Tải bản đầy đủ (.doc) (30 trang)

tttttttttttttttt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (225.98 KB, 30 trang )

chủ đề 1: toán tính tổng theo quy luật
Bai 1: Tính tổng
1000.999
1

4.3
1
3.2
1
2.1
1
++++=S
Giải:
Ta có
1
11
)1()1(
1
)1(
)1(
)1(
1
+
=
+

+
+
=
+
+


=
+ kkkk
k
kk
k
kk
kk
kk
(1)
áp dụng đẳng thức (1) ta có:

1000
999
1000
1
1
1000
1
999
1
999
1
998
1

4
1
3
1
3

1
2
1
2
1
1
1000.999
1

4.3
1
3.2
1
2.1
1
1000
1
999
1
1000.999
1
999
1
998
1
999.998
1
.
4
1

3
1
4.3
1
3
1
2
1
3.2
1
2
1
1
1
2.1
1
==
++++=++++=



















=
=
=
=
=
S
S
Bài 2: Tính tổng
)1(
1

4.3
1
3.2
1
2.1
1
+
++++=
nn
S
Giải:
áp dụng đẳng thức (1) ta có:


11
1
1
1
11

4
1
3
1
3
1
2
1
2
1
1
)1.(
1

4.3
1
3.2
1
2.1
1
1
11
)1.(
1

.
.
4
1
3
1
4.3
1
3
1
2
1
3.2
1
2
1
1
1
2.1
1
+
=
+
=
+
++++=
+
++++=

















+
=
+
=
=
=
n
n
n
S
nnnn
S
nnnn
Bµi 3: TÝnh tæng:
99.97
4


9.7
4
7.5
4
5,3
4
++++=Q
Gi¶i:
Ta cã:
99
64
99
32
.2
99
133
.2
99
1
3
1
2
99
1
97
1

9
1

7
1
7
1
5
1
5
1
3
1
2
99.97
4

9.7
4
7.5
4
5,3
4
______________________________________________________
99
1
97
1
.2
99.97
4

9

1
7
1
.2
9.7
4
7
1
5
1
.2
7.5
4
5
1
3
1
.2
5.3
4
==







=







−=






−++−+−+−=++++=
























−=






−=






−=






−=
Q
Q

Bµi 4: TÝnh tæng
100.97
1

11.8
1
8.5
1
5.2
1
++++=
S
Gi¶i:
Ta cã:
300
49
100
49
.
3
1
100
150
3
1
100
1
2
1
3

1
100
1
97
1

11
1
8
1
8
1
5
1
5
1
2
1
3
1
100.97
1

11.8
1
8.5
1
5.2
1
100

1
97
1
3
1
100.97
1

11
1
8
1
3
1
11.8
1
8
1
5
1
3
1
8.5
1
5
1
2
1
3
1

5.2
1
==







=






−=






−++−+−+−=++++=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
























−=






−=







−=






−=
S
S
Bµi 5: TÝnh tæng
)1.().1(
1

5.4.3
1
4.3.2
1
3.2.1
1
+−
++++=
nnn
S
Gi¶i:
Ta cã:
)1.(

1
).1(
1
)1.().1(
1
)1.().1(
1
)1.().1(
)1()1(
)1.().1(
2
+


=
+−
+

+−
+
=
+−
−−+
=
+− nnnnnnn
n
nnn
n
nnn
nn

nnn
Suy ra:
)1(
)1(
1
).1(
1
2
1
)1.().1(
1








+


=
+− nnnnnnn
¸p dông ®¼ng thøc (1) ta cã:










+
++++−









++++=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


























+


=
+−






−=







−=






−=
)1(
1

5.4
1
4.3
1
3.2
1
2
1
).1(
1

4.3
1
3.2
1
2.1
1
2
1

)1.(
1
.).1(
1
2
1
)1.().1(
1

5.4
1
4.3
1
2
1
5.4.3
1
4.3
1
3.2
1
2
1
4.3.2
1
3.2
1
2.1
1
2

1
3.2.1
1
nnnn
S
nnnnnnn
Ta cã:
n
n
n
S
nnnn
S
nnnn
11
1
1
1
1

4
1
3
1
3
1
2
1
2
1

1
)1.(
1

4.3
1
3.2
1
2.1
1
1
1
1
).1(
1
.
.
4
1
3
1
4.3
1
3
1
2
1
3.2
1
2

1
1
1
2.1
1
1
1

=−=


++−+−+−=
+
++++=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


















=

−=
−=
−=
11
1
1
1
11

4
1
3
1
3
1
2
1
2
1
1
)1.(
1

4.3
1
3.2

1
2.1
1
1
11
)1.(
1
.
.
4
1
3
1
4.3
1
3
1
2
1
3.2
1
2
1
1
1
2.1
1
2
2
+

=
+
−=
+
−++−+−+−=
+
++++=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−















+
−=
+
−=
−=
−=
n

n
n
S
nnnn
S
nnnn
VËy S =
2
1
(S
1
- S
2
)=
)1(2
1
)1(
1
2
1
1
1
2
1
22
+
−=









+
−−
=






+


nnnn
nn
n
n
n
n
Bµi 6: TÝnh tæng
)2)(1(
1

4,3,2
1
3.2.1

1
++
+++=
nnn
S
Gi¶i:
Ta cã:
)2)(1(2
1
)2)(1(2
122
)2)(1(2
)1()2(
)2(2
1
)1(2
)2(2
1
2
1
.
2
1
)2)(1(
1

4.3
1
3.2
1

2
1
)1(21
.
2
1
)1(
1

3.2
1
2.1
1
2
1
)2)(1(
1

4.3
1
3.2
1
2
1
)1(
1

3.2
1
2.1

1
2
1
)2)(1(
1
)1(
1
2
1
)2)(1(
1

4.3
1
3.2
1
2
1
4.3.2
1
3.2
1
2.1
1
2
1
3.2.1
1
22
2

21
2
1
++
−=
++
−−−+
=
++
+−+
=
+
+

+
=−=
+
+
=
+
+
=









++
+++=
+
=
+
=








+
++=








++
+++−









+
++=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



















++

+
=

++






−=






−=
nnnn
nnnn
nn
nnn
n
n
n
n
SSS
n
n
n
n
nn
S

n
n
n
n
nn
S
nnnn
S
nnnnnnn
(2)
Bµi 7: TÝnh tæng
)3)(2)(1(
1

5.4.3.2
1
4.3.2.1
1
+++
+++=
nnnn
S
Gi¶i:
Ta có
)1(
)3)(2)(1(
1
)2)(1(
1
3

1
)3)(2)(1(
)3(
.
3
1
)3)(2)(1(
1








+++

++
=
+++
+
=
+++ kkkkkkkkkk
kk
kkkk
áp dụng đẳng thức (1) ta có:

)3)(2)(1(.3.4.3.2.1
4.3.2.1)3)(2)(1(

)3)(2)(1(
1
4.3.2.1
1
3
1
)3)(2)(1(
1

5.4.3
1
4.3.2
1
4.3.2
1
3.2.1
1
3
1
)3)(2)(1(
1

5.4.3
1
4.3.2
1
3
1
5.4.3.2
1

4.3.2
1
3.2.1
1
3
1
4.3.2.1
1
+++
+++
=








+++
=





















+++
++=
+++






=






=
nnnn
nnnn

nnnn
S
nnnnnnnn
Bài 8: Dạng tổng theo quy luật
S = a
1
+ a
2
+ a
3
+ + a
n

Với d = a
2
a
1
= a
4
a
3
= =a
n
a
n-1
Thì a
n
= a
1
+ (n - 1).d


2
).(
1
naa
S
n
+
=
Bài 9: Tính tổng S = 1 + 2 + 3 + 4 + n
Giải
Cách 1:Ta có: S = 1+ 2+ 3+ 4+ +n
+ S = n + (n-1) + (n - 2) + (n - 3) + 1

2S =

1)(n 1) (n 1) (n ) 1(n ++++++++
= (n +1).n
n lần

2
).1( nn
S
+
=
Cách 2: Chọn hàm số g(x) = x
Ta xác định hàm số f(x) bậc 2 có dạng f(x) = ax
2
+ bx + c thoả mãn:
g(x) = f(x) f(x -1)

<=> x = ax
2
+ bx + c a(x-1)
2
b(x-1) - c
<=> x = ax
2
+ bx + c ax
2
+ 2ax - a bx + b - c
<=> x = 2ax a + b







=
=




=
=

2
1
2

1
0
12
b
a
ab
a

cxxxf ++=
2
1
2
1
)(
2
(c tuỳ ý)
Mặt khác:
2
).1(
2
1
2
1
0.
2
1
0.
2
1
2

1
2
1
4321
)0()()( )4()3()2()1(
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
222
nn
nnccnnnS
fnfnggggg
nfnfng
ffg
ffg
ffg
ffg
+
=+=






++++=++++=
=+++++













=
=
=
=
=
Bài 10: Tính tổng: S = 1 + 3 + 5 + + (2n - 1)
Giải:
Đặt g(x) = 2x 1
Ta chọn hàm f(x) bậc 2 có dạng: f(x) = ax
2
+ bx + c sao cho
g(x) = f(x) f(x - 1)
<=> 2x - 1 = ax
2
+ bx + c a(x-1)
2
b(x-1) - c
<=> 2x - 1 = ax

2
+ bx + c ax
2
+ 2ax - a bx + b - c
<=> 2x 1 = 2ax a + b




=
=




=
=

0
1
1
22
b
a
ab
a
vậy f(x) = x
2
+ c (c tuỳ ý)
Ta có

( )
2222
0)12 (531
)0()()( )4()3()2()1(
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
nccnccnnS
fnfnggggg
nfnfng
ffg
ffg
ffg
ffg
=+=++=+++=
=+++++













=
=
=
=
=
Bài 11: Tính tổng S = 2 + 4 + 6 + + 2n
Giải:
Đặt g(x) = 2x
Chọn hàm số f(x) có bậc 2 có dạng f(x) = ax
2
+ bx +c sao cho:
g(x) = f(x) f(x -1)
<=> 2x = ax
2
+ bx + c a(x-1)
2
b(x-1) - c
<=> 2x = ax
2
+ bx + c ax
2
+ 2ax - a bx + b - c
<=> 2x = 2ax a + b




=
=





=
=

1
1
0
22
b
a
ab
a
suy ra: f(x) = x
2
+ x + c (c tuỳ ý)
nnccnnnS
fnfnggggg
nfnfng
ffg
ffg
ffg
ffg
+=++−++=++++=
−=+++++
−−−−−−−−−−−−−−−−−−−−−−−−−−












−−=
−=
−=
−=
−=
222
)00(2 8642
)0()()( )4()3()2()1(
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
Bµi 12: TÝnh tæng S = 1
2
+ 3
2
+ 5
2
+ + (2n - 1)

2
Gi¶i:
§Æt g(x) = (2x -1)
2
Chän hµm sè f(x) cã bËc 3 cã d¹ng f(x) = ax
3
+ bx
2
+ cx + d sao cho:
g(x) = f(x) – f(x-1)
<=> (2x -1)
2
= ax
3
+ bx
2
+ cx + d – a(x-1)
3
– b(x-1)
2
– c(x-1) - d
<=> 4x
2
– 4x + 1 = ax
3
+ bx
2
+ cx + d – ax
3
+ 3ax

2
– 3ax + a – bx
2
+ 2bx – b – cx + c - d
<=> 4x
2
– 4x + 1 = 3ax
2
+ (2b – 3a)x + a – b + c





=+−
−=−
=

1
432
43
cba
ab
a








−=
=
=

3
1
0
3
4
c
b
a

nªn f(x) =
dxx +−
3
1
3
4
3
(d tuú ý)
3
4
3
1
3
4
0.
3

1
0.
3
4
3
1
3
4
)12( 7531
)0()()( )4()3()2()1(
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
3
33322222
nn
nnddnnnS
fnfnggggg
nfnfng
ffg
ffg
ffg
ffg

=−=







+−−






+−=−+++++=
−=+++++
−−−−−−−−−−−−−−−−−−−−−−−−−−











−−=
−=
−=
−=
−=

Bµi 13: TÝnh tæng: S = 1
2
+ 2
2
+ 3
2
+ n
2
Gi¶i:
§Æt g(x) = x
2
Chän hµm sè f(x) cã bËc 3 cã d¹ng f(x) = ax
3
+ bx
2
+ cx + d sao cho:
g(x) = f(x) – f(x-1)
<=> x
2
= ax
3
+ bx
2
+ cx + d – a(x-1)
3
– b(x-1)
2
– c(x-1) - d
<=> x
2

= ax
3
+ bx
2
+ cx + d – ax
3
+ 3ax
2
– 3ax + a – bx
2
+ 2bx – b – cx + c - d
<=> x
2
= 3ax
2
+ (2b – 3a)x + a – b + c









=
=
=







=+−
=−
=

6
1
2
1
3
1
0
032
13
c
b
a
cba
ab
a
f(x)=
dxxx +++
6
1
2
1
3

1
23
(d tuú ý)
6
)12)(1(
6
32
6
1
2
1
3
1
0.
6
1
0.
2
1
0.
3
1
6
1
2
1
3
1
4321
)0()()( )4()3()2()1(

)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
23
23232322222
++
=
++
=
++=






+++−






+++=+++++=
−=+++++
−−−−−−−−−−−−−−−−−−−−−−−−−−












−−=
−=
−=
−=
−=
nnnnnn
S
nnnddnnnnS
fnfnggggg
nfnfng
ffg
ffg
ffg
ffg
Bµi 14: TÝnh tæng S = 2
2
+ 4
2
+ 6
2

+ + (2n)
3
Gi¶i:
§Æt g(x) = (2x)
2
Chän hµm sè f(x) cã bËc 3 cã d¹ng f(x) = ax
3
+ bx
2
+ cx + d sao cho:
g(x) = f(x) – f(x-1)
<=> 4x
2
= ax
3
+ bx
2
+ cx + d – a(x-1)
3
– b(x-1)
2
– c(x-1) - d
<=> 4x
2
= ax
3
+ bx
2
+ cx + d – ax
3

+ 3ax
2
– 3ax + a – bx
2
+ 2bx – b – cx + c - d
<=> 4x
2
= 3ax
2
+ (2b – 3a)x + a – b + c







=
=
=






=+−
=−
=


3
2
2
3
4
0
032
43
c
b
a
cba
ab
a
f(x)=
dxxx +++
3
2
2
3
4
23
(d tuú ý)
3
)132(2
3
264
3
2
2

3
4
0.
3
2
0.20.
3
4
3
2
2
3
4
)2( 8642
)0()()( )4()3()2()1(
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
2
23
23232322222
++
=
++
=
++=







+++−






+++=+++++=
−=+++++
−−−−−−−−−−−−−−−−−−−−−−−−−−











−−=
−=
−=
−=

−=
nnn
nnn
S
nnnddnnnnS
fnfnggggg
nfnfng
ffg
ffg
ffg
ffg
Bµi 15: TÝnh tæng: S = 1
3
+ 2
3
+ 3
3
+ + n
3
Gi¶i:
§Æt g(x) = x
3
Chän hµm sè f(x) cã bËc 4 cã d¹ng: f(x) = ax
4
+ bx
3
+ cx
2
+ dx + e sao cho
g(x) = f(x) – f(x-1)

<=> x
3
= ax
4
+ bx
3
+ cx
2
+ dx + e – a(x-1)
4
- b(x-1)
3
– c(x -1)
2
– d(x -1) – e
<=> x
3
= ax
4
+ bx
3
+ cx
2
+ dx + e – a(x
4
– 4x
3
+ 6x
2
– 4x + 1) – b(x

3
– 3x
2
+ 3x - 1)
- c(x
2
– 2x + 1) – dx + d – e
<=> x
3
= ax
4
+ bx
3
+ cx
2
+ dx + e – ax
4
+ 4ax
3
– 6ax
2
+ 4ax – a – bx
3
+ 3bx
2
– 3bx + b
- cx
2
+ 2cx – c – dx + d - e
<=> x

3
= 4ax
3
+ (3b – 6a)x
2
+ (4a – 3b + 2c)x – a + b – c + d











=
=
=
=








=+−+−

=+−
=−
=

0
4
1
2
1
4
1
0
0234
063
14
d
c
b
a
dcba
cba
ab
a
f(x) =
exxx +++
234
4
1
2
1

4
1
(e tuú ý)
−−−−−−−−−−−−−−−−−−−−−−−−−−











−−=
−=
−=
−=
−=
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
nfnfng
ffg
ffg
ffg

ffg
2
2222
234
23423423433333
2
)1(
4
)1(
4
)12(
4
2
4
1
2
1
4
1
0.
4
1
0.
2
1
0.
4
1
4
1

2
1
4
1
4321
)0()()( )4()3()2()1(






+
=
+
=
++
=
++
=
++=






+++−







+++=+++++=
−=+++++
nnnnnnn
nnn
S
nnneennnnS
fnfnggggg
Bµi 16: TÝnh tæng: S = 1
3
+ 3
3
+ 5
3
+ + (2n - 1)
3
Gi¶i:
§Æt g(x) = (2x - 1)
3
Chän f(x) bËc 3 cã d¹ng: f(x) = ax
4
+ bx
3
+ cx
2
+ dx + e sao cho:
g(x) = f(x) – f(x -1)

<=> (2x -1)
3
= ax
4
+ bx
3
+ cx
2
+ dx + e – a(x-1)
4
- b(x-1)
3
– c(x -1)
2
– d(x -1) – e
<=> 8x
3
– 12x
2
+ 6x -1 = ax
4
+ bx
3
+ cx
2
+ dx + e – a(x
4
– 4x
3
+ 6x

2
– 4x + 1) – b(x
3

3x
2
+ 3x - 1) - c(x
2
– 2x + 1) – dx + d – e
<=>8x
3
– 12x
2
+ 6x -1 = ax
4
+ bx
3
+ cx
2
+ dx + e – ax
4
+ 4ax
3
– 6ax
2
+ 4ax – a – bx
3
+
3bx
2

– 3bx + b - cx
2
+ 2cx – c – dx + d - e
<=> 8x
3
– 12x
2
+ 6x -1 = 4ax
3
+ (3b – 6a)x
2
+ (4a – 3b + 2c)x – a + b – c + d







=
−=
=
=









−=+−+−
=+−
−=−
=

0
1
0
2
1
6234
1263
84
d
c
b
a
dcba
cba
ab
a
f(x) = 2x
4
– x
2
+ e (e tuú ý)
−−−−−−−−−−−−−−−−−−−−−−−−−−












−−=
−=
−=
−=
−=
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
nfnfng
ffg
ffg
ffg
ffg
( ) ( )
24
24242433333
2
200.22)12( 7531

)0()()( )4()3()2()1(
nnS
nneennnS
fnfnggggg
−=
−=+−−+−=−+++++=
−=+++++
Bµi 17: TÝnh tæng S = 2
3
+ 4
3
+ 6
3
+ 8
3
+ + (2n)
3
Gi¶i
§Æt g(x) = (2x)
3
Chän f(x) bËc 3 cã d¹ng: f(x) = ax
4
+ bx
3
+ cx
2
+ dx + e sao cho:
g(x) = f(x) – f(x -1)
<=> 8x
3

= ax
4
+ bx
3
+ cx
2
+ dx + e – a(x-1)
4
- b(x-1)
3
– c(x -1)
2
– d(x -1) – e
<=> 8x
3
= ax
4
+ bx
3
+ cx
2
+ dx + e – a(x
4
– 4x
3
+ 6x
2
– 4x + 1) – b(x
3
– 3x

2
+ 3x - 1) -
c(x
2
– 2x + 1) – dx + d – e
<=>8x
3
= ax
4
+ bx
3
+ cx
2
+ dx + e – ax
4
+ 4ax
3
– 6ax
2
+ 4ax – a – bx
3
+ 3bx
2
– 3bx + b -
cx
2
+ 2cx – c – dx + d - e
<=> 8x
3
= 4ax

3
+ (3b – 6a)x
2
+ (4a – 3b + 2c)x – a + b – c + d








=
=
=
=








=+−+−
=+−
=−
=

0

2
4
2
0
0234
063
84
d
c
b
a
dcba
cba
ab
a
f(x) = 2x
4
+ 4x
3
+ 2x
2
+ e (e tuú ý)

−−−−−−−−−−−−−−−−−−−−−−−−−−












−−=
−=
−=
−=
−=
)1()()(

)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
nfnfng
ffg
ffg
ffg
ffg
( ) ( )
2222
23423423433333
)1(2)12(2
2420.20.40.2242)2( 8642
)0()()( )4()3()2()1(
+=++=
++=+++−+++=+++++=
−=+++++

nnnnnS
nnneennnnS
fnfnggggg
Bµi 18: TÝnh tæng S = 1
4
+ 2
4
+ 3
4
+ + n
4
Gi¶i:
§Æt g(x) = x
4
Chän f(x) bËc 5 cã d¹ng: f(x) = ax
5
+ bx
4
+ cx
3
+ dx
2
+ ex + g sao cho:
g(x) = f(x) – f(x -1)
<=> x
4
= ax
5
+ bx
4

+ cx
3
+ dx
2
+ ex + g – a(x- 1)
5
– b(x-1)
4
– c(x-1)
3
– d(x-1)
2
– e(x-1) – g
<=> x
4
= ax
5
+ bx
4
+ cx
3
+ dx
2
+ ex – a(x
5
-5x
4
+ 10x
3
-10x

2
+ 5x -1) – b(x
4
– 4x
3
+ 6x
2
– 4x +
1) – c(x
3
– 3x
2
+ 3x – 1) – d(x
2
-2x +1) – e(x -1)
<=> x
4
= ax
5
+ bx
4
+ cx
3
+ dx
2
+ ex – ax
5
+ 5ax
4
– 10ax

3
+10ax
2
-5ax + a – bx
4
+ 4bx
3
- 6bx
2
+
6bx – b – cx
3
+ 3cx
2
– 3cx + c – dx
2
+ 2dx – d – ex + e
<=> x
4
= 5ax
4
+ (4b – 10a)x
3
+ (10a -6b + 3c)x
2
+ (6b – 5a - 3c + 2d)x + a – b + c – d + e
















=
−=
=
=
=










=+−+−
=+−−
=+−
=−

=

15
8
2
1
3
1
2
1
5
1
0
02356
03610
0104
15
e
d
c
b
a
edcba
dcab
cba
ab
a
f(x) =
gxxxxx
++−++

15
8
2
1
3
1
2
1
5
1
2345
(g tuú ý)
−−−−−−−−−−−−−−−−−−−−−−−−−−











−−=
−=
−=
−=
−=
)1()()(


)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
nfnfng
ffg
ffg
ffg
ffg
nnnnnS
ggnnnnnnS
fnfnggggg
15
8
2
1
3
1
2
1
5
1
0.
15
8
0.
2
1
0.

3
1
0.
2
1
0.
5
1
15
8
2
1
3
1
2
1
5
1
4321
)0()()( )4()3()2()1(
2345
2345234544444
+−++=






++−++−++−++=+++++=

−=+++++
Bµi 19: TÝnh tæng S = 1.2 + 2.5 + 3.8 + + n(3n - 1)
Gi¶i:
§Æt g(x) = x(3x -1)
Chän f(x) bËc 3 cã d¹ng: f(x) = ax
3
+ bx
2
+ cx + d sao cho:
g(x) = f(x) – f(x -1)
<=> x(3x-1) = ax
3
+ bx
2
+ cx + d – a(x-1)
3
– b(x-1)
2
– c(x-1) - d
<=> 3x
2
- x = ax
3
+ bx
2
+ cx + d – ax
3
+ 3ax
2
– 3ax + a – bx

2
+ 2bx – b – cx + c - d
<=> 3x
2
- x = 3ax
2
+ (2b – 3a)x + a – b + c





=
=
=






=+−
−=−
=

0
1
1
0
132

33
c
b
a
cba
ab
a
f(x) = x
3
+ x
2
+ d (d tuú ý)
−−−−−−−−−−−−−−−−−−−−−−−−−−











−−=
−=
−=
−=
−=
)1()()(


)3()4()4(
)2()3()3(
)1()2()2(
)0()1()1(
nfnfng
ffg
ffg
ffg
ffg
( )
)1(d n n)13( 8.35.22.1
)0()()( )4()3()2()1(
22323
+=+=−++=−++++=
−=+++++
nnnndnnS
fnfnggggg
Bµi 20: TÝnh tæng S = 1.2 + 2.3 + 3.4 + + n(n+1)
Gi¶i:
§Æt g(x) = x(x +1)
Chän f(x) bËc 3 cã d¹ng: f(x) = ax
3
+ bx
2
+ cx + d sao cho:
g(x) = f(x) – f(x -1)
<=> x(x+1) = ax
3
+ bx

2
+ cx + d – a(x-1)
3
– b(x-1)
2
– c(x-1) - d
<=> x
2
+ x = ax
3
+ bx
2
+ cx + d – ax
3
+ 3ax
2
– 3ax + a – bx
2
+ 2bx – b – cx + c - d
<=> x
2
+ x = 3ax
2
+ (2b – 3a)x + a – b + c








=
=
=






=+−
=−
=

3
2
1
3
1
0
132
13
c
b
a
cba
ab
a
f(x) =
3

1
x
3
+ x
2
+
3
2
x + d (d tuú ý)
−−−−−−−−−−−−−−−−−−−−−−−−−−











−−=
−=
−=
−=
−=
)1()()(

)3()4()4(
)2()3()3(

)1()2()2(
)0()1()1(
nfnfng
ffg
ffg
ffg
ffg
3
)2)(1(
3
)2)(1(
3
)2)(1(
3
)1(2)1(
3
22
3
23
3
2
3
1
3
2
3
1
)1( 5.44.33.22.1
)0()()( )4()3()2()1(
22

22323
23
23
++
=
++
=
++
=
+++
=
+++
=
++
=++=







+++=+++++=
−=+++++
nnn
S
nnnnnnnnnn
nnnnnnn
nnnS
ddnnnnnS

fnfnggggg
Bµi 21: TÝnh tæng S = 1 + 3 + 3
2
+ 3
3
+ + 3
n
Gi¶i:
Ta cã:
S = 1 + 3 + 3
2
+ 3
3
+ + 3
n
3S = 3 + 3
2
+ 3
3
+3
4
+ 3
n
+ 3
n+1
3S – S = 3
n+1
– 1 <=> 2S = 3
n + 1
– 1

S =
2
13
1

+n

Bµi 22: TÝnh tæng
S =
222222222222
2008
1
2007
1
1
1
2007
1
2006
1
1
1

4
1
3
1
1
1
3

1
2
1
1
1
++++++++++++
Gi¶i:
Ta cã:






++







++=++⇒






++

+++=+++++=






++
abc
cba
cba
cba
abc
cba
cba
bcacab
cba
cba
2
111111
2
111222111111
2
222
222222
2
NÕu a + b + c = 0 th×
22
222
1110

2
111111






++=













++=++
cbaabccba
cba

cbacba
cba
111111111
2

222
++=






++=++
(*)
¸p dông (*) ta cã:
S
2008
1
2008
2008
1
2007
1
1
2007
1
2006
1
1
4
1
3
1
1

3
1
2
1
1
2008
1
2007
1
1
1
2007
1
2006
1
1
1

4
1
3
1
1
1
3
1
2
1
1
1

)2008(
1
2007
1
1
1
)2007(
1
2006
1
1
1

)4(
1
3
1
1
1
)3(
1
2
1
1
1
2008
1
2007
1
1

1
2007
1
2006
1
1
1

4
1
3
1
1
1
3
1
2
1
1
1
222222222222
222222222222
−=
−++−+++−++−+=
−++−+++−++−+=

+++

++++


+++

++=
++++++++++++=
Bµi 23: TÝnh tæng S = 5 + 15 + 20 + + 2005
Gi¶i: Ta cã:
S = 5 + 10 + 15 + 20 + + 2005
S = 2005 + 2000 + 1995 +1990 + + 5
______________________________________
2S = 2010 + 2010 + 2010 + 2010 + + 2010 = 401.2010
S =
403005
2
2010.401
=
Bµi 24: TÝnh tæng S =
1 1 1

1 2 2 3 2004 2005
+ + +
× × ×
Gi¶i: Ta cã:
2005
2004
2005
1
1
2005
1
2004

1

3
1
2
1
2
1
1
1
20052004
1

32
1
21
1
2005
1
2004
1
20052004
1

3
1
2
1
32
1

2
1
1
1
21
1
=−=
−++−+−=+++=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−











−=
−=
−=
+
S
xxx
S
x
x
x

Bµi 25: TÝnh tæng S
n
=
1 1 1

1 2 3 2 3 4 2004 2005 2006
+ + +
× × × × × ×
.
Gi¶i: Ta cã:






−=






−++−+−=+++=


















−=






−=






−=
+
20062005
1
21

1
2
1
20062005
1
20052004
1

43
1
32
1
32
1
21
1
2
1
200720062005
1

432
1
321
1
__________________________________________________________
20062005
1
20052004
1

2
1
200620052004
1

43
1
32
1
2
1
432
1
32
1
21
1
2
1
321
1
xx
S
xxxxxxxxxxxx
S
xxxx
xxxx
xxxx
n
n

Bµi 26: TÝnh tæng : A = 3+ 3
2
+ 3
3
+ + 3
30
Gi¶i: Ta cã:
A = 3 + 3
2
+ 3
3
+ +3
29
+ 3
30
3A = 3
2
+ 3
3
+ 3
4
+ +3
30
+ 3
31
________________________________
3A - A = 3
31
– 3
<=> 2A = 3

31
– 3
<=> A =
2
33
31


Bµi 27: Chøng minh r»ng A = 3+ 3
2
+ 3
3
+3
4
+3
5
+ 3
6
3
28
+ 3
29
+ 3
30
chia hÕt cho 13
Gi¶i:
Ta cã : A = 3(1 + 3 + 3
2
) + 3
4

(1 + 3 + 3
2
) + + 3
28
(1 + 3 + 3
2
)

)(13
1313.3)331.(3

1313.3)331(3
1313.3)331(3
28228
424
2
dfcmA



−−−−−−−−−−−−−−−−−−−−−−−







=++
=++

=++

Bµi 28: TÝnh A =
1 1 1 1
1 2 1 2 3 1 2 3 4 1 2 3 4 2010
+ + + ××××+
+ + + + + + + + + +××××+
XÐt biÓu thøc:
( )
( )
1 1 2 1 1
2
1
1 2 3 1 1
2
n n
n n n n n
 
= = = × −
 ÷
+
+ + +××××+ + +
 
v i ớ
*
n N∈
Víi n = 2 ta cã:
1 1 1
2
1 2 2 3

 
= × −
 ÷
+
 
Víi n = 3 ta cã:
1 1 1
2
1 2 3 3 4
 
= × −
 ÷
+ +
 
Víi n = 4 ta cã:
1 1 1
2
1 2 3 4 4 5
 
= × −
 ÷
+ + +
 
Víii n = 100 ta cã:
1 1 1
2
1 2 3 4 2010 2010 2011
 
= × −
 ÷

+ + + +×××+
 
VËy A =
1 1 2009 2009
2 2
2 2011 2 2011 2011
 
× − = × =
 ÷
×
 
Bµi 31: B=
21
1
+
+
32
1
+
+
43
1
+
+…+
20092008
1
+
+
20102009
1

+
Gi¶i:

12010
2009201020082009 342312
20092010
20092010
20082009
20082009

34
34
23
23
12
12
−=
−+−++−+−+−=


+


++


+


+



=
B
B
B
Bµi 32: So s¸nh A vµ B, sè nµo lín h¬n?
A = 2
0
+ 2
1
+ 2
2
+ 2
3
+ + 2
50
B = 2
51
Gi¶i: Ta cã:
A = 2
0
+ 2
1
+ 2
2
+ 2
3
+ + 2
50

2A = 2
1
+ 2
2
+ 2
3
+ 2
4
+ + 2
51

2A – A = 2
51
- 2
0
<=> A = 2
51
-1 < 2
51
= B
VËy A < B
Bµi 33: TÝnh tæng:
)100)(99(
1

)3)(2(
1
)2)(1(
1
)1(

1
++
++
++
+
++
+
+
=
xxxxxxxx
S

Gi¶i:
Ta cã:
100
1
99
1
99
1

2
1
2
1
1
1
1
11
)100)(99(

1

)3)(2(
1
)2)(1(
1
)1(
1
________________________________________________________________
100
1
99
1
)100)(99(
1

3
1
2
1
)3)(2(
1
2
1
1
1
)2)(1(
1
1
11

)1(
1
+

+
+
+
−+
+
+
+

+
+
+
−=
++
++
++
+
++
+
+
=
















+

+
=
++
+

+
=
++
+

+
=
++
+
−=
+
+
xxxxxxxx
S

xxxxxxxx
S
xxxx
xxxx
xxxx
xxxx

)100(
100
100
11
+
=
+
−=
xxxx
S
Bµi 34: TÝnh tæng

)5)(4(
1
)4)(3(
1
)3)(2(
1
)2)(1(
1
)1(
1
209

1
127
1
65
1
23
11
22222
++
+
++
+
++
+
++
+
+
=
++
+
++
+
++
+
++
+
+
=
xxxxxxxxxx
S

xxxxxxxxxx
S

)5(
5
5
11
5
1
4
1

1
1
1
11
)5)(4(
1
)4)(3(
1
)3)(2(
1
)2)(1(
1
)1(
1
_____________________________________________________
5
1
4

1
)5)(4(
1

2
1
1
1
)2)(1(
1
1
11
)1(
1
+
=
+
−=
+

+
++
+
+
+
−=
++
+
++
+

++
+
++
+
+
=











+

+
=
++
+

+
=
++
+
−=
+

+
xxxx
S
xxxxx
S
xxxxxxxxxx
S
xxxx
xxxx
xxxx
Bµi 35: TÝnh tæng:

2006
20062006
2006
2006
1
2006
2006
2005
2005

4
4
3
3
3
3
2
2

2
2
1
2006.2005
2006200520052006

12
4334
6
3223
2
2112
2006.2005
2006200520052006

3648
4334
1218
3223
24
2112
2006200520052006
1

4334
1
3223
1
2112
1


=−=
−++−+−+−=

++

+

+

=

++


+


+


=
+
++
+
+
+
+
+
=

A
A
A
A
A
Bµi 36: Chøng tá






+++++=
2006
1
2005
1

3
1
2
1
1
1
2006.2005 3.2.1A
chia hÕt cho 2007

)(2007 )2006.204 3.12005.3.2.1(2007
1.2.3 2005.2006
) 2006.2004 4.3.12005.3.2.1(2007

2006.2005 3.2.1
1004.1003
2007

2004.3
2007
2005.2
2007
2006.1
2007
2006.2005 3.2.1
1003
1
1004
1

2004
1
3
1
2005
1
2
1
2006
1
12006.2005 3.2.1
dfcmA
A
A

A
++=
+++
=






++++=












++







++






++






+=

Bµi 37: TÝnh tæng S = 2 + 22+ 222+ +
  
n
2222222 2222222

(*)10 101010
2
9
10 101010
2
9
)1 111(10 101010
2
9

)110 ()110()110()110(
2
9
999.9.999999 999999
2
9
11111 11111 111111
2
11111 11111111.2 111.211.21.2
321
321
321
321
n
n
n
n
n
n
n
n
n
S
n
S
S
S
S
S
S

++++=+
−++++=
++++−++++=
−+−+−+−=
+++=
++++=
++++=
  
  
  
  
§Æt S
1
= 10
1
+ 10
2
+ 10
3
+ +10
n
10S
1
= 10
2
+ 10
3
+ 10
4
+ + 10

n+1
10S
1
– S
1
= 10
n+1
– 10 <=> 9S
1
= 10
n+1
-10 => S
1
=
9
1010
1

+n

Thay vµo (*) ta ®îc:

81
)10910(2
9
91010
2
9
9
1010

2
9
1
11
−−
=⇔
−−
=⇔

=+
+
++
n
S
nS
n
S
n
nn

Bµi 38: TÝnh tæng S = 1+ 2x +3x
2
+ 4x
3
+ +nx
n-1
Gi¶i:
Ta cã: S = 1+ 2x +3x
2
+ 4x

3
+ +nx
n-1
xS = x + 2x
2
+ 3x
3
+ 4x
4
+ + nx
n
S – xS = 1 + x +x
2
+ x
3
+ x
n-1
- nx
n
<=> (1-x)S = 1 + x +x
2
+ x
3
+ x
n-1
- nx
n
<=> S =
(*)
11

1
1
132
x
nxS
x
nxxxxx
n
nn


=

−+++++


TÝnh: S
1
= 1 + x + x
2
+ x
3
+ + x
n-1
xS
1
= x + x
2
+ x
3

+ x
4
+ + x
n
xS
1
– S
1
= x
n
– 1
<=> (x -1)S
1
= x
n
– 1
<=> S
1
=
1
1


x
x
n
Thay S
1
vµo (*) ta ®îc:
S =

2
1
1
)1(
1)1(
1
1
1
1
1
1

−−+
−=


+−−
=




+
+
x
nxxn
x
x
nxnxx
x

nx
x
x
nn
nnn
n
n

Bµi 39: TÝnh N = 75(4
1993
+ 4
1992
+ + 4
2
+5) +25
Gi¶i:
Ta cã: N = 75(4
1993
+ 4
1992
+ + 4
2
+5) +25
N = 75(4
1993
+ 4
1992
+ + 4
2
+4

1
+1) +25
N = 75.S +25 (*)

TÝnh S = 4
1993
+ 4
1992
+ + 4
2
+4
1
+1
4S = 4
1994
+4
1993
+ + 4
3
+ 4
2
+ 4
4S - S = 4
1994
– 1
3S = 4
1994
– 1
S =
3

14
1994

Thay vµo (*) ta ®îc:
N = 75.
3
14
1994

+25= 25(4
1994
-1 + 1) = 25.4
1994
Bµi 40: TÝnh B =
9932
2
1

2
1
2
1
2
1







++






+






+

1009932
2
1
2
1

2
1
2
1
2







+






++






+






=
B
99100100
2
1
1

2
1
2
1
22
1
2
1
2






−=⇒






−=⇔−






=− B

B
B
B
Bµi 41: Chøng minh bÊt ®¼ng thøc:

72,1
!
1

!3
1
!2
1
171,1 <++++<
n
víi n
5

Chøng minh:
§Æt
!
1

!3
1
!2
1
1
n
S

n
++++=
, ta cã ngay víi n
5≥
th×:
S
n
>S
5
=
71,1
60
143
>
V©y, bÊt ®¼ng thøc thø nhÊt ®îc chøng minh.
B©y giê ta chøng minh bÊt ®¼ng thøc cßn l¹i. HiÓn nhiªn ta cã:

.
!6
1
!
1
!6
1
!
1
)!1(
1

!8

1
!7
1
!7
1
!6
1
!
1
!

!8
1
!8
8
!7
1
!7
7
!
1

!8
7
!7
6
!
1

!8

1
!7
1
<−=−

+−+−=
−++−+−=

+++<+++
nnn
nn
n
n
n
n
Tõ ®ã suy ra:

)(72,1
120
204
!6
2
120
202
!6
1
!6
1
!5
1

!4
1
!3
1
!2
1
1
!
1

!3
1
!2
1
1 dfcm
n
<=+=++++++<++++
Bµi 42: Chøng minh r»ng:
4
11

3
1
2
1
333
<+++
n
Chøng minh:
Ta cã:

(*)
)1.().1(
1
)1(
111
233
+−
=

=

<
kkk
kkkkk
¸p dông (*) ta cã:

(**)
)1.().1(
1

5.4.3
1
4.3.2
1
3.2.1
11

3
1
2

1
_________________________________________________________________
)1.().1(
11

5.4.3
1
4
1
4.3.2
1
3
1
3.2.1
1
2
1
333
3
3
3
3
+−
+++<+++
















+−
<
<
<
<
+
nnn
n
nnn
n
MÆt kh¸c:
*)*(*
4
1
)1(2
1
4
1
)1(
1
2.1

1
2
1
)1.().1(
1

5.4.3
1
4.3.2
1
3.2.1
1
)1(
1
).1(
1

5.3
1
4.3
1
4.3
1
3.2
1
3.2
1
2.1
1
2

1
)1.().1(
1

5.4.3
1
4.3.2
1
3.2.1
1
____________________________________________________
)1.(
1
).1(
1
2
1
)1.().1(
1

5.4
1
4.3
1
2
1
5.4.3
1
4.3
1

3.2
1
2
1
4.3.2
1
3.2
1
2.1
1
2
1
3.2.1
1
<
+
−=








+
−<
+−
+++









+


++−+−+−<
+−
+++


























+


=
−−






−=






−=







−=
+
nnnnnnn
nnnnnnn
nnnnnnn
KÕt hîp (**) vµ (***) ta cã:
)(
4
11

3
1
2
1
4
1
)1.().1(
1

5.4.3
1
4.3.2
1
3.2.1
11

3

1
2
1
333
333
dfcm
n
nnn
n
<+++
<
+−
+++<+++
Bµi 43: Chøng minh r»ng:

40
1
2004
1

1

6
1
5
1
65
1
3333
<++++<

n
Chøng minh:
Ta cã:
(*)
)1.().1(
1
)1(
111
233
+−
=

=

<
kkk
kkkkk

(**)
)2).(1.(
1
)23(
1
23
11
2233
++
=
++
=

++
>
kkk
kkkkkkk

¸p dông (*) ta cã:
*)*(*
2005.2004.2003
1

)1.().1(
1

7.6.5
1
6.5.4
1
2004
1

1

6
1
5
1
_________________________________________________________________
2005.2004.2003
1
2004

1

)1.().1(
11

7.6.5
1
6
1
6.5.4
1
5
1
3333
3
3
3
3
+
+−
+++<+++++
















<
+−
<
<
<
+
nnn
n
nnn
n
MÆt kh¸c:
**)*(*
40
1
2005.2004.2
1
40
1
2005.2004
1
5.4
1
2
1

2005.2004.2003
1

)1.().1(
1

7.6.5
1
6.5.4
1
____________________________________________________
2005.2004
1
2004.2003
1
2
1
2005.2004.2003
1

)1.(
1
).1(
1
2
1
)1.().1(
1

7.6

1
6.5
1
2
1
7.6.5
1
6.5
1
5.4
1
2
1
6.5.4
1
<−=






−<++
+−
++
























−=








+



=
−−






−=






−=
+
nnn
nnnnnnn
KÕt hîp (***) vµ (****) ta cã:

40
1
2004
1

1

6
1

5
1
3333
<++++
n
(I)
¸p dông (**) ta cã:

)(
65
1
390.2
12
390
1
30
1
2
1
2006.2005
1
6.5
1
2
1
2004
1

1


6
1
5
1
________________________________________________________________
2006.2005
1
2005.2004
1
2
1
2006.2005.2004
1
2004
1

)2)(1(
1
2
1
)2)(1(
11

8.7
1
7.6
1
2
1
8.7.6

1
6
1
7.6
1
6.5
1
2
1
7.6.5
1
5
1
3333
3
3
3
3
II
n
nnnnnn
n
==






−>







−>++++
























−=>








++
=
++
>






−=>






−=>
+
Tõ (I) Vµ (II) ta cã ®iÒu ph¶i chøng minh:


40
1
2004
1

1

6
1
5
1
65
1
3333
<++++<
n
Bµi 44: T×m tØ sè cña A vµ B biÕt r»ng:

2005.1980
1

)25(
1

27.2
1
26.1
1
2005.25
1


)1980(
1

1980.2
1
1981.1
1
++
+
+++=
++
+
+++=
mm
B
nn
A
Trong ®ã, A cã 25 sè h¹ng vµ B cã 1980 sè h¹ng.
Gi¶i:













++++−






++++=






−++
+
−+−+−=
++
+
+++=
2005
1

1983
1
1982
1
1981

1
25
1

3
1
2
1
1
1
1980
1
2005
1
25
1

1980
11

1982
1
2
1
1981
1
1
1
1980
1

2005.25
1

)1980(
1

1982.2
1
1981.1
1
A
nn
A
nn
A












++++−







++++=












+++
+
++−






+
−+++++=







−++
+
−++−+−=
++
+
+++=
2005
1

1983
1
1982
1
1981
1
25
1

3
1
2
1
1
1
25
1

2005
1

1981
1
1980
1
25
1

27
1
26
1
1980
1

25
11

26
1
.
25
1

3
1
2
1

1
1
25
1
2005
1
1980
1

25
11

27
1
2
1
26
1
1
1
25
1
2005.1980
1

)25(
1

27.2
1

26.1
1
B
mmm
B
mm
B
mm
B
396
5
1980
25
2005
1

1983
1
1982
1
1981
1
25
1

3
1
2
1
1

1
25
1
2005
1

1983
1
1982
1
1981
1
25
1

3
1
2
1
1
1
1980
1
==













++++−






++++












++++−







++++
=
B
A
Bài 45: Chứng minh rằng bất đẳng thức sau với
2, nNn

22
1

3
1
2
1
32 <+++< n
n
n
Giải:
Ta có:
1)(**);1(2
1
)1(2
1
221
0)(*);1(2
1
)1(2

1
221
>=
+

=
+
<
+
=
>+=
+
+
=
++
>
+
=
kkk
kk
kk
kkkkk
kkk
kk
kk
kkkkk
áp dụng (*) và (**) ta có:

)(22
1


3
1
2
1
32
22
1

3
1
2
1
221222232
22
1

3
1
2
1
2212222
22
1

3
1
2
1
2212

)1(2
1

3
1
2
1
)21(2
)1 2312(2
1

3
1
2
1
)1 3423(2
_________________________________________________________
)1(2
1
)1(2

)23(2
3
1
)34(2
)12(2
2
1
)23(2
dfcmn

n
n
n
n
nnn
n
n
nn
n
n
n
n
n
n
nn
n
nn
nn
n
nn
<+++<
<+++<+<<
<+++<+<
<+++<+
<+++<+
+++<+++<++++












<<+
<<
<<
+
Bài 46: Chứng minh rằng
1 1 1
2
2 1 3 1 ( 1)n n
+ + + <
+
với mọi n

N*
Chứng minh:
Ta có:
(*)
1
11
2
2
.
1
11

11
1
11
1
11
1
11
1
11
).1(
)1(
1








+
=









+
=
=








+








+
<









+
+








+
=






+
=
+
=
+
kkkkk
k
kkk
k
k
kkkk
k

kk
k
kk
k
kk
áp dụng (*) ta có:

)(2
1
2
2
1
1
12
)1(
1

34
1
23
1
12
1
______________________________________________
1
11
2
)1(
1


4
1
3
1
2
34
1
3
1
2
1
2
23
1
2
1
1
1
2
12
1
dfcm
nnnn
nnnn
<
+
=









+
<
+
++++


























+
<
+








<








<







<
+
Bài 47: : Rút gọn biểu thức sau:
A =
1 1 1 1
1 2 2 3 3 4 1n n
+ + +ììì+
+ + + +
(với
1n
)
Giải:
A =
1
1

34
34
23
23
12
12
+

++


+



+


nn
nn
A =
1 342312 ++++ nn
A =
1n
Bài 48: Chứng minh rằng với mọi số nguyên ta luôn có:
a.
1 1 1 1
1
1.2 2.3 3.4 ( 1)n n
+ + + + <
+
Chứng minh:
Biến đổi vế trái:

)(1
1
1
1

1
11
)1.(
1


4
1
3
1
4.3
1
3
1
2
1
3.2
1
2
1
1
1
2.1
1
dfcm
n
VT
nnnn
<
+
=
















+
=
+
=
=
=
+
b.
1 1 1 1
2
2 2 2 2
1 2 3 n
+ + + + <
Giải:
Ta có:
(*)
)1(
111
22


=

<
kk
kkk
áp dụng (*) ta có:

)(2
1
2
1
1
1
1
11

4
1
3
1
2
1
1
1
__________________________________
1
1
1
)1(
11


4
1
3
1
4.3
1
4
1
3
1
2
1
3.2
1
3
1
2
1
1
1
2.1
1
2
1
222222
2
2
2
2

dfcm
nn
n
nnnn
n
<=+<+++++

















=

<
=<
=<
=<
+

Bài 49:
a. Hãy tính
420
418

48
46
.
44
42
4
4
4
4
4
4
+
+
+
+
+
+
Giải:
T a có: a
4
+4=a
4
+4a
2
+4-4a

2
=(a
2
+2)
2
-(2a)
2
=[(a-1)
2
+1][(a+1)
2
+1] (*)
áp dụng (*) ta có :
)121)(119) (19)(17)(15)(13(
)119)(117) (17)(15)(11)(13(
420
418

48
46
.
44
42
222222
222222
4
4
4
4
4

4
++++++
++++++
=
+
+
+
+
+
+
221
1
442
2
121
11
2
2
==
+
+
=
b> Cho xyz = 1. Hãy tính tổng sau:
zxzyzyxyx ++
+
++
+
++ 1
1
1

1
1
1
Giải:
Ta có :
xxy
x
xyzxyx
x
yzy
++
=
++
=
++
11
1
(do xyz=1)
xyx
xy
yzxxyzxy
xy
zxz
++
=
++
=
++
11
1

2
( do xyz=1)
do đó :
1
111
1
1
1
1
1
1
1
=
=+
+
++
+
++
=
++
+
++
+
++
xyx
xy
xyx
x
xyxzxzyzyxyx
Bài 50: Cho các số a

1
, a
2
, , a
2009
đợc xác định bởi công thức sau:

( )
1)12(
2
+++
=
nnn
a
n
với n = 1, 2, 3, , 2009.
Chứng minh rằng:

2010
2008

2009321
<++++ aaaa
Chứng minh:

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×