Tải bản đầy đủ (.doc) (5 trang)

LỰA CHỌN và KHAI THÁC bài TOÁN TRONG TIẾT LUYỆN tập

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (93.27 KB, 5 trang )

Sáng kiến kinh nghiệm
Lựa chọn và khai thác bài toán trong tiết
luyện tập
I. Lý do chọn đề tài:
Tiết luyện tập trong môn toán nói chung và môn hình học nói riêng chiếm một thời
lợng không nhỏ trong bộ môn toán học.Thông qua tiết luyện tập học sinh đợc củng
cố, khắc sâu kiến thức cơ bản của bài học. Đặc biệt thông qua hệ thống bài tập học
sinh đợc phát triển kiến thức cao hơn (quan trọng trong việc định hớng, phát triển
kiến thức cho học sinh khá giỏi).Bởi vậy theo cá nhân tôi để giúp học sinh nắm vững
và phát triển kiến thức một cách tốt nhất bên cạnh việc đổi mới phơng pháp dạy học ,
cách tìm hiểu kiến thức học sinh qua bài mới thì việc lựa chọn và khai thác bài tập
trong một tiết luyện tập là điều quan trọngtrong việc dạy môn toán nói chung và môn
hình học nói riêng. Việc lựa chọn cần đảm bảo tính lôgíc, phát triển kiến thức cho
học sinh.
II. Nội dung:
Do điều kiện không cho phép tôi chỉ xin đa ra một hệ thống bài tập trong tiết luyện
tập của bài : Thể tích của hình chóp đều Môn hình học 8
Bài số 1:(Bài 50 vế a sgk):
Tính thể tích của hình chóp đều( Hình vẽ 136 sgk).
Biết OA = 12 cm ;BC = 6,5 cm.
Bài số 2:
Cho hình vẽ nh bài tập 1 .Biết OA = 8 cm ; AB = 10 cm. A
Tính thể tích của hình chóp A.BCDE
Bài số 3 (Bài 49 vế a sgk):
Cho hình vẽ nh trên. Gọi I là trung điểm của BC . Biết
AI = 10 cm ; BE = 6 cm . Tính diện tíh xung quanh của D C
Hình chóp đều A.BCDE
Bài số 4 (bài 50 vế b sgk)
ở hình vẽ trên nếu cắt hình chóp đều A.BCDE bằng một E B
mặt phẳng song song với mặt phẳng BCDE ta đợc hình
chóp cụt tứ giác đều B



C

D

E

.BCDE . Cho biết B

E

= 2 cm ;
BE = 4cm ; IK = 3,5 cm ( I, K lần lợt là trung điểm của
B

E

; BE ). Tính diện tích xung quanh của hình B

C

D

E

.BCDE
Khi tiến hành dạy có thể chia thành các hoạt động nh sau:
Hoạt động 1: Kiểm tra bài cũ
H : Hãy nêu công thức tính diện tích xung quanh , công thức tính thể tích của hình
chóp đều ? Nói rõ các đại lợng trong công thức?

HS : S
xq
= p.d trong đó p: nửa chu vi đáy , d : trung đoạn
V =
3
1
.s.h trong đó s : diện tích đáy ; h : chiều cao của hình chóp
Đặng Xuân Hoàng Tr ờng THCS Diễn Nguyên
Sáng kiến kinh nghiệm

Hoạt động 2 : Tổ chức luyện tập 1. Bài số 1:
GV : Cho học sinh đọc bài 50 vế a sgk A
GV : Đa hình vẽ A.BCDE:hình
H : Em nào cho biết giả thiết , kết luận của chóp đều
bài toán ? GT O A = 12 cm
H : Tính thể tích của hình chóp đều bằng D BC = 6,5 cm
cách nào? C
HS : trả lời KL V = ?
E B
G : áp dụng công thức tính thể tích
của hình chóp đều cho A.BCDE
ta có V =
3
1
.s.h
=
3
1
BC
2

.OA = 169( cm
3
)
ĐS : V = 169 cm
3
* Thêm : Sử dụng hình vẽ trên ta có thể 2. bài số 2:
có bài toán khác (bài số 2) A.BCDE :hình chóp đều
GV: Nêu đề bài số 2 GT OA = 8 cm ; AB = 10 cm
H: Nêu giả thiết kết luận của bài toán? KL V = ?
HS : Trình bày G :

AOB vuông tại O (vì OA là đờng
GV : (gợi ý ) OA là chiều cao ,AB là cạnh cao của hình chóp )
bên của hình chóp



AOB là tam giác áp dụng định lý Pitago ta có:
gì ? OB
2
= AB
2
OA
2
= 10
2
8
2
=36
H: trong tam giác vuông đó cạnh nào đã


OB = 6 cm
biết ?ta tín đợc cạnh còn lại không ? Ta lại cóDB = EC = 2.OB = 12 cm
áp dụng công thức tính diện tích
H: Để tính diện tích S
BCDE
ta áp dụng cách S
BCDD
=
2
1
DB.EC =
2
1
.12.12 = 72 (cm
2
)
nào ? Suy ra V =
3
1
.S.h =
3
1
.72.8 = 192 (cm
3
)
ĐS : V = 192( cm
2
)
* Thêm : cũng hình vẽ của bài toán trên 3. Bài số 3 :

có thể có bài toán số 3 A.BCDE : hình chóp đều
G V : Nêu bài toán số 3 GT BC =6 cm ; AI = 10 cm (IB = IA)
H :Nêu gt,kl của bài toán ? KL S
xq
= ?
H : Tính S
xq
= ?
HS : S
xq
= p.d G: áp dụng công thức tính diện tích
Thay số vào cho lết quả xung quanh của hình chóp ta có :
S
xq
= pd = 2BC.AI = 120 (cm
2
)
Đặng Xuân Hoàng Tr ờng THCS Diễn Nguyên
Sáng kiến kinh nghiệm
ĐS: S = 120 cm
2
* Thêm :1. Cũng nh hình vẽ trên . Cho biết
AB = 17 cm ; BE = 16 cm . Tính diện tích
xung quanh của hình chóp A.BCDE
(Bài 49 vế c )
2. Tính diện tích toàn phần của hìn chóp
A.BCDE ?
Đặt vấn đề : Nếu hình vẽ trên nếu cắt bởi
một mặt phẳng song song với mặt đáy


ta
đợc hình chóp cụt B

C

D

E

.BCDE

Bài số 4 :
Cho hình chóp cụt đều B

C

D

E

.BCDE. Biết
B

E

= 2 cm ; BE = 4 cm ; IK = 3,5 cm.Tính
diện tích xung quanh của hình chóp cụt
B

C


D

E

.BCDE
GV : Cho học sinh viết giả thiết kết luận
của bài toán.
H : Các em có nhận xét gì về các mặt bên
của hình chóp cụt tứ giác đều.
HS :
H : Diện tích mỗi mặt bằng bao nhiêu ?
H : Diện tích xung quanh ?
*Thêm : Gọi O,O

là giao điểm của các đ-
ờng chéo của hai mặt đáy(hình vẽ)
.TínhOO

* Thêm : Tính thể tích cuỷa hình chóp cụt
tứ giác đều đó ?
* Chú ý : Phần khai thác thêm của bài 4 có
thể không làm bài tập tại lớp mà giáo viên
chỉ hớng dẫn về nhà
Bài số 4:
D

C

E


o

B


D
C
o
E B
G: Bốn mặt bên của hình chóp cụt tứ giác
đều là các hình thang cân và có diện tích
bằng nhau.
Diện tích mỗi mặt là :
S =
2
).(
''
IKBEEB +
=
2
5,3).42( +
= 10,5
(cm
2
)
Diện tích xung quanh là : S
xq
= 4.S =
= 4.10,5 = 42 (cm

2
)
ĐS : 42 (cm
2
)
Đặng Xuân Hoàng Tr ờng THCS Diễn Nguyên
Sáng kiến kinh nghiệm
III. Kết luận :
Qua việc áp dụng cách lựa chọn và khai thác bài toán trog tiết luyện tập mà tôi
giảng dạy tại trờng tôi thấy :
* Về phía giáo viên: cần có sự chuẩn bị chu đáo tìm tòi sáng tạo : chỉ một bài toán
đơn giản trong sách giáo khoa giáo viên luôn đặt câu hỏi có thể phát triển bài toán
thành bài toán khác nâng cao hơn bằng cách nào ? cũng vì lẽ đó giáo viên đợc trau
dồi,tự bồi dỡng kiến thức cho mình hơn.
* Về phía học sinh : với cách chuyển tiếp lôgíc , khai thác mang tính từ dễ đến khó
.Học sinh cuốn hút tập trung hơn đặc biệt giúp các em hiểu và vận dụng một cách
linh hoạt các công thức ,định lí ,mệnh đề đã học vào việc giải toán và các bài toán
thực tế .Trong đề tài chắc hẳn không tránh khỏi những sai sót . Rất mong đợc sự góp
ý bổ sung của bạn đọc để các tiết dạy sau có kết quả cao hơn.
Xin chân thành cảm ơn
Diễn nguyên :Ngày 20/5/2009
Đặng Xuân Hoàng
Đặng Xuân Hoàng Tr ờng THCS Diễn Nguyên
Sáng kiến kinh nghiệm
Phòng giáo dục - đào tạo diễn châu
Tr ờng THCS Diễn Nguyên

Sáng kiến kinh nghiệm
Tên đề tài : lựa chọn và khai thác
bài toán trong tiết luyện tập

Ngời viết : đặng xuân hoàng
Giáo viên trờng thcs diễn nguyên
Đặng Xuân Hoàng Tr ờng THCS Diễn Nguyên

×