Tải bản đầy đủ (.doc) (63 trang)

Đề cương ôn thi vào 10 môn toán năm học 2011-2012

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.53 MB, 63 trang )

§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång


 !""#

( )

 
  
 
    
 
   
  
     
A B A A B B
A B A A B B
A B A B A B
A B A A B A B B
+ = + +
− = − +
− = + −
+ = + + +
    
   
     
    
A B A A B A B B
A B A B A A B B
− = − + +
+ = + − +


   
    A B A B A A B B− = − + +
 


 !"
#$%$&
!'"$&"()!*+!'"
1. Điều kiện để căn thức có nghĩa

A
,$-≥.
2. Các công thức biến đổi căn thức
 

A A=
/



<−



AA
AA
 
   AB A B A B= ≥ ≥
 
  

A A
A B
B
B
= ≥ >
 

 A B A B B= ≥
 

  A B A B A B= ≥ ≥

 

  A B A B A B= − < ≥

 

  
A
AB AB B
B B
= ≥ ≠
 
 
A A B
B
B
B
= >

 


 
  
C C A B
A A B
A B
A B
= ≥ ≠

±



 
   
C C A B
A B A B
A B
A B
= ≥ ≥ ≠

±

$%& '()*+,)-  /0

0
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
VÝ dô 1:123*$4


 
   
 
     
   
  
   
     
     
       
   
A
B
C
D
E
F
= +
− +
= −
− + + −
+ −
= + +
+ −
= − + −
= + + +
+ − −
=


Ví dụ 2/
a
aa
+
+−−


 
*5  !"#
≥M
$  !%&'()*+$,
-%.%
5 /01
 2
( )
a
a
aa
a
aa
−=
+
−+
=
+
+−−






3456*%1 27
a
*5 /#















≥−
≥−
⇔≥−⇔≥







a

a
a
a
a
a
aM
345




≤≤
⇔≥



a
a
M
5 27
a
8345Max2

=⇔
a
VÝ dô 3!$

       
      
     

         
a
b
c
d
− + + =
+ − − =
+ + − =
 
+ − − = +
 
- /0)/+,1
Bài 1: 9%#:;$

6
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
<2




−+


++
+
Bài 2: 9%#:;$
=2

−−+


9>2
 +−+++
$2

−−−++
Ví dụ 49%#:;$
2








+
+




−+






















a
a
a
a
aa
a
a
aa

9 !%&'($,"#?
$ !%&'()*+$,
-%.%
 /01@@
2
( )
( )( ) ( )( )







+
+



+
−+








+−











a
a
a
a
aa
a
aa
aa
2


+

a

( )( )






−+
+−−+−


aa
aaa

2
( )( )







+
=









−+
+

a
a
aa
a
 3456*%1@@ 2



+a
9/#780


+

a
80






<
+
−−
⇔<−
+

a
a
a
 <−⇔ a
93 
 >+a
5
 >⇔>⇔ aa
3456*%:;<@6= 780
$/#"A%&'()*+




+a
)*+
+⇔ a
B+
a⇔
2
3456*%2 "A%&'()*+
Bài tập vận dụng
Bài 1: 9%#:;$

>
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
?/
C
C
C7
C
CC
C
+
+


+
−+

 5<

 9 !$&$%&'($,CD$?/


 5;!%<8


Bài 2: 9%#:;$
?/









+
+
+

−+
−+
5<
9 !$&$%&'(:5E$,"#<:5E
Bài 3: 9%#:;$
<2


















+
+−











<
9F%&'(<G%2H


$ !$&$%&'($,D$<?
Bài 4: 9%#:;$
<2




















+
+
C

CC
C


C
C
C
C
<
9FC"#<27
$ !!"#6*%!%%&'(CI$!
x
7<ICH
Bài 5: 9%#:;$
<2
















+

+

+
++
+
+
C5
5C
CC5
5
5C5
C

5C
C55
C
 !C5"#<$
9<
$ !%&'($,<6*%C2527

Bài 6: 9%#:;$
=
9 !C$%&'(:5E"#=4%&'(:5E

@
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
Bài 7: 9%#:;$
</


x
x x

+




x
x x
+
+ +



x
x
+

5<
*5;!%?8


6*%A

.BớiA

0C
Bài 8:9%#:;$
<2


C


CC
C
C
C

















++
+



<
9;!%'JK:?C? <I
$ !-LM$,<

Bài 9: ;!%%&'($,9%#:;$
<2
CC
C
CC
C
CC
C
++
+
+
++
+
+
++
0NOP:Q$6R9%KDSC
Bài 10:9%#:;$
=/









+













+






x
x
x
x
x
x
xx
6*%A:.BRA≠0
5=
*5 !%&'($,C"#=2
Bài 11: 9%#:;$
2







+

+

+
ab
ba
ab
ba









++
+
ab
abba





9F%&'($,6*%2



$ !%&'()*+$,
Bài 12: 9%#:;$
<2
C
C
C
CC
CC
CC



+
+

++

<
9 !-MM$,<
$ !C"#9%#:;$T2
<
C
4%&'()RDS:5E

=

§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
Bài 13: 9%#:;$
<2
C
C
CC
C
C
CC
CC
CCCC

+
−+



+


−+








 !C"#<$

9<
$3*%%&'(R$,C 9%#:;$<"A-MM6R !-MM"
Bài14:9%#:;$ 
?/








+

++









+

−+

x
xx

x
x
xx
x
 <
9  !%&'()*+$,<
Bài 15: 9%#:;$











 x
x
xx
A −−

+
+

=
 !"%U:G%V$,C"#=$
99%#:;$=
$-%.%OWX' YCG%=27

Bài 16:9%#:;$









++
+



+
=








xx
x
xxx
xx
A

=
9F%&'($,
A
G%

+=
x
Bài 17:9%#:;$

xxxxxx
x
A
−++
+
=




 9%#:;$=
9 %=)RR!DS$,9%KC6Z"[(R!DS=
Bài 18: 9%#:;$

    
=2 
7 C    x x x x
   
+ − +
 ÷  ÷
+ − + −

   

D
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
 9%#:;$=
9 F%&'($,=G%C2
  +
$ 3*%%&'(R$,C ="A%&'(B+
Bài 19: 9%#:;$
2
  


a a a a a
a
a a a a
 
− + +

 ÷
 ÷

− +
 
3*%%&'(R$, C&$"(
9
$3*%%&'(:5ER$, $%&'(:5E
Bài 20:9%#:;$
<2
    

    
a a
a a a a a
+ − − +
+ +
− + − + − + +
9%#:;$<
9;!%'J9%#:;$<):N\WX6*%!%
Bài 21:E9%#:;
-/















+
+




+
a
aa
a
a
a
a 





5=
*5F=6*%/9@

59



5


Bài 22: 9%#:;$
<2
( )
   
 I 

 
a a a

a
a a
+ − −
− + ≠

− +
9%#:;$<
9F%&'($,<G%=2
Bài 23: 9%#:;$
<2
xxx
x
xx
x
+
+
+++
+−
+
−+−
−+






<
9]D&<6*%




Bài 24: 9%#:;$

F
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
<2






+−
+
+

+
xxxxx
<
9;!%8<8
>R%9%#:;$
<2
a
a
a
a
aa
a


+


+

+−







<
92^ <?
$3*%%&'(:5ER$, <:5E
__
_
$2345
670891 :;./"< =& >
 !""#
 `Aab:&



=+
=+
ccc cybxa
cbyax
 ]S$&$%V!$,V

HMK:
⇔≠
cc b
b
a
a
dV$%V!\:5+
HMK:
⇔≠=
ccc c
c
b
b
a
a
dV6N%V!
HMK:
⇔==
ccc c
c
b
b
a
a
dV$6NDS%V!
 ?"08910?01@70891 :;
1. Phương pháp thế:
7e!QOWX' $,V9%#:(!Qf
$gAfCYfG%
759%#:;$$,C6ROWX' $h)A%"# !5

7556e !"Wi$6R9%#:;$$,C"# !C
0LM%V!$,V)R$jO%&'(C56e !"Wi$
3F\P-%.%$&$VOWX' D:




=+
=+


yx
yx



eOWX' $C2k5_

G
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
5C2k56ROWX' "Wi$
75H52
k5H52

52
5526ROWX' _"Wi$C2
345%V!$,V)R




=
=


y
x
9



=−
=+


yx
yx



eOWX' $52kC_
552kC6ROWX' "Wi$
CkkC2
C7HC2
C2
=⇒ x

5C26R_"Wi$52k
=⇒ y
345%V!$,V)R




=
=


y
x
2. Phương pháp cộng :
7>%K"a%$&$VDS$,$l!QfD$$%&'(:5V"S%9J:
7Qj$'ee6K$,V"#Gm"%!Qf
7-%.%OWX'  !f$WGm
75%&'(6R!QOWX' $,V"# !f$h)A%
0L%V!$,V)R$jO%&'(C56e !"Wi$
3F\P-%.%$&$VOWX' D:




−=+−
=+


yx
yx



Qe6K$,V"Wi$52
=⇒ y


5526ROWX' "Wi$
CH2
=⇒ x
345%V!$,V)RC52
9



=+
=+−


yx
yx



'ee6K$,V"Wi$7C2
−=⇒ x

5C276ROWX' "Wi$
7H52

52
=⇒ y
345%V!$,VOWX' )R




=
−=


y
x
3. Chú ý :
3*%VOWX' 



=+
=+
ccc cybxa
cbyax

HMK:2nj$929nEDm\POoO$Qe6K

;
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
HMK:27nj$9279nEDm\POoO'e
HMK:$&$VDSn99n9Jj$7 E\lOWXO&OK
HMK:$&$VDSn99nG&$
±
6RGN$%&'(:5V"S%9J: "% !
>MMnj$>MM99n
p3*%9R%4O\A !"%U:G%V$,!DS"#%V!$,V.!q!Q"%U:
G%V
α
R")R!WD:

H%!DSWDS"q9%K
H-%.%VOWX'  !%V!C5M%V!C5OP:Q$6R!DS
H-%.%$&$OWX' >+OWX' $,9%#:;$$;!DS
3F\P-%.%$&$VOWX' D:




=−
−=+


yx
yx



-%.%
MrOWX' 6*%rOWX' 6*%"Wi$



=−
−=+


yx
yx
Qe6K$,V"Wi$C2
=⇒ x

5C26ROWX' "Wi$
H527
 −=⇒−=⇒ yy
345%V!$,VOWX' )R



−=
=


y
x
9



−=−
−=−


yx
yx



MrOWX' 6*%"Wi$




−=−
−=−


yx
yx
'ee6K$,V"Wi$7C2
−=⇒ x
5C276ROWX' "Wi$
7k527
752
−=⇒ y
345%V!$,VOWX' )RC5277
VÝ dô4: VOWX' 



=−
=−


ymx
yx



 -%.%V6*%!27
9  !!"#V$%V!\WX

-%.%


0.
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
3*%!27$V



=−−
=−


yx
yx



e$C25_56R"Wi$
75k52


−=⇒ y
56R_


−=⇒ x
345%V!$,V)R






−=
−=




y
x
9e$C25_56ROWX' "Wi$
 !5k52




=⇒=−⇔
m
ymy
56R_"Wi$



=
m
x
/#V$%V!






>

>





>
>








m
m
y
x


!kI

!I



3456*%!I


 VOWX' $%V!\WX
H=EIJK

x y
mx y m
− =


+ =



LK!$JMN!4
5OI $I!A/6</0
*5OI !'$I!P
5 OI BQ#$I!
5 OIBQ$I!
R$S$
 LAB*$JMTEBEI
9 OI !'$I!P,$
 


m
m

≠ ⇔ ≠ −

$ OI BQ#$I!,$
  
m m

= = ⇔
UQ $JMEN!4I
 BQ#$I!
\ OIBQ$I!,$
  


m
m m

= ≠ ⇔ = −
H>EIJK
   
 
m x y m
x m y m
− + = −


+ − =


5R$S$IB$!/0

00
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång

*5LK!$JMN!4I $I!PV!TA/>

R$S$
5 L!/0BEIB$S$
*5 E$!!'#T*$W($S$IK!$I!ABXE!#!
H
 m m≠ ≠
I $I!
  
  
m m
x y
m m
− −
= =
LXE&*$ A/>
 
 
m
m
m

⇒ = ⇔ =
9LV!T,5
HYB$!/@KI $I!PV!T,A/>
HDEI

  
mx y
x my m

− =


+ = ≠



5 R$S$IB$!/

*5 LK!!4I !'$I!PV!T,A80

R$S$
5 L$JMN!BEIB$S$
*5 E$!!'#T*$W($S$IJKK!$I!XE!
OI $I!
 
   
  
 
m m
x y
m m
+ −
= =
+ +
LXE&*$ A80
 
 
    
 

   

 
m m m
m m
⇔ − + > ⇔ − >
+ −
⇔ > <
%& '(  /0
Bài 1: -%.%$&$VOWX' D:




=−
=+


yx
yx
9



−=+
=−


yx
yx

$



−=−
−=+


yx
yx

Bài 2: VOWX' 



=−
=+


yx
ayx
 -%.%VOWX' 6*%2
9 -%.%V6*%9+Gs
$  !"#V$%V!\WX
Bài 3:VOWX' 



=+−
=−



ayx
yx
 -%.%VOWX' 6*%2
9  !%&'($,"#V$%V!r!\:5+
Bài 4: VOWX' 

06
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång



=+−
=−+


yxm
ymx
 -%.%6R9%V):4VOWX' 
9  !!"#V$!Q%V!D$C?5
Bài 5:VOWX' 



=+
=−+
ayax
yxa 
 -%.%V6*%2

9 t&$"(%&'($,"#V$%V!CH5I
Bài 6:VOWX' 



=−−
=−+


yxm
ymx
 -%.%6R9%V):4VOWX' 
9  !!"#V$!Q%V!CH5I
Bài 7:VOWX' 



=+−
−=+


yxm
mymx
 -%.%V6*%!29 !!"#V$%V!r!
Bài 8:VOWX' 



+++−
=−++



ybaxba
ybaxba
 -%.%V6*%26R92
9  !+$.$&$$jO%&'(:5E$,6R9"#V$%V!:5E
Bài 9: VOWX' 



+=+
−=+


aayx
ayax
 -%.%6R9%V):4VOWX' 'E
9  !%&'(:5ED$%V!$,V$$JM:5E
Bài 10:VOWX' 



+=+
+=+
abyax
bayx


t&$"(9"#V$%V!C2527
A891 :;

6891 :;./"< =& >'(
6891 :;./"B=& >'(
C !""#
1. Dạng tổng quát: ax
2
+ bx + c = 0 @
'"C)Rf9$)R$&$VDS
3F\P'$&$OWX' D:OWX' R)ROWX' 94$%!QfDS

0>
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
C

HCH2 9C

k2
$C

kCH2 \Ck2
/&O&<WX' 9$)R$&$OWX' 94$%
2. Công thức nghiệm và công thức nghiệm thu gọn:
N;$%V!
3*%OWX' C

H9CH$2@
u29

k$
 Hu?OWX' 6N%V!
Hu2<WX' $%V!GoOC


2C

2
a
b


HuIOWX' $%%V!Or9%V
a
b
x


∆+−
=
a
b
x


∆−−
=
9N;$%V!:
 3*%OWX' C

H9CH$2@
MK:9$v/j929n$
un29n


k$
 Hun?OWX' 6N%V!
Hun2<WX' $%V!GoOC

2C

2
a
bc−
HunIOWX' $%%V!Or9%V
a
b
x
cc

∆+−
=
a
b
x
cc

∆−−
=
D*+,-%.%$&$OWX' D:
 C

kCH2
u27


k2k27u?
<WX' 6N%V!
9 C

7CH2
u27

72k2
<WX' $%V!GoOC

2C

2




=
$ 7C

HCH2
u2

k72H2
=∆

<WX' $%%V!Or9%V






−=

+−
=x





=

−−
=x
3. Hệ thức vi ét – Áp dụng:

0@
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
Định lý vi ét:
MK:OWX' C

H9CH$2@$%%V!C

C

 
C

HC


2
a
b−
C

C

2
a
c
9wO\PFf!%V!$,OWX' 94$%
OWX' C

H9CH$2@
HMK:H9H$2 C

2C

2
a
c
HMK:k9H$2 C

27C

2
a
c−
HMK:$%DSC


C

D$
C

HC

2]C

C

2<6*%<

k]1
 C

C

)R%V!$,OWX' t

k]tH<2
D*+, !%DS9%Ka$,$9J6RF$$,$9J
7-%.%7
-%C

C

)R%DS$x !$C


HC

2
C

C

2
D/EC

C

O.%)R%V!$,OWX' t

ktH2
u27

72k2
C

2H2C

272
345%DS$x !)R6R
9L4O!QOWX' 94$%$%%V!)R76R
-%.%
$C

HC


27H2
C

C

2727
3 

k71
345C

C

)R%V!$,OWX' C

kCk2
%FGHIDJ345IK
1. Bài tập về số nghiệm của phương trùnh bậc hai:
3*%OWX' C

H9CH$2@
u29

k$
H<WX' $%%V!Or9%VuIunI
H<WX' $%V!GoOu2un2
H<WX' 6N%V! u?un?
 LM891 :;C

H9CH$2$%V!




=∆≠
≠=


a
ba

0=
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
Ví dụ 1: !$&$%&'($,!"#$&$OWX' D:$%%V!Or9%V
 C

7!CH!

k2
9 C

HCk!2
N@N
$u27!

k!

k2!

k!


H
u2!

HI6*%!%!
345OWX' ):N$%%V!Or9%V6*%!%!
9$u2

k7!2H!
u2H!I!I7
3456*%!I7 OWX' $%%V!Or9%V
Ví dụ 2 !$&$%&'($,!"#$&$OWX' D:$%V!GoO
 !HC

k!7Ck!H2
9 C

kCH!2
@
/0"#OWX' 
!HC

k!7Ck!H2)ROWX' 94$% !H@!@7
$
un2!7

H!H!7
2!

7!HH!


k!H!k
un2!

H!k2!

H!7
un2!

H!72
!2j$!27.!q
3456*%!2j$!27 OWX' $%V!GoO
9$
un2

k!2k!
un2k!2
!2
3456*%!2 OWX' $%V!GoO
Ví dụ 3 !$&$%&'($,!"#$&$OWX' D:6N%V!
 C

kCH!2
9 C

H!CH2
@
C

kCH!2
/#OWX' 6N%V!

<∆
$
mc
−=∆



c >⇒<−⇔<∆ mm
3456*%!I


 OWX' 6N%V!

0D
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
9C

H!CH2
/#OWX' 6N%V!
<∆
$


−=−=∆ mm


<<−⇒<⇔<∆ mm
3456*% 7
 << m
 OWX' 6N%V!

Ví dụ 4: !$&$%&'($,!"#OWX' D:$%V!\:5+
!7C

k!7CH!k2
-%.%
<WX' $%V!\:5+









=∆





=
c



a
b
a











=−−−−
≠−



=⇔
≠−
=−






mmm
m
m
m
m

_

-%.%OWX' _"Wi$!

7!Hk!

H!72

=⇒
m
D/E6*%!2j$!2 OWX' $%V!\:5+
2. Bài tập về dấu các nghiệm của phương trình bậc hai:
OWX' C

H9CH$2@
/%U:G%V"#OWX' $%%V!$l\+:






>
≥∆


a
c
9/%U:G%V"#OWX' $%%V!$l\+:\WX










>−
>
≥∆



a
b
a
c
$/%U:G%V"#OWX' $%%V!$l\+:r!










<

>

≥∆



a
b
a
c
\/%U:G%V"#OWX' $%%V!'&%\+:
$?

0F
Đề cơng ôn tập vào 10 Tổ KHTN trờng THCS Đại Đồng
D*+,O?"P1? :P"B=Q"?"0891 :;'BR"SB17="T1+<R
C

kCH!k2
9 C

k!CH2
-%.%
C

kCH!k2
/#OWX' $%%V!$l\+:

















>


>
+

>








m
m
m
m

a
c
3456*%?!



OWX' $%%V!$l\+:
9/#OWX' $%%V!$l\+:















>


>







c

m
m
m
a
c
3. Bi tp: dng thnh lp mt h thc i xng gia cỏc nghim
OWX' C

H9CH$2
Cỏc h thc i xng vi hai nghim ca phng trỡnh bc hai thng gp
C


HC


9C


HC


$



xx
+
v v
Cỏch gii
Bớc 1: Tìm điều kiện để pt bậc 2 đã cho có nghiệm

x x
Bc2:Ap dụng hệ thức Vi-et tính tổng và tích 2 nghiệm





=

=+
a
c
xx
a
b
xx



Bc 3:%K"a%$&$V;$"S%C;R5WD:
C


HC



2C

HC



kC

C

C


HC


2C

HC



kC

C

C


HC








xx
xx
xx
+
=+
Bc 4:5a6RF$%%V!6R$&$9%#:;$"S%C;
D*+,OWX' C

H!CH2
-%C

C

)R$&$%V!$,OWX' dq5F
C


HC


9C



HC



-%.%
Y6%Y$C

HC

2!C

C

2

0G
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
RC


HC


2C

HC




kC

C

2!

7
9C


HC


2C

HC



kC

C

C

HC


2!


k!
4. Bài tập dạng tìm m để phương trình có hai nghiệm thoả mãn một hệ thức:
OWX' C

H9CH$2
H>W*$ !/0"#OWX' $%%V!
H>W*$ME:V;$6%Y





=

=+
a
c
xx
a
b
xx






H>W*$ME:V;$$,9R%&
H>W*$%.%V[!OWX' D:"56ROWX' $h)A%"# !!

3F\POWX' C

k!HCk!H2
t&$"(%&'($,!"#%V!C

C

$,OWX' .!qV;$C

HC

2

R$S$
L*$I



   
   
 
m m
m m m
m m
∆ = + − − +
∆ = + + + −
∆ = + +
dVOWX' $%V!G%

   m m∆ ≥ ⇔ + + ≥

 
  
   
m
m m
∆ = − =
⇒ = − + = − −

3456*%



−−≤
+−≥


m
m
 OWX' $%V!_
Y6%Y$C

HC

2!H
HC

C

2k!
Y9R%'C


HC

2
-%.%VOWX' 



=+
+=+




xx
mxx



MrOWX' 6*%"Wi$




=+
+=+





xx
mxx
'ee6K$,V"Wi$C

2k!56ROWX' "Wi$C

Hk!2
!HC

2!H
5C

2!H6RC

2k!6ROWX' "Wi$

0;
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
!Hk!2k!
!k!

Hk!2k!
!

k!2



=
=




m
m
.!q/0_
3456*%!2j$!2 OWX' $%%V!.!qC

HC

2
5.Bài tập dạng tìm một hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào tham số:
OWX' C

H9CH$2
&$%.%
H>W*$ !/0"#OWX' $%V!
≥∆
EC8.5
H>W*$L4O]<C

HC

2
a
b−
C

C


2
a
c
Y!DS!
H>W*$`lb:5y$$Nj$K"#Gm!
H>W*$5]2C

HC

<2C

C

"Wi$V;$$x !
3F\POWX' C

k!7CH!

k2
 !!QV;$%zC

C

GNOP:Q$6R!
-%.%
<WX' $%V!
c≥∆
$
c


≤⇔≥+−=−−−=∆ mmmm
wO\P6%Y$



−=
−=



mP
mS



e$!2




+
=⇔+
S
m
S
56R"Wi$
<2






−+=⇔−
+
SP
S
 ]

H]k<2
345V;$)%EV%z$&$%V!GNOP:Q$6R!)R
C

HC



HC

HC

kC

C

2
6. Bài tập dạng so sánh nghiệm của phương trình bậc hai với một số bất kì:
&$%.%
>W*$ !"%U:G%V"#OWX' $%V!
≥∆


>W*$wO\P6%YFC

HC

C

C

_
H3*%9R%& !!"#OWX' $%%V!I
α



>−−
>−+−





αα
αα
xx
xx
59%#:;$6%Y6RV"# !!
H3*%9R%& !!"#OWX' $%%V!?
α

6.

§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång




>−−
<−+−





αα
αα
xx
xx
59%#:;$6%Y6RV"# !!
H3*%9R%& !!"#OWX' $%%V!'"!Q%V!I
α
%V!
G%?
α


>−−⇒
αα
xx
59%#:;$6%Y6RV"# !!
Có thể sử dụng định lý về dấu của tam thức bậc hai:
MK:


 xxfa <<⇒<
αα
3F\P !$&$%&'($,!"#OWX' D:$%%V!)*X
C

7!CH2
7-%.%7
/#OWX' $%V!
c
≥∆
$
c

≥−=∆ m




−≤




m
m


3456*%




−≤



m
m
 OWX' $%V!
Y6%Y$C

HC

2!
C

C

2
/#OWX' $%%V!)*X




>−−
>−+−





xx
xx




>++−
>−+




xxxx
xx



<
>




>+−
>−






m
m
m
m
3456*%
 <≤ m
 OWX' $%%V!)*X
$%& '(  /0
Bài 1: !!"#OWX' $%%V!Or9%V$l\+:
Y C

kCH!2
{ C

k!CH!k2
Bài 2: Tìm các giá trị của m "#OWX' $%%V!'&%\+:
C

kCH!k2
9k!C

H!7Ck2
Bài 3: !$&$%&'($,!"#OWX' D:$%%V!Or9%V\WX
C

k!CH!k2
Bài 4: OWX' C

H!CH!


H!k2
  !!"#OWX' $%%V!Or9%V

60
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
9  !!"#OWX' 4C2)R%V!
Bài 5 :  !!"#OWX' k!C

H!7CH24C2)R%V!G%
" !%V!$h)A%^
Bài 6:OWX' C

k!CH!k2
 ;!%'JOWX' $%V!6*%!%!
9  !!"#OWX' $%%V!$l\+:0%"C&$"(\+:$&$%V!
Bài 7:OWX' C

k!HCH!2
 -%.%OWX' 6*%!27
9 OWX' $%V!6*%!%!
$ -%C

C

)R%%V!$,OWX'  !!"#C


HC



2
Bài 8:OWX' C

H!HCH!2
 OWX' ):N$%V! !$&$%V!"
9 3*%C

C

)R%%V!$,OWX'  !!"#C


HC


"A%&'(B
+
Bài 9t&$"(G"#OWX' C

HCHG2$%%V!C

C

.!q!Q'
$&$"%U:G%VD:"r5
C


HC



2 9C


kC


2
Bài 10: OWX' C

k!7CH!

k!2
  !!"#OWX' $%%V!'&%\+:
9  !!"#OWX' $"!Q%V!r!
$  !!"#OWX' $!Q%V!C2 !%V!$h)A%
\  !!"#OWX' $%%V!.!q
C


HC


2
Bài 11: OWX' C

HCH!2
t&$"%!"#OWX' C

C


.!qC

HC

2
Bài 12:OWX' C

H!kCH!72
 !!"#OWX' $%%V!Or9%VC

C

.!qV;$C

kC

2
9 !!"#OWX' $%%V!r!
$ !!QV;$%zC

C

GNOP:Q$6R!
Bài 13: t&$"(G"#"#OWX' D:$%V!C

C

.!qC


2C


C

HCHG29C

HGCH2
Bài 14:OWX' C

kCH!2
t&$"(!"#OWX' $%%V!C

C

.!qV;$C

HC

2
Bài 15:OWX' C

k!7Ck!H2
;BOWX' $%V!C27 !%V!$h)A%
9t&$"(!"#OWX' $%V!.!qC

kC

2
$ !!QV;$%z$&$%V!"Q$)AO6*%!

Bài 16: OWX' C

k!HCH!

H!H2
;!%'JOWX' ):N$%%V!Or9%V
9t&$"(!"#OWX' $!Q%V!9J !%V!$h)A%
$t&$"(!"#OWX' $%%V!.!q
7?C

?C

?

66
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
\t&$"(!"#OWX' $!Q%V!9J9 OWX%V!G%
Bài 17:OWX' C

k!7CH!H2
-%.%OWX' 6*%!27
9 !!QV;$%z%%V!GNOP:Q$6R!
Bài 18: OWX' C

k!HCH!

H!72
;!%'JOWX' ):N$%V!6*%!%!
9-%C


C

)R%%V!$,OWX'% !!D$
C

kC

C

kC

"A%&'(B+ !%&'(B++5
$ !!QV;$)%VV%z%%V!GNOP:Q$6R!
Bài 19: Cho OWX' C

H!HCH!72
 !!"#OWX' $%%V!C

C

.!qC

7C

2
9 !!"#9%#:;$=2C

kC




$%&'(B+
$ !V;$)%EV%z%%V!GNOP:Q$6R!
Bài 20OWX' !C

H!7CH!k2
 t&$"(!"#OWX' $%%V!'&%\+:
9 t&$"(!"#OWX' $%%V!'&%\+:6R%V!r!$%&'(:5V
"S%)*X
$  !!QV;$)%EV%z$&$%V!GNOP:Q$6R!
\  !%&'(B+$,9%#:;$C


HC



-$$&$OWX' 
C

HCH9$2
C

H9CH$2
'"9$

$
-%.DmC

C


)R$&$%V!$,OWX' 
C

C

)R$&$%V!$,OWX' 
dq56%K!QOWX' 94$%$%V!)RC

C


Bài 22: !$&$%&'($,!"#OWX' D:$%%V!Or9%VBX
C

kCH!72
Bài 23:OWX' C

kCH!H2
 !!"#OWX' $!Q%V!)*X%V!$h)A%BX
Bài 24: OWX' C

k!HCk!

H!k2
OWX' $%V!6*%!%%&'($,!
9 !!QV;$)%EV%z%%V!GNOP:Q$6R!
Bài 25:OWX' C

k!Ck!


k2
OWX' ):N$%V!6*%!%!
9 !!Q9%#:;$)%EV%z$&$%V!GNOP:Q$6R!
$ !$&$%&'($,!"#%%V!C

C

$,OWX' .!qV;$






−=+
x
x
x
x
UH%DHVW
 !""#

6>
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
6-='(./"< 
`Aab:&52CH9 @
F$+
H/[9%KK:I
HM($9%KK:?

/[(LR!Q"W|g$y'P$:A%"%#!$:"Q9J9$y'P$R
A%"%#!$R"Q9J
a
b−

]}WX%$,%"[(R!DS94$+
%R!DS52CH9\
52nCH9n\n
HMK:@n\$y\n
HMK:2n9@9n\~~\n
HMK:2n929n\•\n
HMK:n27\

\n
6-='(EXBY
$
ZB[\]
F$+
H3*%I7dR!DS"[9%KK:CI
7dR!DS($9%KK:C?
H3*%?7dR!DS"[9%KK:C?
7dR!DS($9%KK:CI
/[(LR!Q"W|$<'9)4'P$:)R'P$"S%C;%KOC$6*%
'P$RA%S$A"Q
HMJ!OF'E'P$RK:I
HMJ!OF\W*%'P$RK:?
]}WX%$,"[(R!DS94$+52CH9\6*%"[(R!DS52nC


<

HMK:\$y<A%%"%#!Or9%VOE'$E$4!N95B9?5
nC

2CH9$%%V!Or9%V
HMK:\%KOC$<OE'$E$4!N95B9?5nC

2CH9$
%V!GoO
HMK:\6R<GN$"%#!$:OE'$E$4!N95B9?5
nC

2CH96N%V!
6?"  ^?)_/00891 :;8`1 a1
1. Bài toán 1: Lập phương trình đường thẳng có hệ số góc k cho trước và đi qua điểm
M (x
0
; y
0
):
 &$%.%
7ME:\AOWX' "W|g52CH9
752G6RA"Q"%#!C

5

6ROWX' "W|g"# !9
<WX' "W|g$x)4O
3F\PL4OOWX' "W|g"%b:76RDD6*%"W|g52
C


6@
§Ò c¬ng «n tËp vµo 10 Tæ KHTN trêng THCS §¹i §ång
7-%.%7
-%.DmOWX' "W|g$x)4O$\A
52CH9


DD6*%"W|g52C2
/%b:7E$72H9927
345OWX' "W|g$x)4O)R52Ck
2. Bài toán 2: Lập phương trình đường thẳng đi qua hai điểm A(x
1
;y
1
)và B (x
2
; y
2
):
 &$%.%
HME:\AOWX' "W|g52CH9
H5A"Q"%#!=6R>6ROWX' "W|g%I



+=
+=
baxy
baxy



H-%.%VOWX'  !6R9
 <WX' "W|g$x)4O
3F\PL4OOWX' "W|."%b:=6R>77
7-%.%7
 -%.DmOWX' "W|g$x)4O$\A
52CH9
/%b:=E2H9
/%b:>77E727H9
 k2k
 22
526R927
345OWX' "W|g$x)4O)R52C7
3. Bài toán 3:
Lập phương trình đường thẳng có hệ số góc k và tiếp xúc với đường cong
y = a’x
2
<
 &$%.%
HME:\AOWX' "W|g52CH9
 a ≠
\
HY9R%'2G
H3 \%KOC$6*%<EOWX' 
nC

2GCH9$%V!GoOu2_
-%.%_ !9
56R\"Wi$OWX' "W|g$x)4O
3F\PL4OOWX' "W|gDD6*%"W|g52CH6R%KOC$

6*%O'9)527C


7-%.%k
-%.DmOWX' "W|g$x)4O$\A
52CH9DD6*%"W|g52CH2
%KOC$6*%O'9)527C

EOWX' 
7C

2CH9$%V!GoO

6=

×