Tải bản đầy đủ (.pdf) (45 trang)

100 bất đẳng thức ôn thi đại hoc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (299.5 KB, 45 trang )

100 INEQUALITY PROBLEMS
*****
Cao Minh Quang
05/11/2006

Most of these problems were collected from the Mathematics and Youth Magazine in Vietnam.
Translation from Vietnamese into English may have many errors. I am looking forward to hearing
from your ideas.
• Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School,
Vinh Long town, Vinh Long, Vietnam.
• Email:






























1.
()
a,b 0,a b 1>+=,
22
ab4
a1b15
+

++
.
First solution.
Applying the AM – GM Inequality we get
22 2
2
1 3 1 3 4a 3 a 4a
a1a 2a.
44 44 4 a 14a3
+
+= + + ≥ + = ⇒ ≤
+
+

.
Similarly,
2
b
4b
4b 3
b1

+
+
.
Adding these two inequalities,
22
ab 4a4b 1 1
23
a 1b 1 4a34b3 4a34b3


⎛⎞⎛⎞
+≤ + =− +
⎜⎟⎜⎟


++ ++ ++
⎝⎠⎝⎠


.
On the orther hand,
()()

()
11 11 4 2
4a 3 4b 3 4
4a 3 4b 3 4a 3 4b 3 4 a b 6 5
⎡⎤
⎛⎞⎛⎞
++ + + ≥⇒ + ≥ =⎡⎤
⎜⎟⎜⎟
⎢⎥
⎣⎦
++ ++ ++
⎝⎠⎝⎠
⎣⎦
.
Thus,
22
ab 24
23.
a1b1 55
+
≤− =
++
.
Second solution.
Applying the AM – GM Inequality we get
4
22 2 2
5
5
1111 1 5

a1a 5a 4a
4444 4 4
⎛⎞
+= ++++≥ =
⎜⎟
⎝⎠
.
Similarly,
22
5
5
b
14b
4
+≥
.
Adding these two inequalities,
33
55
22
22
55
ab a b411 11
a. . b. .
55
a1b1 5 22 22
4a 4b
44
⎛⎞
+≤ + = + ≤

⎜⎟
⎜⎟
++
⎝⎠

()
11 11
aaa bbb
3a b 2
444
22 22
55 5 555
⎡⎤
⎛⎞⎛⎞
++++ ++++
⎢⎥
⎜⎟⎜⎟
++
⎡⎤
≤+==
⎢⎥
⎜⎟⎜⎟
⎢⎥
⎢⎥
⎣⎦
⎜⎟⎜⎟
⎜⎟⎜⎟
⎢⎥
⎝⎠⎝⎠
⎣⎦

.
Third solution.
Applying the AM – GM Inequality we get
1
ab2ab ab
4
+
≥⇒≤
.
Therefore,
()
22
2
22 2222
22
a b ab a b a b ab 1
a1b1aba b1
ab 2abab 1
+++ +
+= = =
++ +++
+−+ +

2
22
1
1
ab 1 ab 1 4
4
31 31

ab 2ab 2 5
1331
.
ab ab
24 16
4216
+
++
== ≤=
−+
⎛⎞
−+
−−+
⎜⎟
⎝⎠
.
2.
()
a,b,c 0,a b c 1>++=,
abc3
a1b1c1 4
+
+≤
+
++
.
First solution.
Applying the AM – GM Inequality we get
()()
aa1aa

a1 a b ac 4ab ac
⎛⎞
=≤+
⎜⎟
++++ ++
⎝⎠
,
()()
b
b1bb
b
1ba bc4babc
⎛⎞
=≤+
⎜⎟
++++ ++
⎝⎠
,
()()
cc1cc
c1 cb ca 4c b ca
⎛⎞
=≤+
⎜⎟
++++ ++
⎝⎠
.
Adding these three inequalities,
abc1abbcac3
a1b1c1 4ab bc ac 4

+++
⎛⎞
++≤ ++ =
⎜⎟
+++ + ++
⎝⎠
.
Second solution.
Applying the AM – GM Inequality we get
+=+ + + ≥ ⇒ ≤
+
4
33
4
3
111 1 a 1
a1 a 4a a3
333 a14
3
,
Similarly,
4
33
b1
b3
b1 4

+
,
4

33
c1
c3
c1 4

+
.
Adding these three inequalities,
44 4
abc3 1 1 1
a.a.a. b.b.b. c.c.c.
a1 b1 c1 4 3 3 3
⎛⎞
++≤ + + ≤
⎜⎟
⎜⎟
+++
⎝⎠

111
aaa bbb ccc
33
333
44 4 4 4
⎡⎤
⎛⎞⎛⎞⎛⎞
+++ +++ +++
⎢⎥
⎜⎟⎜⎟⎜⎟
≤++=

⎢⎥
⎜⎟⎜⎟⎜⎟
⎢⎥
⎜⎟⎜⎟⎜⎟
⎢⎥
⎝⎠⎝⎠⎝⎠
⎣⎦
.
Third solution.
Applying the AM – GM Inequality we get

()()()
⎛⎞
++ +++ + + ≥
⎡⎤
⎜⎟
⎣⎦
+++
⎝⎠
111
a1 b1 c1 9
a1 b1 c1

()()()
⎛⎞
⇒++≥ =
⎜⎟
+++ +++++
⎝⎠
111 9 9

a1 b1 c1 a1 b1 c1 4
.
Therefore,
abc 111 93
33
a1 b1c1 a1 b1c1 4 4
⎛⎞
++=− ++ ≤−=
⎜⎟
+++ +++
⎝⎠
.
Forth solution
Applying the AM – GM Inequality we get
+=+ + ≥ + ⇒ ≤ + −
+
+
12 a2 a 3a11 1
a1 a 2 .
33 33 a1 2 23
a2
2
33
.
Similarly,
b3b111
.
b1 2 2 3
b2
2

33
≤+−
+
+
,
c3c111
.
c1 2 2 3
c2
2
33
≤+−
+
+
.
Adding these three inequalities,
abc3abc311 1 1
a1 b1 c1 2 3 3 3 2 3
a2 b2 b2
222
33 33 33
⎛⎞
⎜⎟
⎛⎞
⎜⎟
++≤ +++− + + ≤
⎜⎟
⎜⎟
+++
⎜⎟

⎝⎠
+++
⎜⎟
⎝⎠


111
abc
33993
333
3
22 2 2 2 44
abc 2
23.
333 3
⎡⎤
⎛⎞⎛⎞⎛⎞
+++
⎢⎥
⎜⎟⎜⎟⎜⎟
≤+++− ≤−=
⎢⎥
⎜⎟⎜⎟⎜⎟
⎛⎞
⎢⎥
⎜⎟⎜⎟⎜⎟
++ +
⎜⎟
⎢⎥
⎝⎠⎝⎠⎝⎠

⎣⎦
⎝⎠
.
3.
()
a,b,c 1≥ ,
()
111
2abc 9
abc
⎛⎞
+
++ ≥
⎜⎟
⎝⎠

Solution.
We have,
()
(
)
a1b1 0 ab1a b−−≥⇔+≥+,
()
(
)
ab 1 c 1 0 abc 1 ab c−−≥⇔+≥+.
Adding these two inequalities, we obtain
abc 2 a b c
+
≥++.

Thus,
() ()
111 111
2abc abc 9
abc abc
⎛⎞ ⎛⎞
+++≥++++≥
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠
.
4.
()
x,y,z0,xyxyyzyzzxzx1>++=,
+
+≥
+++
666
33 33 33
x
y
z1
x
yy
zzx2
.
Solution.
We set
333
a x , b y , c z=== and observe that
ab bc ca 1

+
+=.
The inequality is equivalent to
+
+≥
+++
222
abc1
ab bc ca 2
.
Applying the Cauchy – Buniakowski Inequality we get
()()()( )
⎡⎤
++ +++++≥++
⎡⎤
⎢⎥
⎣⎦
+++
⎣⎦
222
2
abc
ab bc ca abc
ab bc ca

()
()
⇒++≥++≥ ++=
+++
222

abc1 1 1
abc ab bc ca
ab bc ca 2 2 2
.
5.
()
x, y 0,xy 1>=
,
++++ ≥
++
22
22
9
x3xy3y 11
xy1
.
Solution.
Applying the AM – GM Inequality we get
() ()
+++ ++−≥ ++ −=
++ ++
22 22
4
22 22
99
x y 1 3x 3y 1 4 x y 1 . .3x.3y 1 11
xy1 xy1
.
6.
{

}
()
m, n \ 0 , m a, b, c n∈≤≤ ,
()
()
2
nm
abc3
bcacab 22mnm

++≤+
+++ +
.
Solution.
Without loss of generality, we can assume that
abc≥≥
, we set
xbc, yca, zab
=
+=+=+
.
We observe that
xyz≤≤, therefore,

⎛⎞⎛⎞
⎛⎞ ⎛⎞

−+− −≥
⎜⎟⎜⎟
⎜⎟ ⎜⎟

⎝⎠ ⎝⎠
⎝⎠⎝⎠
yz xy
11 11 0
xy yz

⎛⎞
+++
⇔++≤++
⎜⎟
⎝⎠
yz xz xy x z
22
xyz yx


()
()

⎛⎞
⇔+++≤ +
⎜⎟
+++
⎝⎠
2
zx
abc
23261
bc ca ab xy
.

On the other hand,
zx ac nm
0
xbc2m
−−−
≤=≤
+
and
zx ac ac nc nm
0
zabacncnm

−−−−
≤=≤≤≤
+
+++
.
Thus,
()()
()
()
−−

+
22
zx nm
2
xz 2m n m
.
From (1) and (2), we have

()
()
2
nm
abc3
bcacab 22mnm

++≤+
+++ +
.
7.
()
12 n
0 x , x , , x 1, n 2<≤≥,
()()()
12 n
12 n
xx x
1
n1n1x1x 1x
+++

+− − −
.
Solution.
We set
()
−= =
ii
1 x a , i 1, 2, , n and observe that

i
0a 1

< ,
(
)
=i 1, 2, , n .
The inequality is equivalent to
()()
(
)
12 n
12 n
1a 1a 1a
1
n 1 na a a
−+−++−

+
,
or
()
(
)
2
12 n 12n 12n
a a a 1 a a a n a a a+++ + ≥ .
Applying the AM – GM Inequality we get
n
12 n 12n

a a a n a a a+++≥ and
() ( )
n1
n
12 n 12 n 12 n
1 na a a 1 n 1 a a a n a a a

+≥+− ≥
.
Therefore,
()()()()()
n
22 2
n
1 2 n 12n 12n 12 n 12n 12n
a a a 1 a a a n a a a n a a a 1 a a a n a a a+++ + ≥ = +++ + ≥
.
8.
()
0xyz1,3x2yz4<<≤≤ + +≤ ,
+
+≤
222
10
3x 2y z
3
.
Solution.
We have 3x 2y z 4++≤, thus, ++≤
2

3x 2xy xz 4x .
On the other hand,
0xyz1<<≤≤, therefore
(
)
(
)
2
yy
x2
y
x

≤−
and
()
zz x z x−≤−
.
Adding these two inequalities, we obtain
+
+≤++
222
3x 2y z x 2y z .
Applying the Cauchy – Buniakowski Inequality we get
()
()
()
⎛⎞
++ ≤++≤++ ++⇒++≤
⎜⎟

⎝⎠
2
2
222 222 222
110
3x 2y z x 2y z 2 1 3x 2y z 3x 2y z
33
.
9.
()
0xyz1≤≤≤≤,
()()()
−+ −+ −≤
222
108
xyz yzy z1z
529
.
Solution.
We set
()()
(
)
=−+−+−
222
Txyz yzy z1z.
Applying the AM – GM Inequality and the Cauchy – Buniakowski Inequality we get
()() ()
3
22

11yy2z2y
T0 y.y2z2y z1z z1z
223
++ −
⎛⎞
≤+ − + − ≤ + −
⎡⎤
⎜⎟
⎣⎦
⎝⎠


2
22
42354232323
zz1zz1z zz1z
27 27 23 54 54 27
⎛ ⎞⎛ ⎞⎛⎞⎛⎞⎛⎞⎛ ⎞
=+−=−= −
⎜ ⎟⎜ ⎟⎜⎟⎜⎟⎜⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝⎠⎝⎠⎝⎠⎝ ⎠


2
23 23 23
zz1z
54 108
54 54 27
23 3 529
⎡⎤

++−
⎢⎥
⎛⎞
≤=
⎢⎥
⎜⎟
⎝⎠
⎢⎥
⎣⎦
.
10.
()
222
a,b,c ,abc8∈++≤ ,
+
+≥−ab bc 2bc 8 .
Solution.
We have
()
2
2
222
b3b
8 ab bc 2bc a b c ab bc 2bc a c 0
24
⎛⎞
+++ ≥+++++ =+++ ≥
⎜⎟
⎝⎠
.

Therefore,
ab bc ca 8++≥−.
11.
()
a,b 0> ,
()()()
()
()
2
22
ab 3aba3b
ab
ab
2
8a b a 6ab b
−++
+
≥+
+++
.
Solution.
If
ab= , the inequality is true.
If
ab≠ , the inequality is equivalent to
()()()
()
()
−++
+

−≥
+++
2
22
ab 3aba3b
ab
ab
2
8a b a 6ab b


()
(
)
()()
()
()
⎡⎤
+++
⎢⎥
⇔− − ≥
⎢⎥
+++
⎢⎥
⎣⎦
2
2
22
ab3aba3b
ab1 0

4a b a 6ab b


()
(
)
(
)
(
)
⇔+ ++−++ ++ ≥
22 22
4 a b a 6ab b a b 2 ab 3a 3b 10ab 0 .
We set
xab, y ab=+ = and observe that
22 2 2
abx2y+=− .
The inequality is equivalent to
()
()
()
()
+−+ +≥⇔−≥⇔≥⇔+≥
3
22 22
4x x 4
y
x2
y
3x 4

y
0x2
y
0x2
y
ab2ab.
12.
()
x ∈  ,
33
sin x sin 2x sin3x
2
++<.
Solution.
We have,
++=+ =+ ≤
2
sin x sin 2x sin3x sin 2x 2sin 2x cos x sin 2x 4sin x cos x

22
2242
cos x cos x
1 4sinxcos x 1 4 sin xcos x 1 8 sin x. .
22
≤+ ≤+ =+


3
22
2

cos x cos x
sin x
83 33
22
18 1
392
⎛⎞
++
⎜⎟
≤+ =+ <
⎜⎟
⎜⎟
⎜⎟
⎝⎠
.
13.
()
12 n
x , x , , x 0,n 3>≥,
()() ()()
22
22
123 234
n1 n 1 n 1 2
12 3 23 4 n1n 1 n1 2
xxx xxx
xxx xxx
n
xx x xx x x x x x x x



++
++
+++ +≥
++ ++
.
Solution.
We set,
()() ()()
22
22
123 234
n1 n 1 n 1 2
12 3 23 4 n1n 1 n1 2
xxx xxx
xxx xxx
A
xx x xx x x x x xx x


++
++
=+++ +
++ ++
.
Applying the AM – GM Inequality we have
() () () ()
22
22
123 234

n1 n 1 n 1 2
12 3 23 4 n1n 1 n1 2
xxx xxx
xxx xxx
A n 1 1 1 1
xx x xx x x x x x x x


⎡⎤⎡⎤⎡ ⎤⎡⎤
++
++
+= ++ +++ ++ +
⎢⎥⎢⎥⎢ ⎥⎢⎥
++ ++
⎣⎦⎣⎦⎣ ⎦⎣⎦

()()
()
()()
()
(
)
(
)
()
()()
()
1213 2324 n1nn11 n1n2
12 3 23 4 n1n 1 n1 2
xxxx xxxx x xx x xxxx


xx x xx x x x x xx x
−−

++ ++ + + ++
=+ ++ +
++ + +

()( )( )( )
n
13 24 n11 n2
1324 n11n 2
n
n
12 n1n 12 n1n
2xxxx xxxxx x x x x x x x
nn2n
x x x x x x x x


−−
++ ++
≥≥=
.
Therefore,
()() ()()
22
22
123 234
n1 n 1 n 1 2

12 3 23 4 n1n 1 n1 2
xxx xxx
xxx xxx
n
xx x xx x x x x xx x


++
++
+++ +≥
++ ++
.
14.
()
≤≤1a,b,c2,
()
111
abc 10
abc
⎛⎞
+
+++≤
⎜⎟
⎝⎠
.
Solution.
Without loss of generality, we can assume that
1abc2

≤≤≤, we obtain,

ab bc abbcac
11 11 0 2
bc ab bcabca
⎛⎞⎛⎞⎛⎞⎛⎞
− − +− − ≥⇔+++≤++
⎜⎟⎜⎟⎜⎟⎜⎟
⎝⎠⎝⎠⎝⎠⎝⎠
.
Therefore,
()
111 abbc ac ac
abc 3 52
abc bcab ca ca
⎛⎞⎛ ⎞ ⎛⎞
++ ++ =+ +++ ++≤+ +
⎜⎟⎜ ⎟ ⎜⎟
⎝⎠⎝ ⎠ ⎝⎠
.
On the other hand,
⎛⎞⎛ ⎞ ⎛⎞
≤≤⇒ − − ≤⇒ +≤ ⇒+≤
⎜⎟⎜ ⎟ ⎜⎟
⎝⎠⎝ ⎠ ⎝⎠
2
1a a1a a 5a ac5
12 0 1.
2c c2c c 2c ca2
.
Thus,
()

111
abc 10
abc
⎛⎞
+
+++≤
⎜⎟
⎝⎠
.
15.
()
a,b,c,d 0> ,
2222
22 22
4
abcdabcd
bcda
abcd
+
++
+++≥
.
Solution.
Applying the AM – GM Inequality we get
222 6
8
222 222
4
abc a 8a
3. 2. 2 8

bcd bcd
abcd
+++≥ =
,
222 6
8
222 222
4
bcd b 8b
3. 2. 2 8
cda cda
abcd
+++≥ =
,
222 6
8
222 222
4
cda c 8c
3. 2. 2 8
dab dab
abcd
+++≥ =
,
222 6
8
222 222
4
dab d 8d
3. 2. 2 8

abc abc
abcd
+++≥ =
.
Adding these four inequalities, we obtain
2222
22 22
444
a b c d abcd abcd abcd
68862
bcda
abcd abcd abcd
⎛⎞
+
++ +++ +++
⎛⎞⎛⎞⎛⎞
+++ +≥ = +
⎜⎟
⎜⎟⎜⎟⎜⎟
⎝⎠⎝⎠⎝⎠
⎝⎠


4
444
abcd 4abcd abcd
62.68
abcd abcd abcd
+++ +++
⎛⎞ ⎛⎞

≥+=+
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠
.
Thus,
2222
22 22
4
abcdabcd
bcda
abcd
+
++
+++≥
.
16.
()
0x2≤≤ ,
−+ +≤
33
4
4x x x x 3 3 .
Solution.
Applying the Cauchy – Buniakowski Inequality we get
(
)
()
()
⎡⎤
−+ + = − + + ≤ + − ++ =

⎣⎦
33 3 3 33
11
4x x x x 2 8x 2x 2 x x 2 4 8x 2x x x
22


()
()()
3
22 2
2
22
4
4
4
44
2x 9x 9x
16 6
.2x 9 x 33
23
222
⎛⎞
+− +−
⎜⎟
=−= =
⎜⎟
⎝⎠
.
17.

()
x ∈  ,
+
−≤2sinx 15 10 2cosx 6.
Solution.
Applying the Cauchy – Buniakowski Inequality we get
()
()()
⎡⎤
+− ≤+ +− = − +≤
⎢⎥
⎣⎦
2
2
2 sin x 15 10 2 cosx 1 5 2sin x 3 2 2 cosx 6 6 2 cosx 1 6
.
18.
()
222
x, y,z 0,x y z 1,n
+
>++=∈ ,
(
)
+
+
++≥
−−−
2n
2n 2n 2n

2n 1 2n 1
xyz
1x 1y 1z 2n
.
Solution.
We set
()
()
()
2n
ft t1 t , t 0,1=− ∈ . It is easy to show that
() ( ) () ()
()
()
+
⎛⎞
=− + = ⇔= ⇒ ≤ ⇒ − ≤
⎜⎟
+
+++
⎝⎠
2n 1 2n
2n 2n 2n
11 2n
f' t 1 2n 1 t , f' t 0 t f t f t 1 t
2n 1 2n 1 2n 1 2n 1

Since
0x,y,z1<<, thus


()
()
2n
2n
2n 1 2n 1
1
,
2n
x1 x
+
+



()
(
)
2n
2n
2n 1 2n 1
1
,
2n
y1 y
+
+



()

()
2n
2n
2n 1 2n 1
1
2n
z1 z
++



Adding these three inequalities, we obtain
()()()
⎛⎞
⎛⎞
⎜⎟
+
+= + + ≥
⎜⎟
⎜⎟
−−−
−−−
⎝⎠
⎝⎠
222
2n 2n 2n
2n 2n 2n
xyz x y z
1x 1y 1z
x1 x y1 y z1 z



()
(
)
()
222
2n
2n
xyz2n12n1
2n 1 2n 1
2n 2n
++ + +
+
+
≥=
.
19.
()
a,b 0,a b 1>+<
,
+
+++≥
−− +
22
ab 1 9
ab
1a 1b ab 2
.
Solution.

We have,
22 2 2
ab 1 a b 1 111
ab 1a 1b 2 2
1a1b ab 1a 1b ab 1a1b ab
⎛⎞⎛ ⎞
⎛⎞
+ + ++ = +++ +++ − = + + −
⎜⎟⎜ ⎟
⎜⎟
−− + − − + −− +
⎝⎠
⎝⎠⎝ ⎠

Applying the Cauchy – Buniakowski Inequality we get
()
()()( )
2
111
111 9
1a1b ab 11a 11b 1.ab 2
++
⎛⎞
++ ≥ =
⎜⎟
−− + −+−++
⎝⎠
.
20.
()

a, b,c 0,abc 1>=,
22 22 22
1111
a2b3b2c3c2a32
+
+≤
++ ++ ++
.
Solution.
Applying the AM – GM Inequality we get
+≥
22
ab2ab
and
+

2
b12b.
Therefore,
()
()
++≥ ++⇒ ≤
+
+++
22
22
11
a2b32abb1
a2b32abb1
.

Similarly,
()

++ ++
22
11
b2c32bcc1
and
()

+
+++
22
11
c2a32aca1
.
Adding these three inequalities, we obtain
⎛⎞
+
+≤ ++=
⎜⎟
++ ++ ++ ++ ++ ++
⎝⎠
22 22 22
1111111
a2b3b2c3c2a32abb1bcc1caa1


1 1 ab b 1 ab b 1 1
2 ab b 1 b 1 ab 1 ab b 2 ab b 1 2

++
⎛⎞
=++==
⎜⎟
++ ++ + + ++
⎝⎠
.
21.
()
22
x, y 0,x y 1>+=
,
() ()
⎛⎞
⎛⎞
+++++≥+
⎜⎟
⎜⎟
⎝⎠
⎝⎠
11
1x1 1y1 432
yx
.
Solution.
We have,
() ()
⎛⎞ ⎛ ⎞⎛⎞⎛⎞
⎛⎞⎛ ⎞
+ +++ +=++++++ ++

⎜⎟ ⎜ ⎟⎜⎟⎜⎟
⎜⎟⎜ ⎟
⎝⎠⎝ ⎠
⎝⎠ ⎝ ⎠⎝⎠⎝⎠
1111xy111
1x1 1y1 x y 2
y x 2x 2y y x 2 x y
.
Applying the AM – GM Inequality we get
11
x2, y2
2x 2y
+≥ +≥,
22
22
4
11 1 1 1 2
2
2x y x y
xy
xy
⎛⎞
+≥ = ≥ =
⎜⎟
+
⎝⎠
,
xy
2
yx

+≥.
Adding these four inequalities, we obtain
() ()
⎛⎞
⎛⎞
+++++≥+
⎜⎟
⎜⎟
⎝⎠
⎝⎠
11
1x1 1y1 432
yx
.
22.
()
0a,b,c1<≤
,
()()()
11
1a1b1c
abc 3
≥+− − −
++
.
Solution.
Applying the AM – GM Inequality we get
()()( )
()()( )()()( )
3

1b 1c 1bc
11b1c1bc1b1c1bc1
3
−+−+++
=≥−−++⇔−−++≤.
Therefore,
()()()
−−
−−−≤ ≤ ≤ −
++ ++ ++
1a 1a 1 1
1a1b1c
1bc abc abc 3

()()()
⇒≥+−−−
+
+
11
1a1b1c
abc 3
.
23.
()
22 2
xyz0,323x z 164y≥≥> − = = − ,
+
++≤
32 3 16
xy yz zx

5
.
Solution.
We have
22
22
16 z 32 z
y, x
43
−−
==,

≥⇒ ≥ ⇒≤
2
2
16 z 4
yz z z
4
5
.
On the other hand,
−− −
−= − = ≤⇒≤ ⇒≤
222
22 2
32 z 48 3z 5z 16
x3y 0xy3 xy 3y
3412
.
We have

()
2
222
x3x 3
xz 3 .z z y z
23 2
3
⎛⎞
⎛⎞
≤≤+≤+
⎜⎟
⎜⎟
⎝⎠
⎝⎠
and
()
22
1
yz y z
2
≤+.
Adding these two inequalities, we obtain
()
()()
2
22222 2
31 3116z31
x
yy
zzx 3

yy
z
y
z3 z
22 20242
⎛⎞⎛⎞
⎛⎞
−+
++ ≤ + + + + = + + +
⎜⎟⎜⎟
⎜⎟
⎜⎟⎜⎟
⎝⎠
⎝⎠⎝⎠


() ()
2
33 331632316
23 3 1 z 23 3 1 .
8855
⎛⎞ ⎛⎞
+
++
=++ ≤++ =
⎜⎟ ⎜⎟
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠
.
24.

+
π
⎛⎞
<< ∈
⎜⎟
⎝⎠
0x ,n
2
,
n2 n2
nn
sin x cos x
1
cos x sin x
++
+
≥ .
Solution.
We have,

(
)
(
)

−≥
2n 2n 2 2
sin x cos x sin x cos x 0

()

(
)
⇔− − ≥
nn22
tg x cot g x sin x cos x 0

n2 n2 n2 n2
tg xsin x cot g x cos x cot g x sin x tg x cos x⇔+ ≥ +.
Thus,
()( )
n2 n2
nn22 nn
nn
sin x cos x 1 1
tgx cotgx sin x cos x .2. tgx.cotgx 1
cos x sin x 2 2
++
+≥+ +≥ =.
25.
1
0 a,b,c,0 x,y,z ,a b c x y z 1
2
⎛⎞
<≤≤++=++=
⎜⎟
⎝⎠
,
ax by cz 8abc
+
+≥

.
Solution.
Without loss of generality, we can assume that
abc


.
We have,
()() ()

≤+ =− ⇒ ≤ − ≤
22 2
1c
4ab a b 1 c 8abc 2c 1 c
2
.
() ()
11111ab 1c
0 x, y, z cz c x c y a x b y ax by ax by
222222 2
+−
⎛⎞⎛⎞⎛⎞⎛⎞
≤ ≤⇒= −+ −≥ −+ −= − + = − +
⎜⎟⎜⎟⎜⎟⎜⎟
⎝⎠⎝⎠⎝⎠⎝⎠
.
Thus,

++≥ ≥
1c

ax by cz 8abc
2
.
26.
()
33
x, y 0,x y 1≥+=,
()
+≤+
5
5
6
x2y 122.
Solution.
We set
5
5
1
, 2 2
122
α= β= α
+
.
Applying the AM – GM Inequality we get
3
6335
6
5
x5
x5 6x x

6
+
α
+α≥ α⇒ ≤
α
,
3
335
6
5
6
y5
x5 6y 2y
3
+
β
+β≥ β⇒ ≤
β
.
Adding these two inequalities, we obtain
()
(
)
()
33
5
5
6
6
5

xy5
x2y 122
6
++α+β
+≤ =+
α
.
27.
3x 4y 2z
x, y,z 0, 2
x1 y1 z1
⎛⎞
>++=
⎜⎟
+++
⎝⎠
,
342
9
1
xyz
8

.
Solution.
Applying the AM – GM Inequality we get

=− = + + =
+++++
1 x 2x 4y 2z

1
x1 x1 x1 y1 z1


()()()
=+++++++≥
++++++++
+++
242
8
242
xxyyyyzz xyz
8
x1 x1 y1 y1 y1 y1 z1 z1
x1 y1 z1
.
Similarly,
()()()

+
+++
332
8
332
1yxz
8
1y
y1 x1 z1
and
()()()


+
+++
34
8
342
1xyz
8
1z
x1 y1 z1
.
Thus,
()()() ()()()
4
32
24 32 16 3 4 2
99
8
24 32 16 3 4 2
111 xyz xyz
88
1x 1y 1z
x1 y1 z1 x1 y1 z1
⎛⎞
⎛⎞ ⎛⎞
≥=
⎜⎟
⎜⎟ ⎜⎟
+++
⎝⎠ ⎝⎠

+++ +++
⎝⎠

or
342
9
1
xyz
8

.
28.
()
a,b,c 0> ,
()
333
333
111 3bccaab
abc
abc 2a b c
+
++
⎛⎞⎛ ⎞
++ + + ≥ + +
⎜⎟⎜ ⎟
⎝⎠⎝ ⎠
.
Solution.
We have,
()

()
(
)
(
)
333
2a b c aba b bcb c cac a++ ≥ ++ ++ + and
333
111 3
abcabc
++≥ .
Therefore,
()
333
333
111 3bccaab
abc
abc 2a b c
+
++
⎛⎞⎛ ⎞
++ ++ ≥ + +
⎜⎟⎜ ⎟
⎝⎠⎝ ⎠

29.
()
x ∈  ,
()
++ ≥

4
4
16cos x 3 768 2048cosx .
Solution.
Applying the AM – GM Inequality we get
()( )
(
)
+= ++++ ≥ + =
4
44
44 4
4
16cos x 3 16cos x 1 1 1 768 4 16cos x 768

443
4
4096 cos x 256 256 256 4 4096cos x.256 2048 cosx 2048cosx=+++≥ =≥.
30.
()
x ∈ 
,
()
()
++


+
8
4

4
2
1x 16x
1
17
8
1x
.
Solution.
If a, b are two real numbers, then
(
)
()
2
4
22
44
ab
ab
ab
28
+
+
+≥ ≥ .
Thus,
()
()
() ()
()
()

()
⎡⎤
++−
+
++
⎣⎦
=
≥=
+++
4
24
4
8
2
4
444
222
1x 2x
1x
1x 16x
1
8
1x 1x 81x
.
On the other hand,
()
() ()
4
28
4

2
1x 1x
1x
216
⎡⎤
++
+≥ ≥
⎢⎥
⎢⎥
⎣⎦
and
()()
()
4
44
2
22 4
1x 1x 2x 2x 1 x 2x 16x
⎡⎤
+=+−+ =−+ ≥
⎣⎦
.
Therefore,
()
()
++

+=
+
8

4
4
2
1x 16x
16 1 17
1x

31.
()
a,b,c 0>
,
22 2222 222
ab bc ca abc
3
ab bc ca abc
+++ ++
++≤
+++ ++
.
Solution.

22 2222 222
ab bc ca abc
3
ab bc ca abc
+
++ ++
++≤
+++ ++



()
()
⎡⎤
+++
⇔++ + + ≤ ++
⎢⎥
+++
⎣⎦
22 2222
222
ab bc ca
abc 3a b c
ab bc ca


()()
(
)
22 22 22
222
ca b bc a ab c
abc
ab ca bc
+++
⇔++≤++
+++


()

(
)
(
)
22 22 22
222
ca b bc a ab c
cba0
ab ca bc
+++
⇔− +− +− ≥
+++


() ()
(
)
(
)
(
) ()
ac c a bc c b ab b a bc b c ab a b ac a c
0
ab ab ca ca bc bc
−− −−−−
⇔+++++≥
++++ ++


()

()()
()
()()
()
()()
222
ac c a bc c b ab b a
0
abbc abac acbc
−−−
⇔++≥
++ ++ ++
.
32.
()
a,b,c 0,n ,n 2>∈ ≥ ,
n
nnn
abcn
n1
bc ca ab n1
++ > −
+++−
.
Solution.
Applying the AM – GM Inequality we get
()()
()
()( )


+
⎛⎞
−++++
⎜⎟
+− −++
⎝⎠
≤=⇒≥−
+
−++

n
n1
n
n
ab
n1 11 1
abn1 n1abc
c
cn c
n1
c n nc ab n1 abc
.
Similarly,
≥−
+− ++
n
n
bn b
n1
ca n1 abc

and
≥−
+
−++
n
n
an a
n1
bc n1 abc
.
Adding these three inequalities, we obtain
n
nnn
abcn
n1
bc ca ab n1
+
+≥ −
+++−
.
Equality holds if and only if
(
)( )
()()
()()
()( )
()
−+=



−+=⇒−++=++⇒=


−+=

n1ab c
3
n1ca b 2n1abc abc n !
2
n1bc a
.
Therefore,
n
nnn
abcn
n1
bc ca ab n1
+
+> −
+++−
.
33.
()
x, y, z 0, x y z 1, n ,n 2≥++=∈≥ ,
()
+
++≤
+
n
nnn

n1
n
xy yz zx
n1
.
Solution.
Without loss of generality, we can assume that
{
}
xmaxx,
y
,z=
.
Since
zx≤ , thus
nnn2n1
zx zx, zx zx

≤≤
.
On the other hand,


>⇒ ≥ ⇒ ≥
n1 1 n1 z
n1 z
n2 n 2
.
We have,


−−
++≤+ + + ≤+ ++ =
n2n1
nnn nn1 n n nn1
11 zxzx
xy yz zx xy x yz zx zx xy x yz
22 22


() ()
n1 n1 n
zn1xxxxzn1
x xzy x xzy z n .y z
2nnnnnn
−−

⎡+−⎤
⎛⎞ ⎛⎞ ⎛⎞
=++≤++ ≤ +
⎜⎟ ⎜⎟ ⎜⎟


⎝⎠ ⎝⎠ ⎝⎠




()
()
()

()
n1
n1
n
nn
n1 n1
xxz n1
n1 y z
xyz
n
nn n
nn.
n1
n1 n1
+
+
+
+
+−
⎡⎤
−+ ++
⎢⎥
++
≤==
⎢⎥
+
++
⎢⎥
⎣⎦
.

34.
()
x, y,z 0> ,
( )()()()
444
3
16x
y
zx
y
z3x
yy
zzx++ ≤ + + +
.
Solution.
Applying the AM – GM Inequality we get
()()()()()()
+++=+++++++++
111
xyyzzx xyzxy xyzxy xyzxy
333


()()()
+
++ + ++ + ++ + + ≥
22
111
yz x y z yz x y z yz x y z xz zx
333



()( ) ()( )
++ ++
≥=
66 33
8
4
6
xyz xyz xyz xyz
88
327
.
Thus,
( )()()()
444
3
16x
y
zx
y
z3x
yy
zzx++ ≤ + + +
.
35.
x, y,z ,
62
⎛ππ⎞
⎡⎤


⎜⎟
⎢⎥
⎣⎦
⎝⎠
,
2
sin x siny siny sinz sinz sinx 1
1
sinz sin x sin y
2
−−−
⎛⎞
++ ≤−
⎜⎟
⎝⎠
.
Solution.
We set
a sin x, b sin y, c sin z=== and observe that
1
a, b, c ,1
2








.
The inequality is equivalent to
(
)
(
)
(
)
22
abbcca
ab bc ca 1 1
11
cab abc
22
−−−
−−−
⎛⎞ ⎛⎞
++ ≤− ⇔ ≤−
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠
.
Without loss of generality, we can assume that
1
abc1
2

≤≤≤.
We set
ab
u, v

cc
== and observe that
1
uv1
2

≤≤.
We will prove that
()
(
)
(
)
2
vu1u1v
1
1
uv
2
−−−
⎛⎞
≤−
⎜⎟
⎝⎠
.
We have
()()()
()
2
11

v11v
vu1u1v
111 1 1
22
1v 12v. 1
1
uv 2 2v 2 2v
2
v
2
⎛⎞⎛⎞
−−−
⎜⎟⎜⎟
−−−
⎛⎞
⎝⎠⎝⎠
≤ =+−− ≤+− = −
⎜⎟
⎝⎠
.
36.
()
(
)
()
x, y, z, t , x y z t xy 88 0∈++++=
,
+++ ≥
222 2
x 9y 6z 24t 352 .

Solution.
Since
()()
xyzt xy880++++=, thus
(
)
(
)
4 x y z t 4xy 352 0
+
++ + =.
We have
(
)
(
)
+++ ++ ++ =+++ +++++ =
222 2 222 2
x9
y
6z 24t 4 x
y
zt 4x
y
x9
y
6z 24t 4xz 4xt 4
y
z4
y

t4x
y


()()
=+ +++ ++ + − ++− + +− + =
2
2222222
x 4x z y t 4 z y t 4y 4yz z z 8zt 16t y 4yt 4t

()()()()
2222
x2z
y
t2
y
zz4t
y
2t 0
⎡⎤
=+ ++ + − +− +− ≥
⎣⎦
.
Therefore,
+++ ≥
222 2
x 9y 6z 24t 352 .

37.
()

x, y,z 0,xyz 1>=,
+
+≥
++ ++ ++
222
33 3
xyz
3
xyyz yzzx zxxy
.
Solution.
We set
=++
++ ++ ++
222
33 3
xyz
A
x
yy
z
y
zzx zxx
y
.
We have
=++=++
++ ++ ++ ++ ++ ++
333333
232323222222

xyzxyz
A
xyzyzxyzyzxyzxzxyzxyxyyzyz zxzx
.
Applying the Cauchy – Buniakowski Inequality we get
()
(
)
(
)
(
)
2
222222222
A. x x xy y y y yz z z z xz x x y z
⎡⎤
++ + ++ + ++ ≥ ++
⎣⎦


()
()
(
)
2
222 222
Ax y z x y z x y z⇔++ ++≥++.
Thus,
++ ++
≥≥≥=

++
222
3
3xyz
xyz xyz
A3
xyz 3 3
.
38.
()
x, y,z 0,xyz 1>=,
+
+≤
++ ++ ++
22 22 22
22 7 7 22 7 7 22 7 7
xy yz zx
1
xy x y yz y z zx z x
.
Solution.
If x, y are positive real numbers, then
(
)
77 33
x
y
x
y
x

y
+
≥+
.
Thus,
() () () ()
22 22
22 7 7 22 33
xy xy 1 1 z z
x
y
x
y
x
y
x
y
x
y
1x
y
x
y
x
y
zx
y
x
y
x

y
zx
y
zx
y
z
≤====
++ + + ++ ++ ++ ++
.
Similarly,

++ ++
22
22 7 7
yz x
yz y z x y z
and

+
+++
22
22 7 7
zx y
zx z x x y z
.
Adding these three inequalities, we obtain
++
++≤=
++ ++ ++ ++
22 22 22

22 7 7 22 7 7 22 7 7
xy yz zx x y z
1
xy x y yz y z zx z x x y z
.
39.
()
a,b,c 0,a b c 1>++=,
++≤+
+++
ababc33
1
abc bca cab 4
.
Solution.
We set
ababc
T
abc bca cab
=++
+
++
.
We have
ab
ababc11
c
T
bc ca ab
abc bcacab

111
abc
=++=++
+++
+++
.
We set
==<<π
22
bc A ca B
tan , tan , 0 A, B
a2b2
. Since
ab ca bc ab ca bc
1abc . . .
cb ac ba
=++= + +

thus,

+
⎛⎞
==
⎜⎟
⎝⎠
+
AB
1tan tan
ab A B
22

cot g
AB
c2
tan tan
22
.
Therefore,
AB
22

<
and
()()
()
ab C
tg , C A B 0,
c2
=
=π− + ∈ π .
We obtain
()
=++=++=+++
+++
22
222
C
tan
11 ABsinC1
2
T cos cos 1 cosA cosB sinC

ABC
2222
1tan 1tan 1tan
222
.
On the other hand,
CC
AB AB
33
cosA cosB sin C sin 2cos .cos 2sin .cos
322 22
ππ
+−
π+−
+++= +


CABC
AB
33
2 cos 2.cos 4cos 4 cos 2 3
22 4 6
π
π
−++−

≤+ ≤ ==
.
Thus,
1333

T1 2.3 1
224
⎛⎞
≤+ − =+
⎜⎟
⎜⎟
⎝⎠
.
40.
()
x, y, z 0, x y z 2007>++= ,
++≥
20 20 20
9
11 11 11
xyz
3.669
yzx
.
Solution.
Applying the AM – GM Inequality we get
+ + = +++ ++ + + + ≥ =


20 20 20
11 8
20
11 8 11 8 11 8
8
11

xx x
11y 8.669 y y y 669 669 669 20 .y .669 20x
y 669 y 669 y .669
.
Similarly,
++ ≥
20
11 8
y
11z 8.669 20y
z.669
and
++ ≥
20
11 8
z
11x 8.669 20z
x .669
.
Adding these three inequalities, we obtain
()
20 20 20
89
11 11 11
xyz
9 x y z 3.8.669 .669 3.669
yzx
++≥ ++− =⎡⎤
⎣⎦


41.
()
a,b,c 0> ,
33 3 3 33
222
5b a 5c b 5a c
abc
ab 3b bc 3c ca 3a
−−−
+
+≤++
+++
.
Solution.
Since
()
33
ababab+≥ +
, thus
(
)
(
)
(
)
(
)
33 3 2 2
a5b abab6b baab6b ba3ba2b−≥ +−= +− =+ −



()
(
)
⇒−≤+ −
33 2
5b a ab3b 2ba



⇒≤−
+
33
2
5b a
2b a
ab 3b
.
Similarly,



+
33
2
5c b
2c b
bc 3c
and




+
33
2
5a c
2a c
ca 3a
.
Adding these three inequalities, we obtain
33 3 3 33
222
5b a 5c b 5a c
abc
ab 3b bc 3c ca 3a
−−−
+
+≤++
+++
.
42.
()
(
)
()
>∈+++=
22 22
a,b 0,x,y,z,t ,a x y b z t 1 ,
()()
+

++≤
ab
xzyt
2ab
.
Solution.
We have
()()
22 22
22 22
xzyt 1
ax y bz t 1
babaab
++ +=⇔+++=
.
Applying the Cauchy – Buniakowski Inequality we get
() ()
⎛⎞
++≥+
⎜⎟
⎝⎠
22
2
xz
ba xz
ba
and
() ()
⎛⎞
+

+≥+
⎜⎟
⎝⎠
22
2
yt
ba yt
ba
.
Adding these two inequalities, we obtain
()()()
2222
22
xzyt ba
xz yt ba
baba ab
⎛⎞
+
+++≤+ +++ =
⎜⎟
⎝⎠

()()
()()
+++
+
⇒+ +≤ ≤
22
xz yt
ab

xzyt
22ab

43.
()
333 222
x, y,z 1,x y z x y z>− + + ≥ + + ,
555 222
xyzxyz
+
+≥++.
Solution.
Since x1>− , thus
()( )
− + ≥⇔ − +≥⇔ ≥ −
2
3532
x1 x2 0 x 3x2 0 x 3x 2x.
Similarly,
≥−
532
y3y2y and ≥−
532
z3z2z.
Adding these three inequalities, we obtain
(
)
(
)
(

)
(
)
(
)
5 55 3 33 2 22 333 3 33 2 22 333
xyz3xyz 2xyz xyz 2xyz xyz xyz
⎡⎤
++≥ ++− ++=+++ ++−++ ≥++
⎣⎦
.
44.
()
,, ,sin sin sin 2αβγ∈ α+ β+ γ≥
,
cos cos cos 5α+ β+ γ ≤ .
Solution.
Applying the Cauchy – Buniakowski Inequality we get
(
)
222 222
cos cos cos 3. cos cos cos 3. 3 sin sin sinα+ β+ γ ≤ α+ β+ γ = − α+ β+ γ


()
2
sin sin sin
4
3. 3 3. 3 5
33

α+ β+ γ
≤− ≤−=
.
45.
()
>++=a, b, c 0, a b c 6 ,
+++++≥
+++
222
111317
abc
bc ca ab 2
.
Solution.
First solution.
Applying the Cauchy – Buniakowski Inequality we get
⎛⎞
⎛⎞
⎜⎟
+=+=++++≥ ++++ = +
⎜⎟
⎜⎟
++ +
++
⎝⎠
⎜⎟
⎝⎠


2

2
2222
2
16
16
116a 1aa a 1 1aa a 1 1 1
a 4a
b c 16 b c 16 16 16 b c 17 4 4 4 17
bc bc
.
2
11 1
a4a
bc
17 b c
⎛⎞
⇒+ ≥ +
⎜⎟
+
+
⎝⎠
.
Similarly,
⎛⎞
⇒+ ≥ +
⎜⎟
+
+
⎝⎠
2

11 1
b4b
ca
17 c a
and
⎛⎞
+≥ +
⎜⎟
+
+
⎝⎠
2
11 1
c4c
ab
17 a b
.
Adding these three inequalities, we obtain
()


⎛⎞
+++++≥ +++ + + ≥


⎜⎟
+++
+++
⎝⎠



222
1111 111
abc 4abc
bc ca ab
17 a b b c c a


()()()
()()()
⎛⎞
⎛⎞
⎜⎟
⎜⎟
⎜⎟
≥+ ≥+ =
⎜⎟
⎜⎟
+++++
⎜⎟
+++
⎜⎟
⎝⎠
⎝⎠
3
131 3317
24 24
2
17 17
ab bc ca

abbcca
3
.
Second solution.
Applying the Minkowski Inequality and the AM – GM Inequality we get
()
⎛⎞
+++++≥+++ + + ≥
⎜⎟
+++
+++
⎝⎠
2
2
222
111 111
abc abc
bc ca ab
ab bc ca

()()()
()()()
2
2
3
33317
36 36
2
ab bc ca
abbcca

3
⎛⎞
⎛⎞
⎜⎟
⎜⎟
⎜⎟
≥+ ≥+ =
⎜⎟
⎜⎟
+++++
⎜⎟
+++
⎜⎟
⎝⎠
⎝⎠
.
46.
()
2 2 22 22 222
x, y, z , x 2y 2x z y z 3x y z 9∈++ ++ =
,
≥−xyz 1.
Solution.
Applying the AM – GM Inequality we get
22222222222222222222 121212
9
9xyyxzxzxzyzxyzxyzxyz9xyz=+++++++ + + ≥ .
Thus,
≥⇒≥−1xyz xyz 1
47.

()
x, y,z,t 0,xyzt 1>=,
()()()()
+++ ≥
++ ++ ++ + +
3333
111 14
xyzztty yxzzttx zxttyyx txyyzzx 3
.
Solution.
We set
1111
a , b , c , d
xyzt
====
and observe that abcd 1
=
. The inequality can rewrite
+
++≥
++ ++ ++ ++
2222
abcd4
bcd cda dababc 3
.
Applying the Cauchy – Buniakowski Inequality we get
()
()
+++
+++

+++≥ = ≥ =
++ ++ ++ ++ +++
2
2222
4
abcd
abcd abcd4abcd4
bcd cdadababc 3abcd 3 3 3
.
48.
()
+
∈>+++≥
12 k 1 2 k
k,n ,a , a , , a 0,a a a k ,
++ +
+++

+++
nn n
12 k
n1 n1 n1
12 k
a a a
1
aa a
.
Solution.
If a is a positive real numbers then
()

(
)
nn1n
a1a10 a a a1
+
−−≥⇔−≥−.
Therefore,
()
(
)
(
)
n1 n1 n1 n n n
12 k 12 k 12 k
a a a a a a a a a k 0
++ +
+++ −+++≥+++−≥.
49.
()
a,b,c 0,abc a c b>++=,
−+≤
+++
222
22310
a1b1c13
.
Solution.
We have
ac
abc a c b ac 1

bb
+
+= ⇔ + + =
.
Since
a, b, c 0> , thus there exist
(
)
A, B, C 0,

π
such that
ABC++=π
and
===
A1 B C
a tan , tan , c tan
2b 2 2
.
Therefore,


−+=− + +≤ +≤+=
+++
22
222
223 C CAB1AB110
3sin 2sin cos 3 cos 3 3
a1b1c1 2 2 2 3 3 3 3
.

50.
()
∈+−−≤
22
x,y ,x y 2x 2y 0 ,
+
≤+2x y 10 3 .
Solution.
Applying the Cauchy – Buniakowski Inequality we get
()() ()()
+−= −+−≤ − +− ≤ =
22
2x y 3 2 x 1 y 1 5. x 1 y 1 5. 2 10 or +≤ +2x y 10 3 .
51.
3
0x,y,z1,xyz
2
⎛⎞
≤≤++=
⎜⎟
⎝⎠
,
222
5
xyz
4
+
+≤.
Solution.
It is easy to show that

()
1
x, y,z 1, ,0
2
⎛⎞
⎜⎟
⎝⎠
≺ and
(
)
2
ft t
=
is convex on
[
]
0,
+

.
Applying the Karamata Inequality we get
() () () () ()
1
fx fy fz f0 f f1
2
⎛⎞
++≤+ +
⎜⎟
⎝⎠
or

222
5
xyz
4
+
+≤.
52.
()
a,b,c 0>
,
ab bc ca c a b
2
cab abbcac
⎛⎞
+++
++≥ ++
⎜⎟
⎜⎟
+
++
⎝⎠
.
Solution.
If x, y are two positive real numbers, then
()
+≤ + +≥
+
11 4
xy2xy,
xyxy

.
Thus,
ab bc ca 1 a b 1 b c 1 c c
cab
2c c 2a a 2b b
⎛⎞⎛⎞⎛⎞
+++
++≥+++++
⎜⎟⎜⎟⎜⎟
⎜⎟⎜⎟⎜⎟
⎝⎠⎝⎠⎝⎠


a1 1 b1 1 c1 1 22a 22b 22c
2b c 2a c 2a b bc ac ab
⎛⎞⎛⎞⎛⎞
=+++++≥++
⎜⎟⎜⎟⎜⎟
+++
⎝⎠⎝⎠⎝⎠


() () ()
22a 22b 22c a b c
2
bc ac ab
2b c 2a c 2a b
⎛⎞
≥++=++
⎜⎟

⎜⎟
+++
+++
⎝⎠
.
53.
()
a,b,c 0,ab bc ca 1>++=
,
10 3
abcabc
9
+++ ≥ .
Solution.
We have
()( )
2
abc 3abbcca 3 abc 3++ ≥ + + =⇒++≥ .
Applying the AM – GM Inequality we get
()()()
3
3
abc 3
1a1b1c 1 1
33
⎛⎞
⎡++⎤
⎛⎞
−−−≤− ≤−
⎜⎟

⎜⎟
⎢⎥
⎜⎟
⎝⎠
⎣⎦
⎝⎠


⎛⎞
⇔+ + + −−−− ≤ −
⎜⎟
⎜⎟
⎝⎠
3
3
1abbccaabcabc 1
3


10 3
abcabc
9
⇔+++ ≥ .
54.
()
12 n
0 a , a , , a 1, n 2≤≤≥,

×