Tôi hy vọng với đề tài phân loại bài tập về con lắc lò xo giúp các em ôn luyện,
hệ thống các bài toán về con lắc lò xo tốt hơn, giúp một phần quan trọng cho các em
trong các kỳ thi khi gặp dạng bài tập này.
Mặc dù đã rất cố gắng trong khi biên soạn, nhng sai sót là điều khó tránh khỏi. Tôi
rất mong nhận đợc ý kiến đóng góp xây dựng của các thầy cô và các em học sinh để
tôi có thêm kinh nghiệm dạy các em học sinh và ôn thi Đại học tốt hơn.
Trân trọng cảm ơn.
Ch : Con lc lũ xo
Tỏc gi: Th Phc H 1
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
A. Tóm tắt lý thuyết
1. Cấu tạo của con lắc lò xo
- Con lắc lò xo gồm một là xo có độ cứng k (N/m) có khối lượng không đáng
kể, một đầu cố định, đầu còn lại gắn vào vật có khối lượng m (kích thước của
quả cầu rất nhỏ so với chiều dài tự nhiên của lò xo).
- Điều kiện để con lắc lò xo dao động điều hòa là bỏ qua ma sát, lực cản và vật


dao động trong giới hạn đàn hồi.
2. Phương trình dao động của con lắc lò xo
Bỏ qua sự mất mát năng lượng, chọn trục Ox trùng với phương dao động, gốc
O trùng với VTCB, chiều (+) trùng với chiều giản của lò xo.
- Định luật II Newton:
Chiếu lên chiều (+) với li độ x>0:


Vật dao điều hòa với chu kỳ
Lực gây ra dao động điều hòa luôn hướng về VTCB gọi là lực kéo về hay lực
lực hồi phục. Với con lắc lò xo nằm ngang lực hồi phục là lực đàn hồi.
3. Quá trình biến đổi năng lượng và sự bảo toàn cơ năng trong con lắc lò xo.
a) Quá trình chuyển động và biến đổi năng lượng của con lắc lò xo dao
động điều hòa .
Kéo con lắc lệch khỏi VTCB rồi thả nhẹ, khi đó lực kéo đã thực hiện công
truyền cho con lắc 1 năng lượng dưới dạng thế năng đàn hồi. Khi lực kéo mất
đi, lực hồi phục lớn nhất kéo con lắc chuyển động nhanh dần về VTCB O; động
năng tăng dần, thế năng giảm dần. Về đến VTCB F
hp
= 0, vận tốc cực đại, động
năng cực đại, thế năng bằng không. Do quán tính vật tiếp tục chuyển động theo
hướng cũ. Khi qua VTCB, F
hp
đổi chiều, ngược chiều với chiều chuyển động,
cản lại chuyển động của vật, vật chuyển động chậm dần, động năng giảm dần,
thế năng cực đại, động năng bằng không, F
hp
là lớn nhất kéo vật chuyển động
nhanh dần về VTCB O. Cứ như vậy nếu bỏ qua ma sát vật dao động quanh
VTCB, động năng tăng thế năng giảm và ngược lại.

b) Sự bảo toàn cơ năng trong dao động điều hòa.
- Động năng:
- Thế năng:
- Cơ năng:
Tác giả: Đỗ Thị Phước Hà 2
F
dh
P
N
x
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Trong quá trình dao động, cơ năng của con lắc được bảo toàn, tỷ lệ
với bình phương của biên độ dao động.
B. Các dạng bài tập thường gặp
I. Dạng 1: chu kỳ và tần số dao động
1.1. Các kiến thức cần nhớ.
, ,
Chu kỳ tỷ lệ thuận với , tỷ lệ nghịch với
• Thay đổi khối lượng vật nặng ( k không đổi ), trong cùng khoảng thời gian t, 2
con lắc thực hiện N
1
và N
2
dao động.

- Thêm bớt khối lượng :
- Ghép 2 vật
phương pháp đo khối lượng:
1.2. Một số bài toán ví dụ:
Ví dụ 1: Gắn vật có khối lượng m

1
= 400g vào một lò xo có khối lượng không
đáng kể, lò xo dao động với chu kỳ T
1
= 1s. Khi gắn vật có khối lượng m
2
vào lò
xo trên, chu kỳ dao động của vật là T
2
= 0,5s. Tìm khối lượng m
2
.
Hướng dẫn:
Ví dụ 2: Lò xo có độ cứng k, khi gắn với vật m
1
thì vật dao động với chu kỳ T
1
= 0,6s. Khi gắn với vật m
2
thì chu kỳ dao động la T
2
= 0,8s. Nếu móc đồng thời
2 vật vào lò xo thì chu kỳ dao động của chúng là bao nhiêu?
Hướng dẫn:
Tác giả: Đỗ Thị Phước Hà 3
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
với
Ví dụ 3: Một lò xo nhẹ lần lượt gắn các vật có khối lượng m
1
, m

2
và m thì chu
kỳ dao động lần lượt là T
1
= 1,6s, T
2
= 1,8s. Nếu thì chu kỳ
dao động T là bao nhiêu?
Hướng dẫn: , bài ra ta có:
Ví dụ 4: Lò xo có độ cứng k = 1N/cm, lần lượt treo vào 2 vật có khối lượng gấp
3 lần nhau thì khi cân bằng, lò xo có chiều dài 22,5cm và 27,5cm. Chu kỳ dao
động của con lắc khi treo đồng thời 2 vật là bao nhiêu?
Hướng dẫn:
Xét tại VTCB của 2 vật:
Thay
Treo 2 vật
Ví dụ 5: Gắn vật m lần lượt với con lắc lò xo có độ cứng k
1
, k
2
và k thì chu kỳ
lần lượt T
1
=1,6s, T
2
=1,8s và T. Nếu thì chu kỳ là ?
Hướng dẫn: Do từ hệ thức trên ta có:
1.3 Bài tập vận dụng
Bài 1: Gắn lần lượt 2 quả cầu vào 1 lò xo và cho chúng dao động trong cùng 1
khoảng thời gian, quả cầu 1 thực hiện 28 dao động quả cầu 2 thực hiện 14 dao

động. Kết luận nào đúng?
A. B. C. D.
Tác giả: Đỗ Thị Phước Hà 4
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Bài 2: Trong dao động điều hòa cửa 1 con lắc lò xo. Nếu giảm bớt khối lượng của
vật nặng 20% thì số lần dao động của con lắc trong 1 đơn vị thời gian sẽ tăng hay
giảm bao nhiêu lần ?
Bài 3: Khi gắn một vật vào 1 lò xo khối lượng không đáng kể thì nó dao động với
chu kì 2s. Nếu giảm khối lượng của vật đi một lượng là ∆m thì chu kì dao động là
T, nếu tăng khối lượng thêm một lượng là ∆m thì chu lì dao động là 2T. Nếu tăng
thêm 1 lượng 2∆m thì chu kì dao động của nó là bao nhiêu ?
Bài 4: (ĐH-2007) Một con lắc lò xo gồm một vật có khối lượng m , lò xo có độ
cứng k dao động điều hòa . Nếu tăng độ cứng k lên 2 lần và giảm khối lượng m đi 8
lần thì tần số dao động của vật sẽ
A. Tăng 2 lần B. Giảm 2 lần C. Tăng 4 lần D. Giảm 4 lần
Bài 5: Dụng cụ đo khối lượng trong 1 con tàu vũ trụ có cấu tạo gồm 1 chiếc ghế có
khối lượng m được gắn vào đầu của 1chiếc ghế lò xo có độ cứng k=480N/m, để đo
khối lượng của nhà du hành thì nhà du hành phải ngồi vào ghế rồi cho chiếc ghế
dao động. Chu kì dao động của ghế khi không có người là T
0
=1s. Khi có nhà du
hành thì T=0,25s (π
2
=10) . Khối lượng nhà du hành là:
A. 27kg B. 63kg C. 75kg D. 12kg
II. Dạng 2: Lập phương trình dao động
2.1Một số vấn đề cần lưu ý
Giả sử phương trình cần lập có dạng
+ Tìm :
+ Tìm A, φ từ điều kiện đầu:

(I) ( tìm φ phải tìm từ điều kiện
ban đầu t=0 hoặc t=t
1
)
Từ (I) không tìm được A (hoặc có thể tìm A bằng cách khác ). (dùng định luật bảo
toàn công thức độc lập thời gian , dữ liệu bài toán cho )
2.2 Bài toán ví dụ
Ví dụ 1: Con lắc lò xo gồm vật có khối lượng m=100g, lò xo có độ cứng
k=40N/m. Thời điểm ban đầu kéo vật lệch khỏi vị trí cân bằng theo chiều âm một
đoạn 10cm rồi thả nhẹ. Viết phương trình dao động.
Hướng dẫn: rad/s
Tác giả: Đỗ Thị Phước Hà 5
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
t = 0
phương trình :
Ví dụ 2 : Con lắc lò xo gồm vật có khối lượng m=100g, lò xo có độ cứng
k=90N/m. Thời điểm ban đầu, kéo vật lệch khỏi VTCB theo chiều âm 1 đoạn
10cm, truyền cho vật vận tốc ban đầu 3 m/s theo chiều (+). Lâp phương trình
dao động chọn gốc tọa độ VTCB. Gốc thời gian là thời điểm đầu .
Hướng dẫn:
Ví dụ 3: Con lắc lò xo treo thẳng đứng gồm vật nhỏ m=250g và 1 lò xo nhẹ
k=100N/m. Kéo vật m xuống dưới theo phương thẳng đứngđể lò xo giãn 7,5cm rồi
thả nhẹ . Lập phương trình dao động của vật. Chọn mốc thời gian khi vật m đang
chuyển động nhanh dần theo chiều (+) đến vị trí có động năng bằng thế năng, gốc
tọa độ và gốc thế năng ở VTCB.
Hướng dẫn : cm
Thả nhẹ

(rad) cm
Ví dụ 4: Một con lắc lò xo có phương trình dao động điều hòa

cm, cơ năng là 72.10
-4
J. Hãy xác định khối lượng m của quả
nặng và cách kích thích ban đầu để tạo nên dao động.
Hướng dẫn: kg
Tác giả: Đỗ Thị Phước Hà 6
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
ban đầu đưa vật đến li độ x=2cm, rồi truyền cho vật vận tốc cm/s
ngược chiều (+).
Ví dụ 5: Lò xo có độ cứng k = 100N/m, các vật có khối lượng m
1
= m
2
= 1kg. Hai
vật đang ở VTCB, đốt đứt dây nối giữa 2 vật. Viết phương trình dao động của vật
sau đó. Chọn gốc tọa độ VTCB sau khi vật đứt, gốc thời gian lúc vật cách vị trí
cân bằng 5cm, chuyển động nhanh dần theo chiều (+)
Hướng dẫn: rad/s
Khi 2 vật cân bằng đốt đứt dây nối 2 vật tương đương với bài toán kéo m
1
xuống
vị trí cân bằng 2 vật rồi thả nhẹ
cm
2.3 Bài tập vận dụng
Bài 1: Một con lắc lò xo dao động trên mặt phẳng nằm ngang ( bỏ qua ma sát )
vật có khối lượng m = 500g. Cơ năng của con lắc E=10
-2
J. Tại thời điểm ban đầu
vật có vận tốc v = 0,1m/s, gia tốc a = -2m/s
2

. Biết phương trình dao động dạng
cosin, pha ban đầu dao động là :
A. B. φ = C. φ = - D. φ =
Bài 2: Một vật nhỏ m = 300g được treo vào đầu dưới của 1 lò xo nhẹ thẳng đứng
có độ cứng k = 30N/m. Nâng vật lên cách VTCB 1 đoạn 4cm và truyền cho nó vận
tốc 40cm/s hướng lên. Chọn chiều dương hướng xuống. Gốc thời gian là lúc vật
bắt đầu dao động, gốc tọa độ VTCB. Phương trình dao động của vật là:
Bài 3: Vật nhỏ trong con lắc lò xo dao động với phương trình
(cm). Thời điểm ban đầu người ta kéo vật lệch khỏi VTCB 1
đoạn x(cm) theo chiều (+) và truyền cho vật vận tốc ban đầu v = 1m/s theo chiều
(-), m = 100g. Pha ban đầu của dao động và độ lớn của lực kéo về ban đầu là:
A. φ= , F= N B. φ= , F= N C. φ= , F=3N D. φ= , F= N
Tác giả: Đỗ Thị Phước Hà 7
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Bài 4: Vật nhỏ trong con lắc lò xo dao động điều hòa có cơ năng là E = 3.10
-3
J.
Biết lực hồi phục cực đại tác động vào vật là 1,5.10
-3
. Chu kì dao động T=2s. Tại
thời điểm ban đầu vật đang chuyển động nhanh dần và đi theo chiều (-)với gia tốc
có độ lớn 2 cm/s
2
. Lập phương trình dao động của vật.
Bài 5: Con lắc lò xo nằm ngang có độ cứng k = 2N/cm, kích thích cho vật dao
động điều hòa có phương trình cm. Kể từ lúc khảo sát dao
động sau khoảng thời gian t = 4/30(s) vật đi được quãng đường 9cm ( =10). Xác
định khối lượng vật m
III. Dạng 3: Bài toán về lực đàn hồi – lực hồi phục
3.1 Một số vấn đề lưu ý

 Phân biệt lực đàn hồi và lực hồi phục
Lực đàn hồi
- Xuất hiện khi vật đàn hồi bị biến
dạng, có xu hướng làm cho vật đàn hồi
trở về chiều dài tự nhiên (TT đầu)
- Qua vị trí có chiều dài tự nhiên (lò
xo)lực đàn hồi đổi chiều
- Lực đàn hồi là lực tác dụng lên giá
đỡ vật treo khi vật đàn hồi bị biến dạng
- Lực đàn hồi tỷ lệ với độ biến dạng
và ngược với chiều biến dạng (xét trong
giới hạn đàn hồi)
- Biểu thức
- Độ lớn vật ở
biên.
F
đhmin
=
Lực hồi phục
- Xuất hiện khi vật dao động,
có xu hướng làm cho vật về
VTCB
- Qua VTCB lực hồi phục đổi
chiều
- Lực hồi phục là hợp lực của
của các lực gây ra gia tốc trong
dao động…
- Lực hồi phục (lực kéo về) tỷ
lệ với ly độ x và ngược chiều
với ly độ x

- Biểu thức (x: li
độ, độ lệch so với VTCB)
- Độ lớn
*) Khi vật lên cao nhất, lò xo nén cực đại F
đẩymax
= k(∆l+A) nên khi nói lực
đàn hồi cực đại chính là nói đến lực kéo cực đại.
Mặt phẳng nghiêng:
Tác giả: Đỗ Thị Phước Hà 8
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Trường hợp vật ở trên
+) Lực kéo đàn hồi cực đại F
kmax
=k(A-∆l) lúc vật ở vị trí cao nhất
+) Lực nén (lực đẩy) đàn hồi cực đại lúc vật ở vị trí thấp nhất:
F
nénmax
= k(∆l+A)
3.2 Bài toán ví dụ
Ví dụ 1: Con lắc lò xo treo thẳng đứng dao động với biên độ A = 12cm. Biết tỉ số
giữa lực cực đại và cực tiểu của lò xo tác dụng lên giá treo là 4. Tìm độ giãn của lò xo
khi vật ở VTCB.
Hướng dẫn: )
Ví dụ 2: Một con lẵ lò xo dao động điều hòa theo phương thẳng đứng lò xo có khối
lượng không đáng kể và có độ cứng 40N/m, vật nặng có khối lượng 100g. Kéo vật từ
VTCB xuống dưới một đoạn 5cm rồi buông nhẹ cho vật dao động. Lấy g=10m/s
2
.
Xác định giá trị cực đại và cực tiểu của lực đàn hồi trong quá trình vật dao động.
Hướng dẫn:

Ví dụ 3: Con lắc lò xo có độ cứng k = 40N/m treo thẳng đứng đang dao động điều
hòa với tần số góc ω = 10rad/s tại nơi có gia tốc trọng trường g = 10m/s
2
. Khi lò xo
không biến dạng thì vận tốc dao đông của vật triệt tiêu. Độ lớn lực của lò xo tác dụng
vào điểm treo khi vật ở trên VTCB và có tốc độ 80cm/s là?.
Hướng dẫn: Do khi lò xo không biến dạng nên m
Ví dụ 4: Một con lắc lò xo treo thẳng đứng, m=100g,
x=4cos(10t-2π/3), chiều dương hướng lên. Tìm Fđh và
Fhp tại thời điểm vật đi được quãng đường 3cm.
Hướng dẫn:



==∆
==
)(1,0/
/10
2
2
mgl
mNmk
ω
ω

t=o



>=

−=
0/320
2
scmv
cmx
Khi đi được quãng đường
3cm vật có li độ x=1cm, độ giãn của lò xo là:

l=0,1-0,01=0,09m.



===
==∆

NxkF
NlkF
hyp
đh
1,01,0.10.
9,009,0.10
Tác giả: Đỗ Thị Phước Hà 9
3cm
O
-0,02 m
-0,04 m
0,01 m
0,04 m
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Ví dụ 5: Một con lắc lò xo đặt trên mặt phẳng nghiêng

với góc nghiêng α=30
0
, khi v=1 m/s thì a=3m/s2. Khi
vật ở vị trí câo nhất thì Fđh=0. Tìm ω.
Hướng dẫn: Khi vật ở vị trí cao nhất thì F
đh
=0

2
sin
ω
α
g
lA =∆=⇒


srad
gva
A /4
sin
4
22
2
2
4
2
=⇒=+=⇒
ω
ω
α

ωω
Ví dụ 6: Một con lắc lò xo thẳng đứng dao động điều hoà có phương trình
cmtx )
3
5cos(6
π
π
−=
. Chiều dương hướng xuống, lò xo có khối lượng m=1(g), độ cứng
k. Tính lực đẩy đàn hồi cực đại của lò xo và khoảng thời gian ngắn nhất từ t=o đến
thời điểm lực đẩy đàn hồi là cực đại.
Hướng dẫn:
22
25
πω
== mk
N/m,
cm
g
l 4
2
==∆
ω
F
đẩymax
=
NlAk 5)( =∆−





>
=
⇒=
0
3
0
v
cmx
t
vị trí ở M.
Thời gian ngắn nhất từ t=o đến thời điểm lực đẩy đàn hồi cực đại bằng thời gian
véc tơ quay quét được góc
15
4
3
4
==⇒=
ω
ϕπ
ϕ
t
(s).
3.3 Bài tập vận dụng:
Bài 1: Con lắc lò xo treo thẳng đứng, dao động điều hòa với biên độ 10cm. Tỷ số giữa
lực đàn hồi cực tiểu và cực đại là 3/7. Lấy g = π
2
= 10m/s
2
Tần số dao động là:

A. 0,25 Hz B. 0,5 Hz C. 1 Hz D. 2 Hz
Bài 2: Con lắc lò xo treo thẳng đứng, chiều dài tự nhiên của lò xo là 20cm. Khi vật ở
VTCB thì độ giãn của lò xo là 4cm. Lực đàn hồi cực đại và cực tiểu lần lượt là 10N
và 6N. Chiều dài cực đại và cực tiểu của lò xo trong quá trình dao động là:
A. 25cm; 24cm B. 24cm; 23cm C. 26cm; 24cm D. 25cm; 23cm
Bài 3: Con lắc lò xo treo thẳng đứng có m= 400g, g = 10m/s
2
, F
đh max
= 6N. Khi vật
qua VTCB lực đàn hồi của lò xo là 4N. Gia tốc cực đại của vật là?
Bài 4: Con lắc lò xo treo thẳng đứng, lò xo có độ cứng k = 100N/m (g = 10m/s
2
). Khi
vật dao động thì lực kéo cực đại và lực nén cực đại của lò xo lên giá treo là 6N va 2N.
Vận tốc cực đại của vật là?
Bài 5: Con lắc lò xo treo thẳng đứng dao động điều hòa với T = 1s, sau thời gain t =
2,5s kể từ lúc bắt đầu dao động vật có li độ -5 cm đi theo chiều âm với tốc độ 10π
cm/s. Chọn trục tọa độ Ox thẳng đứng, gốc tọa độ tại VTCB, chiều dương (+)
hướng xuống. Biết lực đàn hồi của lò xo nhỏ nhất là 6N. Lấy g = π
2
m/s
2
, lực đàn hồi
của lò xo tác dụng vào vật lúc t = 0 là bao nhiêu?
IV. Dạng 4: Ghép cắt lò xo
Tác giả: Đỗ Thị Phước Hà 10
∆l
l
0

x
6
π/3
M
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
4.1 Các kiến thức cần nhớ:
+ Cắt lò xo: Lò xo có chiều dài l
0
, độ cứng k
0
, cấu tạo đồng đều được cắt thành các
lò xo khác nhau.
Từ
0 0 1 1 2 2
0 1 2
E.S = constant
k l k l k l
S
k E kl
l l l
l
= = =

= ⇒ = ⇒

= + +

L
L
Nếu cắt thành n phần bằng nhau:

0
1 2 n
l
l l l
n
= = = =
L
1 2 0n
k k k nk
⇒ = = = = ⇒
L
tăng lần, T giảm lần
+ Ghép lò xo: Ghép song song k
//
= k
1
+ k
2
+ +k
n

2 2 2 2
// 1 2
1 1 1 1
n
T T T T
= + + +L
Ghép nối tiếp
1 2 //
1 1 1 1

nt
k k k k
= + + +L

2 2 2 2
1 2nt n
T T T T= + + +L
Chú ý:
- Bài toán giữ cố định lò xo khi vật dao động, nếu đúng lúc vật đi qua vị trí cân bằng
ta giữ cố định một điểm trên lò xo thì cơ năng được bảo toàn. Nếu đúng lúc con lắc
đi qua vị trí có li độ x, giữ cố định 1 điểm trên lò xo thì cơ năng không được bảo
toàn, tại đó thế năng lò xo là thế năng này chia đều cho mỗi phần lò xo
phần thế năng bị mất ( với l là khoảng cách từ vị trí gốc đến điểm
cố định Cơ năng còn lại:
2 2
0
1
W'
2 2
l
kA kx
l
= −
- Nếu đúng lúc con lắc đi qua vị trí có li độ x, một lò xo không còn tham gia dao
động thì phần năng lượng bị mất đúng bằng thế năng đàn hồi của lò xo bị mất.
4.2 Bài toán ví dụ.
Ví dụ 1: Cho một lò xo có khối lượng không đáng kể độ dài tự nhiên l
0
= 1m. Hai vật
m

1
= 600g và m
2
= 1kg được gắn vào 2 đầu A và B của lò xo. Chúng có thể di chuyển
không ma sát trên mặt phẳng nằm ngang. Gọi C là 1 điểm trên lò xo, giữ cố định C và
cho 2 vật dao động điều hòa thì thấy chu kỳ dao động của chúng bằng nhau. Vị trí
điểm C cách đàu A một đoạn bằng bao nhiêu?
Hướng dẫn: Cố định C ta có 2 con lắc:
Tác giả: Đỗ Thị Phước Hà 11
l
1
A
1
B
2
k
C
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
2 2 2
1 2
1 1
1
S
E
m k l
T T
S
m k
E
l

= → = =

2 2
1 1
1
1 2 0
5
(1)
3
62,5
100(2)
l m
l m
l cm
l l l






= =
→ =
+ = =
Ví dụ 2: Con lắc lò nằm ngang, vật đang dao động điều hòa với chu kỳ T, biên độ A.
Khi vật đi qua VTCB thì ta giữ cố định điểm chính giữa của lò xo. Bắt đầu từ thời
điểm đó vật sẽ dao động điều hòa với biên mới là bao nhiêu?
Hướng dẫn: + Giữ cố định chính giữa con lắc lò xo mới có k’ = 2k, qua VTCB W
t
= 0 thế năng không bị mất, cơ năng bảo toàn W = W’

2
'
A
A =⇒
Ví dụ 3: Con lắc lò xo dao động điều hòa trên mặt phẳng ngang lò xo có k = 50N/m,
vật có m = 50 g, tại thời điểm đầu vật đi qua VTCB, với tốc độ v = 80cm/s. Sau
khoảng thời gian = 4,05 s kể từ thời điểm đầu ta giữ cố định điểm chính giữa lò xo.
Tốc độ cực đại của vật sau đó là:
Hướng dẫn: T = 0,2s , cm,
khi t = 4,05s = 20T +T/4
Phần thế năng này chia đều cho mỗi phần lò xo thế năng mất là 0,5W cơ năng
còn lại 0,5W cm Do
Ví dụ 4: Một con lắc lò xo dao động điều hòa với biên độ A = 10 cm đúng lúc qua
VTCB thì ta ghép nối tiếp thêm một lò xo giống lò xo này. Tính biên độ dao động
mới.
Hướng dẫn:
Bảo toàn cơ năng: cm
Ví dụ 5: Một con lắc lò xo dao động điều hòa theo phương ngang với biên độ A. Con
lắc lò xo gồm n lò xo mắc song song. Khi vật nặng cách VTCB 1 đoạn A/n thì một lò
xo không còn tham gia dao động. Tính biên độ dao động mới.
Tác giả: Đỗ Thị Phước Hà 12
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Hướng dẫn: Phần thế năng mất:
Phần thế năng còn lại:
n
nn
AAkAnkA
n
nkAWW
saucon

1
')1(
2
1
2
1
2
1
2
22
2
2
++
=⇒−=−⇒=
Ví dụ 6: Lò xo nhẹ có k
0
= 30N/m chiều dài l
0
được cắt thành 2 lò xo có độ dài là l
1
:l
2
= 2:3.
a. k
1
= ?, k
2
= ?
b. Hệ được mắc như hình vẽ, m = 800g. Đưa vật tới vị trí l
1

giãn 6cm, l
2
nén 1cm sau
đó thả đồng thời truyền cho vận tốc v
0
=0,5 m/s theo phương AB hướng về VTCB.
Viết phương trình dao động của vật, tính độ lớn của lực tác dụng lên điểm A tại thời
điểm có v
0
= 0. ( Chọn chiều dương (+) từ A B, gốc thời gian lúc thả vật ( bỏ qua
lục ma sát )).
Hướng dẫn:
a. 75 N/m, 50N/m
b. Lò xo l
1
giãn 6cm, l
2
nén 1cm Chứng tỏ ở VTCB cả 2 lò xo đều giản
là độ giãn khi m ở VTCB
cm
Tại v = 0
4.3 Bài tập vận dụng:
Bài 1: Quả cầu m gắn vào lò xo có độ cứng k, nó dao động với chu kì T. Cắt lò xo
trên thành 3 phần có chiều dài theo tỷ lệ 3:2:1, lấy phần ngắn nhất và treo quả cầu
vào thì chu kì dao động của nó là:
A. T/3 B. C. D. T/6
Tác giả: Đỗ Thị Phước Hà 13
m
k
2

k
1
l
1
l
2
O
2
cm
6
cm
A B
x
Thả
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Bài 2: Con lắc lò xo nằm ngang dao động điều hòa, với biên độ A. Đúng lúc vật nặng
qua VTCB ta giữ chặt lò xo ở vị trí cách điểm cố định 1đoạn bằng 2/3 chiều dài của
lò xo. Vật sẽ tiếp tục dao động với biên độ là:
A. A B. 0,5A C. A D.
Bài 3: Con lắc lò xo nằm ngang dao động điều hòa với biên độ A. Đúng lúc con lắc
qua vị trí có động năng bằng thế năng và lò xo đang giãn ra, ta cố định điểm chính
giữa của lò xo. Con lắc dao động điều hòa với biên độ A’. Biên độ A’ là?
Bài 4: Ba lò xo có chiều dài bằng nhau có độ cứng lần lượt 20N/m, 30N/m, 60N/m
được ghép nối tiếp. Một đầu cố định một đầu gắn với vật khối lượng m = 1kg,
=10. Tìm chu kì dao động của hệ.
V. Dạng 5: Bài toán liên quan đến quãng đường, thời gian lò xo nén giãn.
5.2Các kiến thức cần nhớ :
• Lò xo treo: Nếu A ta chỉ
xét trường hợp A
• Mối quan hệ giữa chuyển động tròn đều và dao động điều hòa


Chuyển về bài toán quen thuộc tìm thời gian vật đi từ li độ x
1
đến x
2
• Khoảng thời gian lò xo nén với hoặc
• Khoảng thời gian lò xo giãn
* Nếu lò xo mắc ngẹt, cố định đầu dưới, vật ở trên, từ VTCB, ta chỉ xét trường
hợp , trong 1 chu kì với
5.2 Bài toán ví dụ:
Ví dụ 1: Một con lắc lò xo treo thẳng đứng từ VTCB kéo vật xuống dưới theo trục
của lò xo để lò xo giãn 7,5 cm rồi thả nhẹ cho dao động điều hòa, Sau khoảng thời
gian ngắn nhất s thì gia tốc của vật bằng 0,5 gia tốc ban đầu (g=10 m/s
2
). Thời
gian mà lò xo nén giãn trong một chu kì là?
Hướng dẫn: Thả nhẹ .
Khi gia tốc còn một nữa Vecto quay quét
Tác giả: Đỗ Thị Phước Hà 14
ϕ
β
A
-A
A/2
∆l
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
; Ta có
Thời gian nén bằng thời gian vectơ quay quét được góc β=120
0
s; /15 s

Ví dụ 2: Con lắc lò xo treo thẳng đứng kích thích cho vật ( được móc ở phía dưới lò
xo ) dao động điều hòa theo phương thẳng đứng với chu kì T = 0,4 s, A = 8cm. Chiều
dương hướng xuống, gốc tọa độ tại VTCB, gốc thời gian lúc vật qua VTCB theo
chiều dương. Lấy g = 10 m/s
2
, = 10. Thời gian ngắn nhất kể từ thời điểm ban đầu
đến lúc lực đàn hồi của lò xo có độ lớn cực tiểu là?
Hướng dẫn: Δl = T
2
g/4π
2
= 4cm
lực đàn hồi cực tiểu khi lò xo không biến dạng, khi đó
2T/4 + T/12 = 7/30s
Ví dụ 3(ĐH-2010): Con lắc lò xo dao động điều hòa với chu kì, biên độ 5 cm. Biết
trong một chu kì khoảng thời gian vật nặng của con lắc có độ lớn gia tốc không vượt
quá 100cm/s
2
là T/3 ( ). Tần số dao động của vật là:
Hướng dẫn: Trong quá trình dao động điều hòa, gia tốc của vật có độ lớn càng nhỏ
khi vật càng gần VTCB.
▪ Một chu kì thời gian để vật nặng con lắc có gia tốc
không vượt quá 100m/s
2
là T/3 bằng thời gian vectơ
quay quét được
1
4
2
2

)2(
2
2
2
==⇒=⇒=
A
a
f
A
fa
A
x
π
π
Hz
Ví dụ 4: Một lò xo đặt thẳng đứng đầu dưới cố định, đầu trên gắn vật sao cho dao
động diều hòa theo phương thẳng đứng trùng với trục của lò xo với biên độ là 5 cm,
lò xo có độ cứng 80N/m. Vật nặng có khối lượng 200g, g = 10 m/s
2
trong một chu kì
thời gian lò xo nén, giãn là?
Hướng dẫn: 20 rad/s;
2,5 (cm)
Tác giả: Đỗ Thị Phước Hà 15
ϕ
1
ϕ
2
l
0

O
+A
∆l
-A
Giãn
Nén
2,5
Giãn
Nén
ϕ
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Thời gian lò xo giãn bằng thời gian
vectơ quay quét được 2 2π/3 rad
(s)
5.3 Bài tập vận dụng
Bài 1: Một con lắc lò xo gồm vật nhỏ m = 100g dao đông điều hòa theo phương thẳng
đứng với biên độ 6cm, chu kì T = π/5 (s), g =10 m/s
2
. Thời gian trong một chu kì lực
đàn hồi có độ lớn không nhỏ hơn 1,3 N là:
A. 0,21 s B. 0,18s C. 0,15 s D. 0,12s
Bài 2: Một lò xo có độ cứng 100N/m
2
đặt thẳng đứng đầu dưới cố định, đầu trên gắn
với vật nhỏ khối lượng 1kg, sao cho vật dao động điều hòa theo phương thẳng đứng
trùng với trục của lò xo ( g = 10 m/s
2
). Biết trong một chu kì thời gian lò xo nén gấp
đôi thời gian lò xo giãn. Biên độ dao động là:
A. 10 cm B. 30 cm C. 20 cm D. 15cm

Bài 3: Treo một vật vào lò xo, lò xo giãn 4 cm, từ vị trí cân bằng nâng vật theo
phương thẳng đứng đến vị trí lò xo bị nén 4 cm và thả nhẹ ( g = π
2
m/s
2
). Chọn gốc
thời gian lúc vật mới bắt đầu dao động, lần thứ lò xo có chiều dài tự nhiên vào thời
điểm nào?
Bài 4: Con lắc lò xo có m = 100g, lò xo có độ cứng k =100N/m dao động với biên độ
2cm. Thời gian mà vật có tốc độ nhỏ hơn 10 cm/s, trong một chu kì là bao nhiêu?
VI. Dạng 6: (Một số dạng bài nâng cao)
Bài toán liên quan đến DĐ của con lắc lò xo trong hệ quy chiếu không quán tính, điều
kiện để có dao động điều hòa, kích thước cho vật dao động điều hòa bằng va chạm, ép
vật, tác dụng lực , thêm bớt vật khi hệ dao động điều hòa.
6.1 Các kiến thức cần nhớ
+ Dao động của con lắc lò xo trong hệ quy chiếu không quán tính
• Trong hệ quy chiếu phi quán tính, ngoài trọng lực P và lực đàn hồi của lò xo, con
lắc lò xo chịu thêm tác dụng của lực quán tính F
qt
=-ma
• Tại vị trí cân bằng của vật ta có: P+F
đh
+F
qt
=0
+ Điều kiện của biên độ dao động
• Vật m được treo vào sợi dây rồi gắn với lò xo, muốn hệ dao động thì
sợi dây phải luôn căng tức là lò xo luôn giãn mg/k Lực
căng sợi dây bằng độ lớn lực kéo đàn hồi
(Vị trí cao nhất )

Tác giả: Đỗ Thị Phước Hà 16
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
( Vị trí thấp nhất )
Nếu sợi dây chỉ chịu lực kéo tối đa F
0
thì điều kiện để sợi dây không dứt là:
• M
1
được đặt trên vật m
2
dao động điều hòa theo
phương thẳng đứng. Để m
1
luôn nằm trên m
2
trong quá trình dao động thì lò xo luôn bị nén
trong quá trình dao động g/
2
g
• m
1
và m
2
được gắn vào 2 đầu lò xo đặt thẳng
đứng, m
1
dao động điều hòa, để m
2
luôn nằm yên
trên mặt sàn m

1
trong quá m
1
dao động thì ở vị trí
cao nhất độ lớn của gia tốc không vượt quá g: g
2
A ( m
1
+ m
2
)g/k.

Vật m
1
đặt trên m
2
dđđh theo phương ngang. Hệ
số ma sat giữa m
1
và m
2
là µ, bỏ qua ma sat giữa
m
2
và mặt sàn. Để m
1
không trượt trên m
2
trong
quá trình dao động thì lực ma sat trượt không

được nhỏ hơn lực quán tính cực đại tác dụng lên
m
1
: F
masat
F
qt
= m
1
2
A = m
1
kA/( m
1
+ m
2
)
m
1
g m
1
kA/ ( m
1
+ m
2
) A µ( m
1
+ m
2
)g/ k


Vật m
2
được dán vao m
1
, để 2 vật cùng dao động thì lực lien kết không nhỏ hơn
lực quán tính cực đại: F
lk
F
qt
= m
2
2
A = m
2
kA/( m
1
+ m
2
)
+ Cất bớt vật, đặt thêm vật
• Con lắc lò xo nằm ngang: cắt bớt vật ( đặt thêm vật ) khi:
- Tốc độ dao động = 0 sao cho không làm thay đổi biên độ
A’ = A
- Tốc độ dao động cực đại sao cho không làm thay đổi tốc độ cực đại:
Tác giả: Đỗ Thị Phước Hà 17
k
m
1
m

2
m
1
m
2
k
F
ms
Fqt
m
2
m
1
k
m
2
m
1
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
- Hệ có li độ x
1
, vận tốc v
1
(sao cho ko làm thay đổi vận tốc tức thời)
Ban đầu: A = x
1
2
+ v
1
2

/
2
v
1
2

Lúc sau: A’
2
= x
1
2
+ v
1
2
/ ’
2

• Con lắc lò xo thẳng đứng
+ Cất vật:
-
với con lắc có khối lượng : VTCB là O
e

2


;
-
Với con lắc có khối lượng m
1

: VTCB là O
m
2
= k/m ; g/k
VTCB mới cách VTCB cũ: x
0
= = m
2
g/k
- Nếu ngay trước khi cắt m
2
:
Vật dưới VTCB cũ một đoạn x
1
cách VTCB mới ( x
1
+ x
0
)
21
1
2
1
2
2
01
1
2
1
2

01
2
2
1
2
01
2
2
1
2
21
2
1
2
2
1
2
1
2
)(
)('
)(
'
)(
)(
mm
mxA
xxA
k
m

vxx
v
xxA
xA
mm
k
v
v
xA
+

++=⇒







++=++=

+
=⇒+=

ω
ω
Vật trên VTCB một đoạn x
1
(tức cách VTCB cũ một đoạn )
21

1
2
1
2
2
01
1
2
1
2
01
2
2
1
2
01
2
2
1
2
21
2
1
2
2
1
2
1
2
)(

)('
)(
'
)(
)(
mm
mxA
xxA
k
m
vxx
v
xxA
xA
mm
k
v
v
xA
+

+−=⇒







+−=+−=


+
=⇒+=

ω
ω
+ Va chạm mềm và va chạm đàn hồi:
● Va chạm mềm: Sau va chạm các vật bị dính lại với nhau và chuyển động cùng
với vận tốc Động lượng bảo toàn: cùng phương:
( vectơ vận tốc hướng theo chiều dương (+) và lấy giá trị (+) ngược lại )
● Va chạm đàn hồi: Động lương bảo toàn, cơ năng bảo toàn:

Tác giả: Đỗ Thị Phước Hà 18
x
c
O
m
x
l
0
m
1
m
2
m
1
∆l
12
∆l
1

x
1
O
e
m
M
M
m
2
m
1
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Nếu
6.2 Bài toán ví dụ
Ví dụ 1: con lắc lò xo có chiều dài tự nhiên l
0
=25cm, độ cứng k=40N/m. Vật nặng có
khối lượng m=100g. Con lắc được treo vào trần một chiếc xe đang chuyển động theo
phương ngang, khi đó nó lệch khỏi phương thẳng đứng một góc α=15
o
. Xác định gia
tốc của xe và độ dài của con lắc lúc cân bằng.
Hướng dẫn: khi cân bằng P+F
đh
+F
qt
=0
ta có
2
/68,2tantan smga

P
F
qt
==⇒=
αα
α
cos
P
F
đh
=
hay

cm
k
mg
ll
mg
llk 026,25
coscos
)(
00
=+=⇒=−
αα
Ví dụ 2: Một vật có khối lượng M được treo bằng một sợi dây nhẹ
không giãn tại nơi có gia tốc. Phía dưới M gắn lò xo nhẹ, độ cứng k,
đầu còn lại gắn với vật m. Vật m dao động thẳng đứng với biên độ lớn
nhất bằng bao nhiêu?
Hướng dẫn:
• trong quy trình dao động lò xo luôn kéo M Sợi dây luôn

được kéo căng.
• Ta chỉ xét A khi đó ở vị trí cao nhất lò xo đẩy M một lực
F
đmax
= k(A- ) = kA-mg. Để sợi dây luôn căng thì: F
đmax
A
Ví dụ 3: Cho k = 100N/m, m
1
= 400g, m
2
= 100g, g =10m/g
2
(bỏ qua lực cản không
khí)
a. Giả sử M đứng yên. Tìm điều kiện về biên độ dao động của (m
1
+m
2
)
để 2 vật luôn dính nhau khi dao động.
b. Cho M =1,5kg. Tìm giới hạn của biên độ A để 2 vật ( m
1
+m
2
) dao động
điều hòa.
Tác giả: Đỗ Thị Phước Hà 19
F
qt

P’ P
F
đh
a
α
Sáng kiến kinh nghiệm Đề tài: Phân loại các bài tập về con lắc lò xo
Hướng dẫn: a. , hai vật luôn dính nhau: N

m
2
g m
2
a = -
2
m
2
x m
2
g m
2
2
A A = 5cm (1)
b. Tại vị trí cân bằng của (m
1
+m
2
) lò xo nén:
12
=
Vị trí cao nhất lò xo giãn: | | = A

M không bị nhấc: k| Mg k(A )
A ( )g = 20(cm) (2)
Từ (1),(2) A 5(cm)
Ví dụ 4: (ĐH-2011) Con lắc lò xo đặt trên mặt phẳng ngang gồm lò xo nhẹ, cố
định một đầu, đầu kia gắn với vật nhỏ m
1
. Ban đầu giữ vật m
1
tại vị trí lò xo bị nén
8 cm, đặt vật nhỏ m
2
(m
2
= m
1
) trên mặt phẳng ngang và sát với m
1
. Buông nhẹ để
2 vật bắt đầu chuyển động theo phương của trục lò xo. Bỏ qua mọi ma sát, ở thời
điểm lò xo có chiều dài cực đại lần đầu tiên vì khoảng cách giữa 2 vật m
1
và m
2
là?
Hướng dẫn: Giai đoạn 1, (m
1
+m
2
) dao động với tần số và v
max

=
Giai đoạn 2: Đến vị trí cân bằng vật m
2
tách khỏi m
1
Vật m
1
và A’ A (V
max
không đổi)
Vật m
2
: Chuyển động thẳng đều vơi vận tốc v
max
, khi m
1
đến vị trí biên dương lần 1
m
2
đi được quãng đường: S = v
max
A 2 A
Khoảng cách giữa 2 vật: l = S - A’≈3,2(cm)
Ví dụ 5: Con lắc lò xo,vật dao động gồm 2 vật nhỏ khối lượng bằng nhau đặt
chồng lên nhau cùng dao động điều hòa theo phương ngang với biên độ 5cm. Lúc
Tác giả: Đỗ Thị Phước Hà 20
Sỏng kin kinh nghim ti: Phõn loi cỏc bi tp v con lc lũ xo
2 vt cỏch v trớ cõn bng 1cm mt vt c nhc nh ra khi h. Tỡm biờn sau
ú.
Trc tỏc ng: A

2
(A
2
)
Sau tỏc ng: A
34)(
2
1
22
1
=
+
+=
m
mm
xAx
(cm)
6.3 Bi tp vn dng :
Bi 1: Con lc lũ xo cú k =200N/m nm ngang, vt m = 1kg c gn vo vt m
= m =1kg. Ban u gi 2 vt v trớ lũ xo nộn 2cm ri truyn cho cht im mt
vn tc ln 20cm/s cú chiu trựng vi chiu nộn lũ xo. Ch gn 2 vt b bong ra
nu lc kộo ti ú t n 2N. Vt m
2
b tỏch khi m
1
thi im no?
Bi 2: (Hc sinh gii tnh 2005) Con lc lũ xo ngang gm lũ xo nh cú l
0
=
20cm ,k = 480 N/m, gn vt khi lng m

2
= 300g vt cú khi lng m
1
= 100g
chuyn ng vi vn tc v
1
= 0,8m/s n va chm xuyờn tõm vi m
2.
1. V/c hon ton n hi. Tỡm vn tc ca vt ngay sau va chm. Vit phng
trỡnh dao ng m
2
.
2. V/c mm: a. Mụ t chuyn ng ca 2 vt sau va chm.
b. Tỡm biờn ,tn s dao ng ca con lc lũ xo.
c. Tỡm chiu di cc i ca con lc lũ xo.
Bi 3: Con lc lũ xo dao ụng iu hũa theo phng thng ng vi biờn A= 4
cm, lũ xo nh k = 100N/m, vt nh cú m = 0,3 kg, (g=10m/s
2
). Lỳc m ang trờn
v trớ cõn bng 2 cm vt m = 0,1kg ang chuyn ng cựng vn tc tc thi m n
dớnh cht vo nú cựng dao ng vi biờn A. Tỡm A.
Bi4: Con lc lũ xo gụm vt nng khi lng m=100g, cng k=60N/m, chiu
di t nhiờn l
0
=20cm c treo trong thang mỏy i lờn nhanh dn u thỡ thy con
lc cú chiu di l l
1
=22cm.
a. Xỏc nh gia tc ca thang mỏy.
b. Nõng con lc lờn v trớ sao cho l

2
=18cm ri th nh cho vt DH, xỏc nh tn
s v biờn dao ng ca vt
c. Kết Luận
Để ôn luyên tốt kiến thức về con lắc lò xo trớc hết các em học sinh phải đọc lại
kiến thức của phần này trong sách giáo khoa. tiếp theo các em đọc phơng pháp giải bài
tập của từng chủ đề và áp dụng phơng pháp giải đã đọc vào làm các bài tập ví dụ. Trong
quá trình đọc sách, không nên đọc lời giải trớc mà phải cố gắng suy nghĩ tự tìm tòi lời
giải. Nếu không làm đợc chúng ta mới đọc phần hớng dẫn giải. sau đó các em tiếp tục
đọc và làm các bài tập vận dụng để một lần nữa củng cố lại kiến thức.
Tỏc gi: Th Phc H 21
Sỏng kin kinh nghim ti: Phõn loi cỏc bi tp v con lc lũ xo
Tôi hi vọng rằng với đề tài Phân loại các bài tập về con lắc lò xo là tài liệu bổ ích
giúp các em ôn luyện và làm bài tập tốt phần này.
Ngời Viết
Đỗ Thị Phớc Hà
Tỏc gi: Th Phc H 22

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×