Tải bản đầy đủ (.pdf) (27 trang)

Nghiên cứu phát triển cấu trúc EBG ứng dụng cho các hệ thống thông tin vô tuyến thế hệ mới

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.84 MB, 27 trang )





BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI






HUỲNH NGUYỄN BẢO PHƢƠNG







NGHIÊN CỨU PHÁT TRIỂN CẤU TRÚC EBG ỨNG DỤNG CHO CÁC HỆ THỐNG
THÔNG TIN VÔ TUYẾN THẾ HỆ MỚI






Chuyên ngành: Kỹ thuật Viễn thông
Mã số: 62520208








TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT VIỄN THÔNG









Hà Nội – 2014






Công trình này được hoàn thành tại: Trường Đại học Bách Khoa Hà Nội







Tập thể hướng dẫn khoa học:

1. PGS. TS. ĐÀO NGỌC CHIẾN
2. PGS. TS. TRẦN MINH TUẤN







Phản biện 1: ………………………………………
Phản biện 2: ………………………………………
Phản biện 3: ………………………………………








Luận án sẽ được bảo vệ trước Hội đồng chấm luận án Tiến sĩ cấp Trường
Họp tại: Trường Đại học Bách Khoa Hà Nội
Vào hồi………giờ, ngày……tháng…….năm……








Có thể tìm hiểu luận án tại:
1. Thư viện Tạ Quang Bửu – Trường Đại học Bách Khoa Hà Nội
2. Thư viện Quốc gia


1

MỞ ĐẦU
1. Bề mặt trở kháng lớn và ứng dụng trong kỹ thuật anten
Kỹ thuật anten đã có những tiến bộ vượt bậc trong những năm gần đây và vẫn đang không ngừng được
phát triển. Công nghệ anten vi dải in trên đế điện môi ra đời đã giải quyết được vấn đề thu nhỏ kích thước
của anten nhằm tích hợp trên các thiết bị cầm tay cũng như các thiết bị của hệ thống truyền thông vô tuyến.
Tuy nhiên, cũng có rất nhiều thử thách đặt ra đối với các anten vi dải, bao gồm:
 Ảnh hưởng của sóng bề mặt lan truyền trên đế điện môi đến đặc tính bức xạ cũng như hiệu suất bức
xạ của anten.
 Cải thiện hệ số tăng ích của anten.
 Ảnh hưởng của dòng ảnh trong mô hình anten đơn cực.
Sự xuất hiện của cấu trúc bề mặt trở kháng lớn (HIS) đã giúp giải quyết được những vấn đề này. Cấu
trúc bề mặt trở kháng lớn là một dạng của siêu vật liệu và được gọi chung là cấu trúc chắn dải điện từ (EBG).
Cấu trúc EBG có đặc tính ưu việt là tạo ra dải chắn điện từ ở một dải tần số bất kỳ. Bên cạnh đặc tính dải
chắn, cấu trúc EBG còn có những tính chất nổi trội khác như trở kháng bề mặt lớn và vật dẫn từ nhân tạo
(AMC). Chẳng hạn như một cấu trúc EBG dạng hình nấm có trở kháng bề mặt lớn đối với mode TE và mode
TM hoặc cấu trúc AMC sẽ tạo ra phản xạ đồng pha các sóng tới bề mặt cấu trúc.
Việc kết hợp cấu trúc EBG vào các mô hình anten in trên đế điện môi đã loại bỏ được ảnh hưởng của
sự truyền lan sóng mặt, nhờ đó cải thiện được khả năng bức xạ cũng như hiệu suất của anten, đặc biệt giảm
đáng kể nhiễu tương hỗ giữa các phần tử trong anten mảng. Hơn nữa, nhờ đặc tính phản xạ đồng pha, bề mặt
cấu trúc EBG đã được sử dụng trong mô hình anten dây cấu hình đơn giản nhằm cải thiện đặc tính bức xạ
của anten. Một loạt các yêu cầu được đặt ra như cấu hình đơn giản, kích thước nhỏ gọn, băng thông rộng, đa

băng tần, v.v vẫn đang là thử thách đối với các nhà nghiên cứu trong việc tìm ra những mô hình anten mới.
Chính vì vậy, cấu trúc EBG và các ứng dụng của chúng trong kỹ thuật anten đã trở thành một hướng nghiên
cứu mới thu hút được sự quan tâm của rất nhiều các nhà nghiên cứu trên thế giới.
Hiện nay đã có rất nhiều mô hình cấu trúc EBG được đề xuất với hình dạng từ đơn giản đến phức tạp,
chẳng hạn như cấu trúc EBG hình nấm, hình xoắn, hình gấp khúc, v.v. Nằm trong xu hướng phát triển chung
của thế giới, gần đây rất nhiều nhóm nghiên cứu đã và đang tập trung vào nghiên cứu và phát triển các bề
mặt có thuộc tính trở kháng lớn dựa trên các cấu trúc vật liệu đặc biệt:
 Nghiên cứu cấu trúc EBG nhỏ gọn dễ chế tạo. Các nghiên cứu này tập trung vào phát triển các cấu
trúc EBG phẳng có kích thước nhỏ, cấu trúc đơn giản. Phương pháp giảm nhỏ kích thước được sử dụng là
tăng giá trị điện cảm L, hoặc tăng giá trị điện dung C bằng cách tạo ra nhiều điện dung ký sinh trên phạm vi
bề mặt tấm kim loại phía trên của phần tử EBG, sử dụng mặt phẳng đế hoặc cột nối kim loại dạng xoắn ốc.
 Nghiên cứu các cấu trúc EBG hoạt động ở đa băng tần. Các nghiên cứu này tập trung phát triển các
cấu trúc EBG hai băng tần hoặc cấu trúc EBG ba băng tần. Các cấu trúc EBG đa băng tần ở trên hầu hết đều
sử dụng cột nối kim loại trong thiết kế. Điều này dẫn đến sự phức tạp trong chế tạo, nâng cao giá thành sản
xuất và ảnh hưởng đến độ chính xác trong kết quả đo thực nghiệm.
 Nghiên cứu các bề mặt dẫn từ nhân tạo AMC. Đã có nhiều công trình nghiên cứu về AMC với các
đặc điểm thiết kế như cấu trúc nhỏ gọn, băng thông rộng, hoặc đa băng tần. Các cấu trúc AMC cũng được
thiết kế dạng phẳng để dễ dàng tích hợp vào các cấu trúc anten có cấu hình nhỏ gọn. Với đặc tính phản xạ
đồng pha sóng tới từ anten, cấu trúc AMC sẽ giúp giảm bức xạ ngược, cải thiện búp sóng chính và nâng cao
hiệu suất bức xạ cho anten.
2. Những vấn đề còn tồn tại
Vai trò của cấu trúc EBG là rất quan trọng trong lĩnh vực anten và siêu cao tần. Việc nghiên cứu và
ứng dụng các cấu trúc EBG luôn là đề tài mang tính thời sự cao. Những cấu trúc EBG hai chiều đầu tiên
được đưa ra bởi D. Sievenpiper và F. Yang năm 1999. Mô hình EBG dạng hình nấm do Sievenpiper đưa ra
thường có kích thước lớn với chu kỳ phần tử EBG bằng một nửa lần bước sóng hoạt động ở tần số trung tâm
của dải chắn điện từ. Ngoài ra việc sử dụng cột nối kim loại trong cấu trúc hình nấm đã gây nên sự phức tạp
trong việc chế tạo, làm tăng chi phí sản xuất.


2


Trong phương pháp thiết kế tối ưu cấu trúc EBG, để giảm được tần số cộng hưởng mà không làm thay
đổi kích thước của cấu trúc thì ta phải tìm cách tăng các giá trị L, C. Khi hệ số điện môi 
r
và độ dày của lớp
điện môi đã được chọn thì không thể thay đổi giá trị điện cảm L mà chỉ có thể thay đổi giá trị điện dung C.
Đã có nhiều nghiên cứu tập trung vào vấn đề này như tạo ra các đường vi dải gấp khúc để tạo ra các điện
dung ký sinh từ đó làm tăng giá trị điện dung tổng cộng C. Tuy nhiên việc nghiên cứu các cấu trúc EBG chủ
yếu là tạo ra một băng tần. Nếu muốn tạo ra các cấu trúc EBG hai băng tần thì thường phải sử dụng cột nối
kim loại trong thiết kế, hoặc dùng hai phần tử đơn vị EBG hay một khối gồm nhiều phần tử đơn vị EBG. Do
vậy sẽ làm tăng kích thước đơn vị EBG, độ phức tạp trong chế tạo và chi phí sản xuất cao.
Một số cấu trúc EBG ba băng tần đã được nghiên cứu và đề xuất trước đây sử dụng tam giác
Sierpinski Gasket, Fractal Mandelbrot ở bước lặp thứ 2. Tuy nhiên, hạn chế của các cấu trúc này cũng sử
dụng các cột nối kim loại. Ngoài ra, một cấu trúc EBG nhỏ gọn sử dụng vòng cộng hưởng (SRR) được đề
xuất. Tuy nhiên, chỉ dải chắn đầu tiên là chặn được sự lan truyền của sóng bề mặt từ tất cả các hướng. Hai
dải chắn còn lại chỉ có thể ngăn cản sự lan truyền của sóng bề mặt theo một hướng nhất định.
Việc mở rộng băng thông của cấu trúc EBG đang là xu hướng tất yếu khi yêu cầu tích hợp vào các hệ
thống anten băng rộng ngày càng tăng. Cấu trúc EBG dạng hình nấm có ưu điểm băng thông rộng hơn so với
cấu trúc EBG đồng phẳng nhưng lại khó chế tạo hơn. Đã có nhiều nghiên cứu tập trung mở rộng băng thông
của cấu trúc EBG. Tuy nhiên, các cấu trúc đề xuất có cấu tạo phức tạp, khó chế tạo. Vì vậy việc nghiên cứu
thiết kế cấu trúc EBG phẳng có băng thông rộng là hướng nghiên cứu rất cấp thiết.
3. Mục tiêu, đối tƣợng và phạm vi nghiên cứu
Mục tiêu nghiên cứu:
 Phân tích, thiết kế các cấu trúc EBG cho các hệ thống thông tin vô tuyến thế hệ mới. Các cấu trúc
EBG này có khả năng hoạt động ở đa băng tần, băng thông rộng. Các dải chắn là hoàn chỉnh, có khả năng
ngăn cản sự truyền lan của sóng điện từ theo mọi hướng.
 Đề xuất giải pháp thiết kế cấu trúc EBG mới sử dụng các cấu trúc hình học Fractal. Đây là các cấu
trúc EBG phẳng được thiết kế linh hoạt để có thể tạo ra băng rộng hoặc đa băng tần.
 Đề xuất giải pháp giảm nhỏ kích thước cấu trúc EBG. Giải pháp đề xuất dựa trên việc tăng đồng thời
các giá trị điện cảm và điện dung tổng cộng của sơ đồ mạch LC tương đương của cấu trúc.

Đối tƣợng nghiên cứu:
 Tập trung vào cấu trúc EBG hai chiều vì những ưu điểm như dễ chế tạo, chi phí thấp và có khả năng
ứng dụng cao trong hệ thống anten có cấu hình đơn giản, nhỏ gọn.
 Tập trung vào các thiết kế cấu trúc EBG dạng đồng phẳng kích thước nhỏ gọn có khả năng hoạt
động ở đa băng tần hoặc băng thông rộng.
Phạm vi nghiên cứu:
 Nghiên cứu các đặc tính đặc biệt của cấu trúc EBG bao gồm: tính chất ngăn cản sóng bề mặt trong
hệ thống anten phẳng và tính chất bề mặt phản xạ đồng pha cho các hệ thống anten cấu hình nhỏ gọn.
 Sử dụng phương pháp sai phân hữu hạn miền thời gian (FDTD) để phân tích các đặc tính của cấu
trúc EBG. Khảo sát đặc tính chắn dải điện từ của cấu trúc EBG thông qua việc xác định đồ thị tán xạ của các
mode sóng TM, TE và xác định các tham số tán xạ (hệ số truyền đạt) của một mạng 2-cổng.
4. Cấu trúc nội dung của luận án
Nội dung của luận án bao gồm bốn chương. Phần giới thiệu tổng quan và cơ sơ phân tích cấu trúc EBG
được trình bày ở chương 1. Toàn bộ đóng góp khoa học của luận án thể hiện ở các nội dung đề xuất và thực
hiện trong chương 2, chương 3 và chương 4.
Đầu tiên, chương 1 tập trung vào các đặc tính cấu trúc chắn dải điện từ EBG và các phương pháp phân
tích cấu trúc EBG. Các ứng dụng của cấu trúc EBG cũng được tổng hợp và phân tích trong phần cuối của
chương. Các cơ sở lý thuyết phân tích cấu trúc EBG được trình bày chi tiết bao gồm vấn đề về sóng mặt lan
truyền trên bề mặt các cấu trúc và phương pháp sai phân hữu hạn miền thời gian với điều kiện biên tuần hoàn
sử dụng trong việc phân tích các cấu trúc có chu kỳ.


3

Chương 2 đề xuất và thực hiện giải pháp thiết kế cấu trúc EBG đa băng tần sử dụng phần tử điện dung
ký sinh. Hai cấu trúc EBG hai băng tần và ba băng tần được đề xuất, phân tích và mô hình hóa bằng các sơ
đồ mạch điện LC tương đương. Các mô hình đề xuất cũng được kiểm nghiệm bằng các kết quả đo mô hình
thực nghiệm. Bên cạnh đó, cấu trúc EBG ba băng tần được sử dụng để thiết kế bộ lọc thông dải băng rộng
nhỏ gọn.
Tiếp theo, giải pháp thiết kế cấu trúc EBG linh hoạt sử dụng các tam giác Sierpinski Gasket được đề

xuất và thực hiện trong chương 3. Đây là một thiết kế rất linh hoạt, với các trường hợp ghép khác nhau của
các tam giác Sierpinski, các cấu trúc EBG sẽ có hoặc là băng thông rộng hoặc là băng tần kép. Cấu trúc EBG
đề xuất cũng được so sánh với cấu trúc EBG hình nấm để kiểm chứng băng thông của dải chắn điện từ. Các
cấu trúc EBG cũng được tích hợp vào anten vi dải để cải thiện đặc tính bức xạ của anten.
Cuối cùng, chương 4 đề xuất và thực hiện giải pháp giảm nhỏ kích thước cấu trúc EBG. Giải pháp này
được thực hiện bằng cách tạo ra đồng thời các phần tử điện dung C và điện cảm tương đương L, từ đó tăng
tổng giá trị điện dung và điện cảm của cấu trúc EBG. Cấu trúc EBG đề xuất đã được ứng dụng để giảm ảnh
hưởng tương hỗ cho hệ thống anten mảng vi dải.


CHƢƠNG 1
TỔNG QUAN VỀ LÝ THUYẾT VÀ CƠ SỞ PHÂN TÍCH CẤU TRÚC
CHẮN DẢI ĐIỆN TỪ (EBG)

1.1. Bề mặt trở kháng lớn
1.1.1. Giới thiệu chung về bề mặt trở kháng lớn
Các bề mặt vật dẫn thường là các mặt phản xạ nhưng chúng làm đảo pha sóng phản xạ. Ngoài ra, các
bề mặt trên còn hỗ trợ sự lan truyền sóng bề mặt dẫn đến giảm hiệu suất bức xạ của anten. Điều này có thể
khắc phục bằng cách đưa vào các ràng buộc về cấu trúc hình học trong thiết kế nhưng sẽ làm giảm hiệu suất
tối ưu ban đầu. Bằng cách đưa vào bề mặt vật dẫn một kết cấu đặc biệt thì sẽ làm thay đổi các thuộc tính của
bề mặt trên. Đặc điểm của bề mặt mới này là có trở kháng bề mặt lớn, không đảo pha sóng phản xạ và dòng
ảnh sẽ phản xạ cùng pha so với trường hợp phản xạ ngược pha của các vật dẫn thông thường. Hơn nữa, bề
mặt trở kháng lớn sẽ không hỗ trợ sóng lan truyền trên bề mặt, thay vào đó, các dòng điện trên bề mặt sẽ bức
xạ một cách hiệu quả vào không gian tự do.
1.1.1.1. Vật dẫn điện
Nếu một bề mặt vật dẫn là mặt phản xạ tốt thì lại có tính chất đảo pha sóng phản xạ. Một tấm kim loại
phẳng thường dùng trong các anten như là mặt phản xạ hay mặt phẳng đế. Mặt phẳng này sẽ đổi hướng sóng
phản xạ để tạo ra thành phần đồng pha với hướng bức xạ chính, từ đó cải thiện được tăng ích của anten. Nếu
anten đặt quá gần bề mặt vật dẫn, sóng tới sẽ đảo pha khi phản xạ, tạo ra giao thoa tiêu cực với các sóng bức
xạ theo hướng khác. Điều này tương đương với việc dòng ảnh trong vật dẫn đã triệt tiêu dòng điện trong

anten, dẫn đến hiệu suất bức xạ rất kém. Hình 1.1a mô tả một anten đặt rất gần vật dẫn. Hiệu quả của anten
gần như bị triệt tiêu bởi bề mặt kim loại. Vấn đề trên sẽ được giải quyết nếu khoảng cách giữa phần tử bức xạ
và mặt phẳng đế là ¼ bước sóng như hình 1.1b. Sự dịch pha từ anten đến bề mặt và quay lại anten đúng bằng
một chu kỳ. Vì thế anten sẽ bức xạ hiệu quả hơn nhưng yêu cầu độ dày tối thiểu của cấu trúc là /4.
Dịch pha
180
0

Vật dẫn
điện
Anten
Sóng 1
Sóng 2
Giao thoa
ngược pha
< /4

Dịch pha
180
0

Vật dẫn
điện
Anten
Sóng 1
Sóng 2
Giao thoa
đồng pha
/4
90

0

90
0


Không
dịch pha
Bề mặt trở
kháng lớn
Anten
Sóng 1
Sóng 2
Giao thoa
đồng pha
<< 

(a)
(b)
(c)
Hình 1.1. (a) Anten đặt đối diện với mặt phẳng đế với khoảng cách <

/4, (b) Anten với khoảng cách

/4 so với
mặt phẳng đế, (c) Anten với mặt phẳng đế trở kháng lớn


4


1.1.1.2. Bề mặt trở kháng lớn
Bằng việc tích hợp các cấu trúc đặc biệt trên một vật dẫn thì nó có thể thay đổi các thuộc tính của sóng
lan truyền trên bề mặt. Khi cấu trúc có chu kỳ nhỏ hơn rất nhiều so với bước sóng thì cấu trúc này có thể mô
tả bằng mô hình trung gian hiệu dụng, và phẩm chất của cấu trúc này được tổng quát hóa chỉ bằng một tham
số, đó là trở kháng bề mặt. Điều kiện biên này xác định tỷ số giữa điện trường tiếp tuyến và từ trường tiếp
tuyến tại bề mặt. Bề mặt trở kháng lớn có thể hoạt động như một kiểu mặt phẳng đế độc nhất dùng trong
anten cấu hình thấp. Hình 1.1c mô tả ví dụ về anten lưỡng cực khi đặt đối diện với mặt phẳng đế trở kháng
lớn sẽ không bị giảm hiệu suất bức xạ như trường hợp mặt phẳng đế kim loại thông thường. Hơn nữa, trong
một dải tần cấm, mặt phẳng đế trở kháng lớn không cho phép sóng bề mặt lan truyền một cách tự do. Do vậy
sẽ cải thiện được đồ thị bức xạ của anten.
1.1.2. Cấu trúc chắn dải điện từ - Electromagnetic Band Gap (EBG)
1.1.2.1. Định nghĩa
Bề mặt trở kháng lớn hay được biết với khái niệm Electromagnetic Band Gap (EBG) là một trường hợp
đặc biệt của siêu vật liệu (MTM). Cấu trúc EBG được định nghĩa như sau: “Electromagnetic Band Gap là
những cấu trúc nhân tạo tuần hoàn (hoặc đôi khi không tuần hoàn) cản trở hoặc hỗ trợ sự lan truyền của
sóng điện từ trong một dải tần số xác định đối với mọi góc tới và mọi trạng thái phân cực của sóng”.
1.1.2.2. Phân loại
Cấu trúc EBG được tạo thành nhờ sự sắp xếp tuần hoàn của các vật liệu điện môi và các vật dẫn kim
loại. Dựa vào cấu hình, chúng được chia thành ba loại: (1) Cấu trúc khối ba chiều, (2) Cấu trúc phẳng hai
chiều và (3) Cấu trúc đường truyền một chiều. Trong đó cấu trúc EBG hai chiều thường được quan tâm
nghiên cứu vì ưu điểm nhỏ gọn, chi phí sản xuất thấp và ứng dụng rộng rãi trong kỹ thuật anten.
Cấu trúc EBG phẳng có những tính chất riêng biệt tùy theo sóng điện từ đưa tới:
(1) Khi sóng tới là sóng bề mặt (k
x
2
+ k
y
2
> k
0

2
, k
z
là thuần ảo), cấu trúc EBG sẽ chỉ ra một dải tần cấm
(dải chắn) mà ở đó sóng bề mặt sẽ không thể truyền lan với mọi góc tới và mọi trạng thái phân cực.
(2) Khi sóng tới là sóng phẳng (k
x
2
+ k
y
2
≤ k
0
2
, k
z
có giá trị thực), pha phản xạ của cấu trúc EBG thay
đổi theo tần số. Tại một tần số nào đó pha phản xạ sẽ có giá trị 0 giống như một vật dẫn từ hoàn hảo mà
không tồn tại trong tự nhiên.
Trong các công thức trên, k
x
và k
y
là các hằng số sóng theo phương ngang, k
z
là hằng số sóng theo
phương thẳng đứng và k
0
là hằng số sóng trong không gian tự do.
1.1.2.3. EBG và Siêu vật liệu (MTM)

Các vật liệu tự nhiên và nhân tạo ngày nay có thể được phân chia thành 4 nhóm chính với giá trị hằng
số điện môi ε và hệ số từ thẩm µ được thể hiện trên hệ tọa độ (ε, µ) như hình 1.2.
 Trong miền I (ε > 0 và µ >0) đây chính là vật liệu
thông thường.
 Trong miền thứ II (ε < 0 và µ >0) được biết đến
như là vật liệu plasma.
 Trong miền thứ IV (ε > 0 và µ < 0) đây là loại vật
liệu mà từ trước đó rất khó làm ra từ những chất đồng
nhất. Đến nay đã có một số cấu trúc được đề xuất
như: vòng từ cộng hưởng có khe hẹp, cấu trúc hình
chữ S, , cấu trúc 2 thanh ngắn đặt song song và
ngăn cách bởi lớp điện môi.
 Trong miền thứ III (ε < 0 và µ < 0) đây chính là
siêu vật liệu hay vật liệu LH.

Hình 1.2. Hệ toạ độ (ε, µ )
Tùy theo thuộc tính trường điện từ được bộc lộ, các tên gọi khác nhau của siêu vật liệu đã được giới
thiệu như: Double negative (DNG) material, Left-handed (LH) material, Soft and hard surface, High
impedance surfaces (HIS), Artificial magnetic conductor (AMC). Trong đó, HIS và AMC là hai vật liệu đang
được quan tâm nghiên cứu và phát triển cho các ứng dụng trong hệ thống anten cấu hình thấp hiện nay.


5

1.1.2.4. Các phương pháp phân tích cấu trúc EBG
 Phương pháp phần tử tập trung
Đây là phương pháp đơn giản nhất khi mô hình cấu trúc EBG bởi mạch cộng hưởng LC. Giá trị điện
cảm L và điện dung C được xác định bởi kích thước hình học và thuộc tính cộng hưởng của nó được sử dụng
để giải thích đặc tính dải chắn của cấu trúc EBG. Mô hình này tuy đơn giản, dễ hiểu nhưng kết quả lại có độ
chính xác không cao do sự xấp xỉ các giá trị L và C.

 Phương pháp đường truyền tuần hoàn
Mô hình đường truyền tuần hoàn gồm các tầng. Mỗi tầng tương ứng với một chu kỳ tuần hoàn có trở
kháng Z
P
và điện dung ghép tầng X
C
. Đường cong tán xạ thu được sẽ cung cấp nhiều thông tin hơn là
phương phương pháp phần tử tập trung. Tuy nhiên, khó khăn trong phương pháp này là làm thế nào để thu
được chính xác giá trị Z
P
và X
C
tương đương cho cấu trúc EBG.
 Phương pháp số toàn sóng
Ưu điểm của phương pháp số toàn sóng đó là sự linh hoạt và độ chính xác trong quá trình phân tích các
cấu hình EBG khác nhau với điều kiện biên tuần hoàn. Khi đó chỉ cần xét một phần tử EBG đơn mà không
cần khảo sát mảng nhiều phần tử EBG.
1.2. Ứng dụng của cấu trúc EBG trong lĩnh vực anten
1.2.1. Loại bỏ sóng bề mặt
Sóng bề mặt là sóng điện từ lan truyền dọc theo mặt phẳng đế thay vì bức xạ vào không gian tự do,
sóng bề mặt làm giảm hiệu suất bức xạ của anten. Sự nhiễu xạ của sóng bề mặt làm tăng bức xạ ngược mà có
khả năng làm giảm tỷ số S/N trong các hệ thống thông tin vô tuyến. Do vậy việc sử dụng các cấu trúc EBG
sẽ triệt tiêu sóng bề mặt, tăng hiệu suất bức xạ cũng như giảm ảnh hưởng ghép nối giữa các phần tử bức xạ
trong hệ thống anten mảng.
1.2.2. Anten cấu hình đơn giản
Một ứng dụng khác của cấu trúc EBG là làm lớp đế cho các hệ thống anten cấu hình đơn giản với hiệu
suất bức xạ được cải thiện hơn rất nhiều. Để thu nhỏ kích thước hệ thống, ta có thể đặt anten song song với
mặt phẳng đế. Tuy nhiên, dòng ảnh sẽ được tạo ra ngược chiều với dòng thật, do đó làm giảm hiệu suất bức
xạ của anten. Một giải pháp được đưa ra ở đây là sử dụng bề mặt EBG đóng vai trò như mặt phẳng tiếp đất.
Khi đó ta có thể đặt anten song song với bề mặt EBG và dòng ảnh vẫn có chiều cùng chiều với dòng thực. Vì

vậy, ta có thể vừa giảm được kích thước của anten mà vẫn duy trì được hiệu suất bức xạ cao của anten.
1.2.3. Anten hệ số khuếch đại cao
Cấu trúc EBG còn được ứng dụng trong việc thiết kế anten với hệ số khuếch đại cao, khoảng 20 dBi.
Thông thường, những anten có hệ số khuếch đại cao thực tế trong anten parabol hoặc anten mảng. Tuy nhiên,
bề mặt uốn cong của mặt parabol chính là một trong những khó khăn lớn, trong khi đó với anten mảng lớn thì
lại phải chấp nhận sự suy hao trên mạng tiếp điện. Vấn đề này được giải quyết bằng việc sử dụng bề mặt
EBG phẳng.
Ngoài ra, cấu trúc EBG còn được ứng dụng để loại bỏ các băng tần trong dải tần hoạt động của hệ
thống UWB, hoặc ứng dụng trong thiết kế bộ lọc thông dải băng rộng nhằm loại bỏ đi các hài bậc cao.
1.3 Lý thuyết sóng mặt
Để nghiên cứu về thuộc tính của sóng mặt, ta cần giải phương trình sóng suy giảm theo hàm mũ trên
biên điện môi. Ta có thể xem xét các sóng này trên quan điểm một vật liệu có một giá trị trở kháng bề mặt
hiệu dụng. Với kim loại, giá trị này phụ thuộc vào độ dày của vật liệu và tương đương với độ sâu mà sóng có
thể đi vào.
1.3.1. Tiếp giáp điện môi – điện môi
Sóng mặt xuất hiện trên biên giữa hai vật liệu khác nhau. Hằng số điện môi của hai vật liệu này là ε
1,
ε
2
.
Trong mặt phẳng YZ, vật liệu thứ nhất ở phương +X, còn vật liệu thứ hai ở phương –X (hình 1.3). Giả sử
sóng suy giảm theo phương +X với hằng số suy giảm α, theo phương -X với hằng số suy giảm γ. Với sóng
TM, E
y
= 0. Điện trường trong vật liệu 1 có dạng













6






(1.1)
Trong vật liệu thứ 2, điện trường có dạng tương tự
















(1.2)

Hình 1.3. Sóng mặt trên tiếp giáp điện môi – điện môi.
Kết hợp với hệ phương trình Maxwell, ta có thể xác định phương trình vector sóng  và hằng số suy
giảm 










































(1.3)
Các phương trình này mô tả sóng mặt trên hai vật liệu điện môi bất kỳ. Từ các phương trình này, sóng
TM không thể tồn tại trên vật liệu điện môi. Nếu  dương, thì và  là ảo, do đó sóng không suy giảm khi ra
xa bề mặt, nó chính là mặt sóng truyền trên điện môi. Mặt khác, nếu  nhỏ hơn -1, hoặc là ảo, nghiệm của
phương trình mô tả sóng gắn trên bề mặt. Do đó, sóng TM có thể tồn tại trên kim loại, hoặc các vật liệu
không có hệ số điện môi dương. Với sóng TE, ta có thể suy ra từ nguyên lý đổi lẫn.
1.3.2. Bề mặt kim loại
Hằng số điện môi hiệu dụng của kim loại được biểu diễn:
 






(1.4)
Với  là độ dẫn điện.

Giá trị độ sâu thâm nhập của dòng điện :








(1.5)
Dòng bề mặt chỉ có thể xuyên qua một lớp mỏng trên bề mặt kim loại. Từ độ sâu thâm nhập, ta có thể
tính được trở kháng bề mặt của một tấm kim loại. Dòng và điện trường suy giảm theo hàm mũ trên kim loại
với hằng số . Trở kháng bề mặt của một bề mặt kim loại phẳng là:








  


(1.6)
Trở kháng bề mặt có giá trị phần thực dương và ảo dương bằng nhau, vì vậy điện trở của một bề mặt

kim loại luôn đi cùng với giá trị cảm kháng tương tự.
1.3.3. Bề mặt trở kháng nhân tạo
Xét sự phản xạ của sóng phẳng từ một biên đặc trưng bởi trở kháng bề mặt vô hướng 

. Đối với sóng
tới vuông góc, hệ số phản xạ của điện trường là





 


 

(1.7)
Với  là trở kháng sóng
Bề mặt dẫn điện tương ứng với 

, dẫn đến 

. Khi đó, điện trường tiếp tuyến bằng 0 tại bờ.
Trong trường hợp bề mặt dẫn từ, hệ số phản xạ 

 với từ trường tiếp tuyến bằng 0. Rõ ràng, điều này
được thực hiện khi





. Đây là khái niệm của bề mặt trở kháng lớn nhân tạo.
Xét một mô hình gồm lớp điện môi có độ dày  phủ lên một mặt đế kim loại ở hình 1.4(a). Trở kháng
vào tại mặt trên bởi sóng tới phẳng thông thường là:


7




















(1.8)
Tại  


thì 

, hình thành bề mặt dẫn từ. Tuy nhiên, đây là một thử thách khi áp dụng vào
thực tế vì độ dày lớp phủ ¼ bước sóng là quá lớn.
Mặt đế kim loại
d
, m
Z
S
=jhtan(bd)

(a)


Mặt đế kim loại
d
, m
Z
S
=jwmd

(b)
Hình 1.4. (a) Sự thực hiện một mặt dẫn từ khi phủ một lớp điện môi lên một mặt đế kim loại, (b) Độ dày của lớp
điện môi giảm đáng kể nhưng băng thông sẽ bị giảm
Ý tưởng để giảm độ dày lớp điện môi ở đây là bố trí một lưới điện dung (ví dụ một mảng các phiến kim
loại nhỏ) trên bề mặt của lớp điện môi như hình 1.4(b). Trong trường hợp này trở kháng vào trên bề mặt lớp
điện môi mang tính cảm kháng (và có độ lớn khá nhỏ): 

. Lưới điện dung có thể được mô hình
bởi trở kháng lưới dung kháng 


 



. Trở kháng bề mặt tổng gồm hai thành phần mắc song song
là trở kháng vào mang tính cảm kháng của lớp điện môi mỏng và trở kháng lưới dung kháng của mảng:




  





(1.9)
Tại tần số cộng hưởng của hệ thống 



 



, phần ảo của trở kháng bề mặt tiến tới vô cùng
lớn và hệ thống trở thành một mặt dẫn từ. Đây chính là bề mặt trở kháng nhân tạo được đề xuất bởi D.
Sivenpiper và được gọi là cấu trúc hình nấm.


w
D
C
L

wD
h
D
Mặt đế kim loại
Lớp điện
môi
Phiến kim loại

r

(a)
(b)
Hình 1.5. (a) Lưới dải dẫn với khối hình vuông, (b) Một mảng các phiến kim loại được đặt cách mặt đế một khoảng
h, ở giữa là lớp điện môi có hệ số điện môi tương đối

r

Trở kháng bề mặt lớn còn có thể được tạo ra bằng các lưới cộng hưởng phẳng như một mảng các dải
dẫn hình chữ nhật ở hình 1.5(a). Ở đây trở kháng điện dung của dải dẫn được nối song song với điện dung
hiệu dụng giữa các dải đặt vuông góc nhau. Tại tần số cộng hưởng, trở kháng tổng của lưới sẽ trở nên rất lớn.
Giải pháp này được giới thiệu bởi F. Yang và lưới cộng hưởng trên được gọi là bề mặt trở kháng lớn phẳng.
1.3.3.1. Bề mặt trở kháng tương đương của cấu trúc hình nấm
Xét một lưới đặt song song với một mặt đế với khoảng cách  từ lưới đến mặt đế không nhỏ hơn chu
kỳ lưới  (Hình 1.5(b)). Giả sử chỉ có sóng phẳng mode cơ bản giữa mảng và mặt đế, trở kháng bề mặt
tương đương có thể xác định dễ dàng như trở kháng song song của trở kháng lưới 


và trở kháng vào của
một phần đường dây TEM chiều dài , trong đó 







, với 





và 





là các
tham số của môi trường giữa mảng và mặt phẳng đế. Khi đó, trở kháng vào có dạng


















 





(1.10)

1.3.3.2. Sóng bề mặt lan truyền dọc bề mặt trở kháng
Xét sóng bề mặt chạy dọc một mặt phân cách phẳng với một trở kháng bề mặt đẳng hướng 

cho
trước (Hình 1.6). Tại bề mặt , điều kiện biên như sau sẽ thỏa mãn







, với sóng TM



8







, với sóng TE
(1.11)
E
y
E
x
H
z
TE
H
y
H
x
E
z
TM
Z
S

b
x
zy

Hình 1.6. Sóng TE và sóng TM truyền dọc theo bề mặt trở kháng phẳng
Áp dụng (1.11), ta xác định được hệ số suy giảm  và hệ số truyền sóng  đối với sóng TE:






















 









(1.12)


(1.13)
Tương tự đối với sóng TM









 









(1.14)

(1.15)
Sóng bề mặt lan truyền có hằng số truyền sóng  thuần thực. Tuy nhiên, điều này là không thể nếu trở
kháng bề mặt là thuần ảo khi bề mặt là không tổn hao theo (1.13) và (1.15). Hơn nữa, chỉ bề mặt trở kháng có
phần ảo dương (trở kháng mang tính dung kháng 

) có thể hỗ trợ sóng bề mặt TM và chỉ bề mặt có
điện kháng âm có thể hỗ trợ sóng bề mặt TE. Điều này có thể giải thích từ (1.12) và (1.14), nếu 

, hệ
số suy giảm của sóng TE trở nên âm, có nghĩa là bị bức xạ (sóng rò). Rõ ràng, giá trị của trở kháng quyết
định trường sẽ bị giữ lại bao nhiêu tại bề mặt. Cụ thể, muốn giam giữ sóng điện từ lan truyền bề mặt thì giá
trị trở kháng của bề mặt phải rất lớn. Các cấu trúc bề mặt trở kháng dạng hình nấm và cấu trúc bề mặt trở
kháng phẳng được phân tích ở trên là cơ sở cho các nghiên cứu và đề xuất sau này của luận án.
1.4. Phƣơng pháp phân tích sai phân hữu hạn miền thời gian
Phương pháp sai phân hữu hạn miền thời gian (FDTD) là một phương pháp phổ biến nhằm giải quyết
phương trình Maxwell. Phương pháp này giải trực tiếp hệ phương trình Maxwell trong miền thời gian bằng
cách chuyển về phương trình sai phân hữu hạn. Phương trình sai phân hữu hạn sau đó được giải quyết trong
một dãy các bước thời gian bằng cách tính toán luân phiên các thành phần trường điện và trường từ đối với
một lưới không gian được xoắn lại với nhau.
1.4.1. Phƣơng pháp sai phân hữu hạn miền thời gian
Trong phương pháp FDTD cả không gian và thời gian đều được chia thành các đoạn nhỏ riêng biệt.
Không gian thì được chia thành các khối có hình hộp. Các khối này có các kích thước nhỏ hơn bước sóng.
Trường điện đặt tại các mép viền của hình hộp còn trường từ đặt trên bề mặt. Theo đó mỗi thành phần 
được bao quanh bởi bốn thành phần  và mỗi thành phần  lại được bao quanh bởi bốn thành phần. Thời
gian được lượng tử hóa thành các bước nhỏ. Mỗi bước này đại diện cho thời gian để các trường tự do di
chuyển sang các khối lân cận. Trước việc nhảy về không gian của trường từ từ trường điện, các giá trị của
trường đó cũng nhảy về mặt thời gian. Trường từ và điện được cập nhật bằng việc sử dụng mô hình nhảy cóc.
1.4.2. Điều kiện biên tuần hoàn

Tất cả các điều kiện biên tuần hoàn đều được phát triển từ lý thuyết Floquet. Với một cấu trúc tuần
hoàn với chu kỳ  theo hướng , trường điện từ ở hai biên  và  thỏa mãn các phương trình trong
miền tần số:




























(1.16)
Các lũy thừa thể hiện độ trễ pha được quyết định bởi hằng số truyền sóng 

và chu kỳ .
Đối với các vấn đề của ống dẫn sóng, hằng số 

có được từ mối quan hệ tán xạ. Tuy nhiên, đối với các
cấu trúc phức tạp, mối quan hệ này không thể biết trước khi tính toán. Với vấn đề tán xạ, hằng số lan truyền


đã biết. Nó là một hàm của tần số và góc tới:


9












(1.17)
Trong đó, 

là số sóng trong không gian tự do.

1.5. Tổng kết chƣơng
Cấu trúc EBG là một dạng siêu vật liệu, có hai đặc tính ưu việt: tạo ra các dải chắn tần số nhằm ngăn
cản sự truyền lan của sóng bề mặt và phản xạ đồng pha với sóng tới bề mặt cấu trúc. Việc ứng dụng của cấu
trúc EBG vào các hệ thống anten đã cải thiện đáng kể các đặc tính bức xạ của anten. Đây chính là động lực
thúc đẩy việc nghiên cứu các cấu trúc EBG mới ứng dụng trong các hệ thống vô tuyến thế hệ mới hiện nay.
Chương này cũng đã khái quát về lý thuyết sóng mặt và phương pháp sai phân hữu hạn miền thời gian
(FDTD) dùng để phân tích cấu trúc EBG. Các bề mặt trở kháng nhân tạo có thể tạo ra dựa trên việc thay đổi
trở kháng bề mặt của cấu trúc bằng cách sử dụng các lưới cộng hưởng phẳng hay lưới điện dung (tạo bởi
mảng các phiến kim loại).
Với ưu điểm tính toán với điều kiện biên tuần hoàn, phương pháp FDTD hoàn toàn có thể mô hình hóa
cấu trúc EBG với kích thước hữu hạn. Tính chất tán xạ của sóng được phân tích bằng hằng số sóng k
x
.
Đường cong tán xạ được tổng hợp từ hằng số sóng theo các tần số khác nhau sẽ giúp ta xác định chính xác
dải chắn của cấu trúc EBG.


CHƢƠNG 2
GIẢI PHÁP THIẾT KẾ CẤU TRÚC EBG ĐA BĂNG TẦN SỬ DỤNG
PHẦN TỬ ĐIỆN DUNG KÝ SINH
2.1. Giới thiệu chƣơng
Chương này đề xuất và thực hiện giải pháp thiết kế cấu EBG đa băng tần bằng cách tạo ra các điện
dung ký sinh. Các điện dung ký sinh này được tạo ra bởi các đường vi dải ghép song song hoặc các khe với
hình dạng khác nhau được khoét trên bề mặt của cấu trúc đề xuất. Đây là các cấu trúc EBG phẳng, có dải
chắn hoàn chỉnh. Các dải chắn này cũng được mô hình hóa bằng các sơ đồ mạch LC tương đương. Các cấu
trúc đề xuất có ưu điểm nhỏ gọn, không sử dụng cấu trúc nhiều phần tử đơn vị, không sử dụng cột nối kim
loại. Các kết quả thực nghiệm đã chứng minh được tính khả thi của cấu trúc đề xuất trong các ứng dụng cho
hệ thống vô tuyến như WLAN, WiMAX.
2.2. Cấu trúc EBG hai băng tần cho hệ thống WLAN
Một số cấu trúc EBG băng tần kép đã được đề xuất trước đây như sử dụng hai đơn vị EBG có hình

dạng khác nhau, khắc một cặp khe hình chữ L và chữ U trên bề mặt kim loại của một cấu trúc EBG dạng
hình nấm, hoặc sử dụng một dãy mười phần tử EBG hình nấm với các cột nối kim loại đã được di chuyển ra
ngoài trung tâm của sáu tấm kim loại và được đặt tại trung tâm của bốn tấm còn lại. Như vậy, các cấu trúc
EBG băng tần kép đã đề xuất trước đây có chung nhược điểm kích thước lớn hoặc khó chế tạo do sử dụng
cột nối kim loại. Để khắc phục những hạn chế trên, một cấu trúc EBG đồng phẳng hai băng tần hình lục giác
đã được thiết kế để hoạt động ở dải tần của hệ thống WLAN. Trong thiết kế này, các phần tử điện dung ký
sinh được tạo bởi các đường vi dải ghép song song in trên bề mặt của cấu trúc EBG.
2.2.1 Thiết kế ban đầu
Mỗi phần tử EBG được biễu diễn diễn bởi một hay nhiều sơ đồ mạch LC tương đương, trong đó mỗi sơ
đồ LC sẽ xác định tương ứng một tần số cộng hưởng. Tần số này được xác định bởi biểu thức sau:








(2.1)
Để tạo ra cấu trúc EBG băng tần kép, hai sơ đồ mạch LC tương đương riêng biệt cần được tạo ra. Tần
số trung tâm của dải chắn sẽ được xác định dựa vào các giá trị tương đương của các sơ đồ LC ở trên.
Bên cạnh đó, tần số trung tâm này có thể được điều chỉnh để đạt được giá trị thiết kế mong muốn. Đây là
chính là mục tiêu cơ bản khi thiết kế cấu trúc EBG. Cấu trúc EBG đồng phẳng có dạng hình lục giác được đề
xuất trong hình 2.1(a) có cạnh W = 8.25 mm. Lớp điện môi sử dụng là FR4 với hằng số điện môi là 4,4, độ
dày 1,6 mm. Cấu trúc EBG trong thiết kế này có thể biễu diễn thành hai sơ đồ mạch tương đương khác nhau


10

ở hình 2.1(b) và 2.1(c). Từ hai sơ đồ mạch này có thể xác định được hai dải chắn riêng biệt. Sơ đồ mạch để

xác định dải chắn thứ nhất được tạo thành bởi các đường vi dải thẳng nối liền hai phần tử EBG cạnh nhau
(tương đương điện cảm 

) và khoảng hở giữa hai đường vi dải chữ V nằm ngồi cùng của hai phần tử
(tương đương điện dung 

). Tần số trung tâm của dải chắn thứ nhất được xác định như sau:













(2.2)
G2
G1
G1 G1
W3
W4
W2
W1
W
W5

G
W3
W3
W3


C
1
C
1
L
1


C
P
L
2
C
P

(a)
(b)
(c)
Hình 2.1. Cấu trúc EBG đề xuất: (a) Mặt trên của cấu trúc, (b) và (c) Sơ đồ mạch LC tương đương của dải
chắn thứ nhất và dải chắn thứ hai
Sơ đồ tương đương của dải chắn thứ hai được xác định bởi các phần tử bên trong cấu trúc. Đầu
tiên, điện cảm tương đương 

được tạo bởi các đường vi dải dạng mũi tên. Sau đó, điện dung tương đương



được tạo bởi khoảng hở giữa các đường vi dải chữ V. Vì vậy điện dung 

là tổng của các điện dung ký
sinh

. Ở đây ta có tổng cộng 3 điện dung ký sinh

tương ứng với 4 dải chữ V song song nhau. Như vậy,
tần số trung tâm của dải chắn thứ hai được xác định:




























(2.3)
2.2.2 Kết quả mơ phỏng
Một phương pháp phân tích tham số tán xạ được dùng để phân tích dải chắn của cấu trúc EBG với số
lượng hữu hạn các phần tử. Cụ thể, một mảng 3×4 các phần tử được khắc trên một đế điện mơi có lớp đế kim
loại bên dưới và được nối với hai đường vi dải ở hai đầu giống như cấu trúc một bộ lọc. Cấu trúc mảng này
hoạt động như bộ lọc chắn dải. Băng thơng của dải chắn được xác định khi S11 > -5 dB và S21 < -30 dB.
Kết quả mơ phỏng các hệ số truyền đạt để xác
định dải chắn của thiết kế ban đầu được giới thiệu
trong hình 2.2. Dải chắn thứ nhất có tần số trung tâm là
2,76 GHz và dải tần từ 2,25 - 3,27 GHz; trong khi đó
dải chắn thứ hai có dải tần từ 4,32 - 6,08 GHz và đạt
trung tâm tại 5,2 GHz. Theo các chuẩn IEEE
802.11b/g/a, dải tần WLAN sẽ bao phủ dải tần số từ
2.40 - 2.48 GHz và 5.2 - 5.8 GHz. Như vậy, cả hai dải
chắn đã đáp ứng được băng tần của WLAN. Tuy nhiên,
tần số trung tâm của các dải chắn này vẫn chưa trùng
với tần số trung tâm của WLAN. Điều này có nghĩa là
trở kháng bề mặt của cấu trúc EBG sẽ khơng đạt cực
đại tại tần số trung tâm của WLAN.

Hình 2.2. Hai dải chắn của cấu trúc thiết kế ban đầu
3.2.3. Khảo sát các đặc tính của dải chắn

Cấu trúc EBG sẽ được tối ưu dựa vào các tham số kích thước để đạt được trở kháng bề mặt lớn tại tần
số trung tâm của hệ thống WLAN. Từ hình 2.2 ta thấy, cần phải giảm 

và tăng 

. Tần số trung tâm có thể
được điều chỉnh bằng cách thay đổi giá trị điện dung  và điện cảm . Tuy nhiên, trong thiết kế cấu trúc
EBG khi lớp điện mơi với độ dày đã được chọn thì giá trị điện cảm  khơng thể thay đổi. Vì vậy, trong
trường hợp này ta chỉ có thể thay đổi giá trị của điện dung .

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
-80
-70
-60
-50
-40
-30
-20
-10
0
Dải tần cao
của WLAN
Dải tần thấp
của WLAN
Dải chắn
thứ hai
Dải chắn
thứ nhất



|S11| & |S21| (dB)
Tần số (GHz)
S11
S21


11




Hình 2.3. Mảng 3×4 phần tử EBG và thiết lập đo
thực nghiệm
Hình 2.4. Các tham số tán xạ của cấu trúc EBG đã tối
ưu
Ảnh hưởng của các giá trị G, G1 và G2 đến sự thay đổi dải chắn của cấu trúc đề xuất đã được thực
hiện. Từ các kết quả mơ phỏng, sự thay đổi của các giá trị G sẽ ảnh hưởng trực tiếp đến dải chắn thứ nhất,
trong khi G1 hoặc G2 thay đổi sẽ ảnh hưởng đến dải chắn thứ hai. Các sự thay đổi này là khơng phụ thc
nhau với nhau, do vậy hai dải chắn đã được điều khiển một cách độc lập.
Cấu trúc EBG đề xuất đã được so sánh với một số cấu trúc EBG trước đây với cùng kích thước và lớp
điện mơi (độ dày và hệ số điện mơi). Các kết quả mơ phỏng cho thấy rằng cấu trúc đề xuất có băng thơng
rộng hơn khi so sánh với các trường hợp trên. Bên cạnh đó tần số trung tâm của các dải chắn của cấu trúc
EBG mới hầu như nhỏ hơn trong mọi trường hợp. Cuối cùng, các dải chắn đã được tối ưu để đạt giá trị trở
kháng lớn tại tần số trung tâm của dải tần WLAN. Kết quả mơ phỏng các dải chắn được chỉ ra trong hình 2.4,
dải chắn thứ nhất có dải tần từ 2.08 đến 2.94 GHz, trong khi đó dải chắn thứ hai có dải tần từ 4.64 đến 6.68
GHz. Trở kháng bề mặt của cấu trúc EBG đã được tối ưu tại các tần số 2.45 GHz và 5.5 GHz. Một mảng 3×4
phần tử EBG đã được chế tạo và đo thực nghiệm. Các đường vi dải gắn ở hai đầu của mảng được nối với các
đầu nối SMA để đo các tham số tán xạ. Việc đo thực nghiệm được tiến hành trên máy phân tích mạng
Anritsu 37369D (hình 2.3). Các kết quả đo thực nghiệm được so sánh với kết quả mơ phỏng và được trình
bày ở hình 2.4. Ta thấy rằng, các kết quả này là khá tương đồng nhau.

2.3. Cấu trúc EBG ba băng tần có kích thƣớc nhỏ gọn
Các cấu trúc EBG ba băng tần đã được đề xuất trước đây đều được biến đổi từ cấu trúc EBG hình nấm.
Do vậy các cấu trúc này vẫn sử dụng cột nối kim loại trong thiết kế, điều này dẫn đến khó khăn trong chế tạo
thực nghiệm. Vì vậy, chương này đề xuất một cấu trúc EBG ba băng tần phẳng, là một dạng biến đổi của cấu
trúc UC-EBG thơng thường. Bằng cách xây dựng ba sơ đồ mạch LC tương đương khác nhau để mơ hình hóa
cấu trúc EBG đề xuất, các dải chắn sẽ được biễu diễn bởi một sơ đồ mạch LC tương đương riêng biệt. Từ đó,
ba dải chắn điện từ hồn chỉnh đã được tạo ra, cho phép ngăn cản sự truyền sóng bề mặt từ mọi hướng.
2.3.1. Thiết kế ban đầu
Cấu trúc UC-EBG thơng thường được chỉ ra trong hình 2.5(a). Khoảng cách giữa các cạnh dẫn của hai
phần tử EBG liền kề tạo ra điện dung tương đương . Ngồi ra, các đường vi dải hẹp, kết nối hai phần tử, tạo
ra điện cảm tương đương . Vì vậy, cấu trúc EBG này có thể được mơ tả bằng một mạch LC tương đương,
như thể hiện trong hình 2.5(a).
 
c

L
c


l
b
a
g
c
s

d
l
b
a

g
k
u
p
s
w
c
i
e
i
k
e
r
u

`
`
c
p
c
3
L
3
c
3
c
22
c
21
c

23
c
21
L
2
c
23
c
22
c
1
c
p
c
p
L
1
Sơ đồ dải chắn 1
Sơ đồ dải chắn 2
Sơ đồ dải
chắn 3

(a)
(b)
(c)
Hình 2.5. (a) Cấu trúc UC-EBG thơng thường và sơ đồ tương đương, (b) Cấu trúc UC-EBG ba băng tần đề
xuất, (c) Ba sơ đồ mạch tương đương của cấu trúc đề xuất

1 2 3 4 5 6 7
-80

-70
-60
-50
-40
-30
-20
-10
0
S11-mô phỏng
S21-mô phỏng
S11-thực nghiệm
S21-thực nghiệm


|S11| & |S21| (dB)
Tần số (GHz)


12

Từ cấu trúc UC-EBG ở trên, ta thấy rằng chỉ duy nhất một dải chắn được tạo ra. Vì vậy, để có được
một cấu trúc EBG ba băng tần, cần phải tạo ra ba sơ đồ mạch LC riêng biệt. Dải chắn đầu tiên được tạo ra
theo nguyên lý tương tự như cấu trúc UC-EBG thông thường. Dải chắn thứ hai và thứ ba được hình thành
bằng cách tạo ra các điện dung tương đương  và điện cảm .
Cấu trúc UC-EBG ba băng tần được đề xuất ở hình 2.5(b). Cấu trúc này có thể được biễu diễn bởi ba
mạch LC tương đương khác nhau tương như trong hình 2.5(c). Trong thiết kế này, các điện dung ký sinh 

,
được tạo ra bởi các bước của các đường gấp khúc sẽ cho phép để tăng tổng điện dung của mạch tương
đương, và do đó làm cho dải chắn của cấu trúc dịch chuyển xuống vùng tần số thấp hơn. Tần số trung tâm

của dải chắn thứ nhất có thể được xác định như sau:
























(2.4)
Lưu ý rằng n là số bước của đường gấp khúc. Trong cấu trúc EBG ba băng tần đề xuất, n có giá trị là 4.
Khi các vòng cộng hưởng (SRR) được khoét trên bốn tấm kim loại ở các góc, dải chắn thứ hai có thể
được tạo ra. Tổng điện dung tạo bởi các SRR bao gồm hai phần. Thứ nhất là thành phần điện dung ghép nối



giữa vòng tròn bên trong và bên ngoài của SRR. Phần còn lại là điện dung tạo ra bởi khoảng hở của vòng
tròn bên trong. Trong hình 2.5(c), điện dung tương đương 

và 

được sinh ra bởi khoảng cách u giữa hai
vòng tròn của SRR. Hơn nữa, khoảng hở r của vòng tròn bên trong sẽ tương ứng với điện dung tương đương


. Dòng điện chạy dọc SRR (ký hiệu bởi đường nét đứt) sẽ tạo ra điện dung tương đương 

.
Điện dung ghép nối C
C
có thể được ước lượng bởi biểu thức sau:




    




 



(2.5)

Sau đó, điện dung ghép nối này được chia thành 4 phần bằng nhau, gọi là 

, tương ứng với bốn vòng
cộng hưởng ở bốn góc của cấu trúc EBG, vì vậy:






    




 



(2.5a)
Ở đây, 

và 

là bán kính của vòng tròn bên ngoài và bên trong của vòng cộng hưởng SRR.
Điện dung tạo ra bởi khoảng hở của vòng tròn bên trong được ước lượng theo biểu thức sau:





 


(2.5b)
Lưu ý rằng, 

là hằng số điện môi trong chân không.
Các điện dung tương đương của vòng cộng hưởng SRR trong cấu trúc EBG được ước lượng như sau:













(2.5c)
Tần số trung tâm của dải chắn thứ hai xác định từ sơ đồ mạch tương đương ở hình 2.5(c):












 

 



(2.5d)
Sau cùng, hai khe hình chữ L được khoét ở trung tâm của cấu trúc EBG. Độ rộng  của khe sẽ tương
ứng với điện dung tương đương 

và tấm kim loại hình vuông nối giữa hai khe chữ L sẽ tương ứng với điện
dung tương đương 

. Tuy nhiên, tần số này có thể xem như tần số cộng hưởng của một anten khe (tạo bởi
khe chữ L) và được xác định như sau:













(2.6)
Ở đây,  là vận tốc ánh sáng và 

là hằng số điện môi hiệu dụng, được xác định theo:





 


(2.6a)
Độ dài của khe chữ L được xác định như sau:




 


(2.6b)
2.3.2. Xác định dải chắn về tần số
Trong mô phỏng FDTD, điều kiện biên tuần hoàn (PBC) được sử dụng tính cho một khối EBG duy
nhất. Điều kiện biên được kết hợp trên cả bốn mặt của khối EBG để tái tạo lại mô hình tuần hoàn vô hạn. Đồ


13


thị tán xạ của cấu trúc EBG dạng hình nấm được phân tích dựa trên tam giác Brillouin tối thiểu xác định trên
bề mặt cấu trúc EBG, với 3 điểm đặc biệt là:




; 








; 















(2.7)
Mơ phỏng FDTD được lặp lại với 30 lần kết hợp khác
nhau của 

và 


theo trục hồnh (trục hằng số sóng), các tần
số cộng hưởng của sóng bề mặt được suy ra. Mỗi điểm trên trên
đồ thị tương ứng với một mode sóng bề mặt nào đó. Kết nối các
mode này ta có được các đường cong tán xạ của cấu trúc EBG.
X M
G
k
x
k
y

Hình 2.6. Tam giác Brillouin tối thiểu
2.3.3 Kết quả mơ phỏng
Đầu tiên, hai cấu trúc EBG đa băng tần (TUE) và cấu trúc UC-EBG thơng thường (CUE) được khảo sát
ở cùng vật liệu điện mơi FR4 với hằng số điện mơi 
r
= 4.4 và độ dày h = 1.6 mm. Độ dài chu kỳ của cấu
trúc là a = 7.2 mm, độ dài của tấm kim loại ở cạnh là l = 2 mm và khoảng hở giữa các tấm kim loại ở cạnh
của hai phần tử EBG liền kề là g = 0.6 mm.
Hình 2.7 hiển thị kết quả mơ phỏng đồ thị tán xạ của cấu trúc EBG đề xuất. Dải chắn thứ nhất được tạo
bởi giữa mode sóng thứ nhất và thứ hai, tương ứng lần lượt với mode TM và mode TE. Dải chắn này có dải
tần từ 6,67 – 8,83 GHz và trung tâm tại tần số 7,75 GHz. Cấu trúc UC-EBG thơng thường cũng có dải chắn
với dải tần từ 8,5 – 9,42 GHz và trung tâm tại tần số 8,96 GHz.

Dải chắn thứ nhất của cấu trúc EBG đề xuất làm
việc ở dải tần số thấp hơn so với cấu trúc UC-EBG
thơng thường. Điều này chứng tỏ rằng cấu trúc EBG
đề xuất có kích thước nhỏ gọn hơn. Hai dải chắn còn
lại được xác định theo các mode TE cao hơn. Dải
chắn thứ hai có dải tần từ 9,9 -10,99 GHz và đạt trung
tâm tại tần số 10,445 GHz. Trong khi đó dải chắn thứ
ba có tần số trung tâm là 13,005 GHz và dải tần từ
11,97 – 14,04 GHz. Ngồi ra, tần số trung tâm của dải
chắn thứ ba 

có thể được dự đốn (ước lượng) theo
cơng thức (2.6).

Hình 2.7. Đồ thị tán xạ của cấu trúc EBG đề xuất.
2.3.4. Khảo sát đặc tính dải chắn
Tiếp theo, ảnh hưởng của các tham số kích thước đến sự thay đổi của tần số trung tâm của các dải chắn
được khảo sát thơng qua các kết quả mơ phỏng. Tất cả các tần số có xu hướng giảm khi ta tăng số bước lặp 
của đường gấp khúc. Điều này có thể chứng minh từ cơng thức (2.4), khi  tăng lên điện dung ký sinh 


tăng, dẫn đến 

giảm xuống. Tiếp theo, khi càng tăng thì 

và 

càng tăng. Theo cơng thức (2.5a) và
(2.5c), khi 


và 

tăng dẫn đến 

và 

đều tăng và làm cho 

giảm xuống theo cơng thức (2.5d).
Mặt khác, khi  tăng thì các tần số trung tâm sẽ giảm. Theo cơng thức (2.5b), khi chiều dài khe chữ L tăng
thì  cũng sẽ tăng theo và dẫn đến 

sẽ giảm theo cơng thức (2.6).



(a)

(b)
Hình 2.8. (a) Mảng 4×5 phần tử EBG và thiết lập đo thực nghiệm và (b) Kết quả mơ phỏng và đo thực nghiệm hệ
số truyền đạt của mảng 4×5 phần tử EBG

0 180 360 540
0
2
4
6
8
10
12

14
16
Mode TE3
Mode TE4
Đường ánh sáng
Mode TM
Mode TE1
Mode TE2


Tần số (GHz)
Số sóng
Dải chắn thứ nhất 6,67-8,83 GHz
Dải chắn thứ hai 9,9-10,99 GHz
Dải chắn thứ ba 11,97-12,04 GHz

5 6 7 8 9 10 11 12 13 14 15
-60
-50
-40
-30
-20
-10
0


S21 (dB)
Tần số (GHz)
Mô phỏng
Thực nghiệm



14

Một mảng 4×5 phần tử EBG ba băng tần đã được mô phỏng, chế tạo và đo thực nghiệm để kiểm chứng
đặc tính chắn dải thông qua tham số truyền đạt S21. Kết quả mô phỏng và đo thực nghiệm của hệ số truyền
đạt S21 ở hình 2.8b là khá tương đồng ở dải chắn thứ nhất và thứ hai. Tuy nhiên, vẫn có sự sai số tương đối ở
dải chắn thứ ba. Nguyên nhân có thể là do sai số điện môi của vật liệu và sai số trong quá trình chế tạo thực
nghiệm.
2.3.5. Khả năng điều chỉnh và ứng dụng
Bên cạnh việc thay đổi các tham số kích thước trong phần tử, ta có thể thay đổi kích thước của chu kỳ
phần tử (kích thước phần tử) để tạo ra các dải chắn tần số khác nhau, tương ứng với dải tần hoạt động của các
hệ thống thông tin vô tuyến thế hệ mới hiện nay. Khi tăng kích thước a của phần tử từ 7,2 mm đến 12 mm,
các tính chất chắn dải của cấu trúc EBG đề xuất vẫn được thể hiện trong ba dải chắn riêng biệt.
Các dải chắn của cấu trúc EBG này cũng được khảo sát theo đồ thị tán xạ và hệ số truyền đạt S21. Từ
đồ thị tán xạ, ba dải chắn dải tần số lần lượt được xác định là (3,125 - 4,65) GHz, (4,936 - 5,285) GHz và (6
- 7,42) GHz. Kết quả mô phỏng và đo thực nghiệm mảng 4×5 phần tử EBG cũng được thực hiện. Với các dải
chắn tần số đo được lần lượt là (2.56 - 4.58) GHz, (4.975 - 5.57) GHz và (5.9 - 7.81) GHz, ta thấy rằng cấu
trúc EBG có thể được dùng cho các hệ thống như Wi-MAX (3,4 – 3,7 GHz), hệ thống WLAN (5.15 GHz).
Như vậy khi điều chỉnh kích thước phần tử và các tham số kích thước khác, khả năng ứng dụng cấu trúc
EBG đề xuất cho các hệ thống thông tin đa băng tần là hoàn toàn khả thi.
2.3.6. Bộ lọc thông dải sử dụng cấu trúc EBG
Một số nghiên cứu về giảm kích thước bộ lọc thông dải đã được đề xuất như sử dụng bộ cộng hưởng
vi dải đa mode (MMR) tải ba dây chêm tải hở mạch đầu cuối mắc song song với bộ cộng hưởng, hoặc sử
dụng bộ cộng hưởng MMR dạng gấp khúc. Hơn nữa, để giảm độ dài của bộ cộng hưởng MMR cần bổ sung
thêm các tụ điện và cuộn cảm trong sơ đồ mạch LC tương đương của bộ lọc. Một cấu trúc EBG đồng phẳng
biến dạng (DUC-EBG), với khả năng tạo ra nhiều thành phần L, C hơn so với một bộ cộng hưởng MMR
thông thường, có thể được áp dụng để giảm kích thước bộ lọc.
2.3.6.1. Thiết kế bộ lọc thông dải có kích thước nhỏ gọn
Cấu trúc EBG đồng phẳng ba băng tần đề xuất ở mục 2.2 được sử dụng để thiết kế bộ lọc thông dải.

Cấu trúc EBG ba băng tần là một loại của cấu trúc EBG đồng phẳng biến dạng gồm nhiều phần tử điện dung
và cuộn cảm tương đương. Trong thiết kế này, cấu trúc EBG ba băng tần được giữ nguyên thiết kế, ngoại trừ
đường vi dải gấp khúc được chuyển thành đường vi dải thẳng (Hình 2.9) để dễ dàng kết nối với hai đầu của
bộ lọc. Đường tiếp điện dạng xen kẽ được sử dụng nhằm nâng cao khả năng ghép nối giữa thành phần cộng
hưởng và thành phần tiếp điện. Điều kiện cộng hưởng được xác định dựa vào trở kháng 

. Dải tần cộng
hưởng được xác định khi 

xấp xỉ 50 . Trở kháng 

có thể dễ dàng tính được bằng lý thuyết đường
truyền ¼ bước sóng như biểu diễn công thức bên dưới:





  






  








(2.8)
C
1
C
1
C
1
C
1
C
1
C
1
C
1
C
1
L
1
L
1
L
1
L
1
C
2

L
2
C
2
L
2
L
2
C
2
C
0
C
0
C
0
C
0
L
3
C
3
C
3
L
2
C
2



Hình 2.9. Cấu trúc EBG đề xuất và sơ đồ mạch LC
Cả hai bộ lọc (Hình 2.10) đều sử dụng lớp điện môi FR4 có độ dày 1,6 mm, hằng số điện môi là 4,4 và
được thiết kế để cộng hưởng ở dải thông từ 1,4-5,4 GHz. Để đạt được dải thông này, đường ghép nối sử dụng
trong hai bộ lọc phải có đỉnh ghép nối tại tần số trung tâm 3,4 GHz. Khi đó, chiều dài bộ cộng hưởng của bộ
lọc tham khảo phải bằng ½ bước sóng tại 3,4 GHz để tạo ra hai mode cộng hưởng gần 1,4 và 5,4 GHz.
Để giảm kích thước của bộ lọc, một dãy gồm hai phần tử DUC-EBG được đặt giữa hai đường ghép nối
ở hai đầu của bộ lọc đề xuất. Chiều dài của dãy hai phần tử DUC-EBG là 11,6 mm (0,27

g
), trong khi đó


15

chiều dài của bộ cộng hưởng MMR truyền thống là 0,52

g
(

g
là bước sóng truyền trong lớp điện mơi tại tần
số trung tâm). Tổng chiều dài của bộ lọc đề xuất là 35,6 mm khơng kể đến đường tiếp điện 50Ω. Độ dài ghép
nối được khảo sát dựa vào mơ phỏng hệ số tổn hao chèn S21 trong dải tần từ (0-7 GHz). Kết quả, ghép nối
tốt nhất đạt được tại chiều dài ghép nối là 12 mm, tương ứng với g/4 tại tần số 3,4 GHz.

0.3
0.23
50Ω
0.18
22

1.1
20
0.74
12
0.22
Đường ghép nối

(a)
0.18
11.6
0.6 0.35
2.1
0.2
0.175
0.2
0.2
0.2
12
0.22
Đường ghép
nối
0.3
0.8
50Ω
0.2

(b)

(c)
Hình 2.10. Bộ lọc thơng dải băng rộng với các kích thước ở đơn vị mm: (a) Bộ lộc tham khảo với bộ cộng hưởng

MMR vi dải, (b) Bộ lọc đề xuất và (c) Mơ hình chế tạo thưc nghiệm của hai bộ lọc
2.3.6.2. Kết quả
Sau khi xác định độ dài ghép nối tốt nhất và độ dài của bộ cộng hưởng, hai bộ lọc trên đã được mơ
phỏng tối ưu, chế tạo và đo thực nghiệm. Băng thơng thực tế của bộ lọc được xác định khi S21

> -3 dB và
S11 < -10 dB. Quan sát từ hình 2.11, các kết quả mơ phỏng của hệ số tổn hao chèn cực đại (S21) của hai bộ
lọc là 2,8 dB trong cả dải thơng, với băng thơng từ 1,4 GHz đến 5,4 GHz. Trong khi đó, các hệ số tổn hao
ngược (S11) đều đạt dưới -10 dB trong cả dải thơng. Kết quả đo hệ số tổn hao ngược đều đạt dưới -10 dB
trong cả dải thơng từ 1,5 GHz đến 5,35 GHz. Như vậy, các kết quả mơ phỏng và đo thực nghiệm tham số tán
xạ của hai bộ lọc là tương đối phù hợp. Thơng số trễ nhóm trong dải tần số khảo sát của cả hai bộ lọc đã
được mơ phỏng và đo thực nghiệm. Giá trị biến thiên cực đại của trễ nhóm khi đo thực nghiệm là 2,1 ns,
trong khi giá trị này trong mơ phỏng chỉ là 0,42 ns.

(a)

(b)
Hình 2.11. Tham số tán xạ của bộ lọc: a) Bộ lọc tham khảo và b) Bộ lọc đề xuất
2.4. Tổng kết chƣơng
Chương này đề xuất và thực hiện giải pháp thiết kế cấu trúc EBG đồng phẳng đa băng tần sử dụng
phần tử điện dung ký sinh. Hai cấu trúc EBG hai băng tần và ba băng tần đã được phân tích, thiết kế, chế tạo
và đo thực nghiệm. Các dải chắn được mơ hình bằng sơ đồ mạch LC tương đương và dễ dàng điều chỉnh
bằng cách thay đổi các tham số kích thước của phần tử EBG. Đề xuất thiết kế bộ lọc băng rộng thơng dải có
kích thước nhỏ gọn sử dụng cấu trúc EBG ba băng tần. Bộ lọc đề xuất đã thu nhỏ được 22% kích thước khi
so sánh với bộ lọc sử dụng đường vi dải hoạt động ở chế độ cộng hưởng đa mode (MMR) nhờ hiệu ứng sóng
chậm tạo bởi các phần tử L, C.

0 1 2 3 4 5 6 7
-60
-50

-40
-30
-20
-10
0
S21-Thực nghiệm
S11-Thực nghiệm
S21-Mô phỏng
S11-Mô phỏng


|S11| & |S21| (dB)
Tần số (GHz)

0 1 2 3 4 5 6 7
-40
-30
-20
-10
0
S21-Thực nghiệm
S11-Thực nghiệm
S21-Mô phỏng
S11-Mô phỏng


|S11| & |S21| (dB)
Tần số (GHz)



16

CHƢƠNG 3
GIẢI PHÁP THIẾT KẾ CẤU TRÚC EBG LINH HOẠT SỬ DỤNG
CẤU TRÚC HÌNH HỌC FRACTAL
3.1. Giới thiệu chƣơng
Thông thường có hai hướng nghiên cứu để tạo ra được dải chắn băng rộng: (1) sử dụng các đường nối
kim loại (gây khó khăn và tăng giá thành chế tạo) và (2) sử dụng nhiều lớp điện môi hay nhiều phần tử EBG
đơn (làm tăng kích thước của cấu trúc và tăng chi phí chế tạo). Điều này ngược lại với những nghiên cứu gần
đây thường tập trung vào phát triển các cấu trúc EBG phẳng để dễ dàng tích hợp vào các cấu trúc anten nhằm
cải thiện đặc tính bức xạ của anten. Ngoài việc sử dụng các dạng hình học như xoắn ốc, gấp khúc, vòng cộng
hưởng v.v. trong thiết kế để mở rộng băng tần hoặc tạo ra nhiều băng tần cho cấu trúc EBG, thì cấu trúc hình
học Fractal cũng đã được nghiên cứu và đưa vào trong các thiết kế cấu trúc EBG. Tuy nhiên trong các thiết kế
trên có nhược điểm là sử dụng cột nối kim loại trong thiết kế.
Chương này đề xuất một giải pháp thiết kế cấu trúc EBG hai chiều phẳng sử dụng cấu trúc hình học
Fractal. Cụ thể, các tam giác Sierpinski Gasket ở bước 4 (mode-2) được sử dụng như bề mặt kim loại phía
trên của cấu trúc EBG và được ghép thành cấu trúc EBG hình lục giác đều. Cấu trúc EBG hình lục giác đề
xuất đã thể hiện được tính linh hoạt khi ta thay đổi tham số khoảng cách giữa các tam giác Sierpinski trong
cùng một phần tử EBG. Cấu trúc EBG đề xuất cũng được so sánh với cấu trúc EBG dạng hình nấm thông
thường để khảo sát đặc tính băng thông rộng của dải chắn.




Bước 1
Bước 2
Bước 3
Bước 4
Hình 3.1. Bốn bước lặp để tạo nên tam giác Sierpinski Gasket mode-2
3.2. Thiết kế cấu trúc EBG có băng thông linh hoạt

Cấu trúc hình học EBG, được đề xuất ở hình 3.2, là một cấu trúc dạng hai chiều. Lớp điện môi sử dụng
trong thiết kế này là FR4 có hệ số điện môi là 4,4, độ dày lớp đế là 1,6 mm và hệ số suy hao là 0,02. Kích
thước phần tử W được chọn khảo sát tại 10 mm. Trong thiết kế này, sáu tam giác Sierpinski được sắp xếp
xoay vòng 60
0
quanh tâm để tạo ra cấu trúc EBG hình lục giác đều. Mục đích của thiết kế này là cho phép
điều chỉnh tần số cộng hưởng và băng thông bằng cách thay đổi kích thước phần tử EBG (W) và khoảng cách
giữa các phần tử liền kề (G1). Ngoài ra, khi thay đổi khoảng cách giữa các tam giác Sierpinski trong một
phần tử, ta có thể tạo ra một cấu trúc EBG có hai băng tần. Cụ thể khi G2 có giá trị dương, cấu trúc EBG có
băng thông rộng, gọi là cấu trúc EBG băng rộng (BEBG). Mặt khác khi G2 có giá trị bằng 0, cấu trúc EBG
băng rộng sẽ trở thành cấu trúc EBG hai băng tần (DEBG). Mô hình của các cấu trúc này được minh họa chi
tiết ở hình 3.2(a) và 3.2(b).
(b)
(a)
G2
G1
G1
(c)
W1
W
1
W3 W4
W2
W
1
Đế kim loại
H
W
(d)


Hình 3.2. Cấu trúc EBG đề xuất: (a) BEBG, (b) DEBG, (c) Tam giác Sierpinski Gasket, và (d) Cấu trúc
BEBG dạng ba chiều. Chi tiết các kích thước: W4 = W1/8, W3 = W1/4, W2 = W1/2, 


  



 , G2 = 0.5mm; G1 = 1mm


17

3.3. Khảo sát đặc tính dải chắn
Trong phần này, đặc tính dải chắn của hai cấu trúc EBG, tạo bởi tam giác Sierpinski ở trường hợp G
2
=
0 và G
2
= 0.5 mm, sẽ được khảo sát. Cụ thể, các dải chắn của các cấu trúc EBG đề xuất sẽ được khảo sát ở
các bước lặp khác nhau. Bên cạnh đó, dải chắn của cấu trúc EBG hình nấm thông thường cũng được xác định
để so sánh với với cấu trúc EBG băng rộng đề xuất.
3.3.1. Cấu trúc EBG ở các bƣớc lặp khác nhau
Một mảng 3×4 phần tử EBG đã được mô phỏng bằng “phương pháp đường truyền vi dải tự do
(SMM)”, được trình bày trong hình 3.3. Cụ thể, một đường vi dải 50Ω sẽ được đặt trên một lớp điện môi hỗ
trợ có độ dày 0,8 mm. Bên dưới lớp điện môi này là mảng 3×4 phần tử EBG. Các cấu trúc EBG lục giác
được tạo bởi các bước lặp khác nhau sẽ được khảo sát trong trường hợp giá trị của W được cố định ở 10 mm.
Ở mỗi bước lặp sẽ có hai cấu trúc EBG ứng với hai giá trị của G2 là 0 mm và 0,5 mm. Các kết quả mô phỏng
tham số tán xạ của cấu trúc EBG dựa vào các tam giác Sierpinski ở các bước lần lượt được mô phỏng.
Trường hợp ở bước lặp thứ nhất, cấu trúc EBG tạo ra một dải chắn từ 5.07 đến 7.58 GHz khi G2 = 0,5

mm. Tuy nhiên, khi giá trị của G2 bằng 0 thì dải chắn không xuất hiện trong trường hợp này.
Cấu trúc EBG tạo bởi các tam giác Sierpinski ở bước lặp 2 có dải chắn ở dải tần thấp hơn so với trường
hợp ở bước lặp 1 khi G2 = 0,5 mm. Băng thông của dải chắn từ 4.22 đến 6.88 GHz. Trong khi đó, hai dải
chắn được xác định trong trường hợp giá trị của G2 là 0. Hai dải chắn có dải tần lần lượt là 2.25 - 2.96 GHz
và 4.14 - 5.34 GHz.
Ở bước lặp thứ 3, trường hợp G2 = 0,5 mm, cấu trúc EBG có dải chắn lớn hơn so với trường hợp ở
bước lặp 2. Dải tần của dải chắn này từ 4.32 đến 7.92 GHz. Ở trường hợp G2 bằng 0, ta xác định được hai
dải chắn có dải tần lần lượt là 2.15 - 3.02 GHz và 3.81 - 5.20 GHz. Tiếp theo, các đặc tính dải chắn của cấu
trúc DEBG và BEBG tạo bởi tam giác Sierpinski ở bước lặp 4 sẽ được khảo sát khi ta thay đổi các tham số
về kích thước phần tử W và khoảng cách giữa hai phần tử liền kề G1.


(a)
(b)
Hình 3.3. Mảng 3×4 phần tử EBG với đường vi dải ở phía trên: (a) Mảng EBG dạng hình nấm thông thường,
(b) Mảng EBG đề xuất.
3.3.2. Cấu trúc EBG băng rộng (BEBG)
Băng thông của cấu trúc EBG là một thông số quan trọng bên cạnh dải tần hoạt động và được xác định
theo biểu thức sau:







(3.1)
Trong đó,  là trở kháng không gian tự do.
Theo biểu thức (3.1) để tăng độ rộng dải tần của dải chắn, ta cần phải tăng giá trị điện cảm tương
đương và giảm điện dung tương đương . Đối với cấu trúc EBG hình nấm, điện dung có thể tăng lên khi

ta sử dụng cột nối kim loại xoắn ốc, cột nối kim loại nghiêng, vật liệu có hệ số từ thẩm lớn hoặc tăng chiều
dày của lớp điện môi. Tuy nhiên điều này dẫn đến khó khăn trong chế tạo thực nghiệm và tăng suy hao.
Trong khi đó, điện dung  có thể giảm bằng cách giảm hệ số điện môi tương đối hoặc tăng khoảng cách giữa
hai phần tử EBG liền kề.
Đối với cấu trúc EBG đồng phẳng, ta không thể thay đổi giá trị của điện cảm tương đương  khi lớp
điện môi có độ dày nào đó đã được chọn. Do vậy, ta chỉ có thể thay đổi điện dung tương đương . Trong
thiết kế này có nhiều tham số có thể ảnh hưởng đến điện dung tổng . Đầu tiên là khoảng cách giữa các EBG
liền kề luôn tỷ lệ nghịch với điện dung tạo bởi chính nó (điện dung đồng phẳng 

) tiếp đến là điện dung
Lớp điện môi
hỗ trợ
Đƣờng vi dải
phía trên
Cấu trúc EBG
hình nấm
Lớp điện môi
EBG
Lớp điện môi
hỗ trợ
Đƣờng vi dải
phía trên
Lớp điện môi
EBG
Cấu trúc
EBG đề xuất


18


ghép nối nối tiếp 

giữa các tam giác Sierpinski trong một phần tử EBG đơn. Ngồi ra, một thành phần quan
trọng nữa đó là điện dung ghép song song 

tạo ra giữa lớp kim loại trên bề mặt và lớp kim loại ở đế của
cấu trúc EBG. Điện dung này sẽ giảm khi kích thước phần tử W giảm.
Để phân tích ảnh hưởng của các tham số kích thước đến điện dung tổng , ta sẽ thay đổi giá trị của
kích thước phần tử (W) và khoảng cách giữa hai phần tử EBG liền kề (G1) trong khi giữ ngun các tham số
còn lại. Các kết quả mơ phỏng đã được thực hiện và làm rõ được những phân tích trên.
3.3.3. Cấu trúc EBG hai băng tần (DEBG)
Trong phần này, khoảng cách G2 giữa các tam giác Sierpinski liền kề trong một phần tử sẽ được khảo
sát trong khi các tham số khác vẫn giữ ngun giá trị. Điều đặc biệt trong thiết kế này là có khả năng biến đổi
từ một cấu trúc EBG băng rộng thành cấu trúc EBG hai băng tần khi G2 bằng 0. Với giá trị của W là 4 mm,
dải tần của dải chắn thứ nhất xác định từ 5.51GHz đến 7.73 GHz, trong khi đó dải chắn thứ hai có dải tần
trong khoảng 10.20 - 12.18 GHz. Như vậy, khi G2 lớn hơn 0, hai dải chắn xuất hiện trong trường hợp G2
bằng 0 sẽ di chuyển và phủ lên nhau để tạo ra một dải chắn có băng thơng rộng hơn. Đây chính là triết lý
thiết kế để tạo ra cấu trúc EBG băng thơng rộng.
3.3.4. Cấu trúc EBG hình nấm thơng thƣờng
Để so sánh đặc tính dải chắn của cấu trúc EBG băng rộng đề xuất (BEBG), một mảng 3×4 phần tử
EBG dạng hình nấm lục giác (tạo bởi sáu tam giác Sierpinski ở bước lặp 1) đã được khảo sát. Mảng EBG
này cũng được khắc lên lớp điện mơi FR4 có độ dày 1,6 mm. Chiều dài phần tử EBG này được cố định tại 10
mm. Kết quả mơ phỏng các tham số tán xạ của mảng xác định được một dải chắn có dải tần từ 5.22 GHz đến
8.32 GHz, và băng thơng khoảng 46% tại tần số trung tâm của dải chắn. Trong khi đó, băng thơng của cấu
trúc BEBG đạt gần gấp đơi (87%) so với cấu trúc EBG dạng hình nấm có cùng kích thước phần tử.
3.4. Kết quả thực nghiệm
Mơ hình mảng EBG đã chế tạo được trình bày ở hình 3.4. Kết quả đo đạc và mơ phỏng các tham số tán xạ
của hai cấu trúc đề xuất BEBG và DEBG được vẽ trên cùng một đồ thị tương ứng với hình 3.5(a) và 3.5(b).
Từ hình 3.5(a), cấu trúc BEBG có một dải chắn điện từ giữa tần số 4,15 GHz và 10 GHz, tương ứng với băng
thơng là 83%. Trong khi đó, quan sát hình 3.5(b) ta thấy hai dải chắn điện từ xuất hiện trong cấu trúc DEBG

với dải tần số tương ứng lần lượt là (2,17-2,97) GHz và (3,58-5,32) GHz. Băng thơng tương ứng của hai dải
chắn này là 32% và 39%. Ta thấy rằng các kết quả đo thực nghiệm tương đối phù hợp với kết quả mơ phỏng.


(a)
(b)
Hình 3.4. Mơ hình chế tạo thực nghiệm của mảng EBG với đường vi dải phía trên: (a) mảng 3×4 phần tử DEBG
và (b) mảng 3×4 phần tử BEBG


(a)
(b)
Hình 3.5. Băng thơng của cấu trúc EBG tại W bằng10 mm: (a) BEBG và (b) DEBG

3 4 5 6 7 8 9 10 11
-80
-70
-60
-50
-40
-30
-20
-10
0
S21-Mô phỏng
S21-Thực nghiệm
S11-Mô phỏng
S11-Thực nghiệm



|S11| & |S21| (dB)
Tần số (GHz)
Dải chắn

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-80
-70
-60
-50
-40
-30
-20
-10
0
Dải chắn 2
S21-Mô phỏng
S21-Thực nghiệm
S11-Mô phỏng
S11-Thực nghiệm


|S11| & |S21| (dB)
Tần số (GHz)
Dải chắn 1


19

3.5. Ứng dụng cải thiện đặc tính bức xạ của anten vi dải
Để kiểm chứng tính khả thi của cấu trúc EBG đề xuất trong ứng dụng thực tế, hai cấu trúc EBG đề xuất

sẽ được tích hợp với anten vi dải để cải thiện đặc tính bức xạ của anten. Ngoài ra, anten vi dải với mặt phẳng
đế kim loại thông thường cũng được khảo sát và so sánh với các anten vi dải được tích hợp cấu trúc EBG.
Phiến
kim loại
Mặt phẳng
đế kim loại
Ws
Ws
Wp
Wp
X
Y
Z
(a)
Phiến
kim loại
Mặt phẳng đế
BEBG
Ws
Ws
X
Y
Z
(b)
Phiến
kim loại
Mặt phẳng đế
DEBG
Ws
Ws

X
Y
Z
(c)
Hình 3.6. Mô hình các anten vi dải: (a) Anten vi dải tham khảo với mặt phẳng đế thông thường, (b) Anten vi dải
với mặt phẳng đế BEBG, và (c) Anten vi dải với mặt phẳng đế DEBG (Ws = 57 mm, Wp = 27 mm).
Mô hình anten vi dải tham khảo có mặt phẳng đế thông thường (Hình 3.6(a)) được in trên lớp điện môi
có hệ số điện môi tương đối là 4,4 và độ dày là 1,6 mm. Kích thước của tấm điện môi này là WsWs mm
2
.
Trong khi đó, hình 3.6(b) và 3.6(c) biễu diễn lần lượt hai mô hình anten vi dải sử dụng cấu trúc BEBG và
DEBG thay cho mặt phẳng đế thông thường. Kích thước của các anten là giống nhau nhằm mục đích so sánh
mô hình anten vi dải thông thường với mô hình anten sử dụng cấu trúc EBG. Tần số của anten vi dải được
thiết kế tại 5 GHz và nằm trong dải chắn điện từ của hai cấu trúc EBG đề xuất.
Kết quả mô phỏng hệ số tổn hao ngược của các anten vi dải cho thấy, hệ số tổn hao ngược của anten
tham khảo, anten BEBG và anten DEBG lần lượt là -21.85 dB, -29.82 dB và -27.94 dB. Rõ ràng độ sâu cộng
hưởng của anten tham khảo kém anten BEBG và anten DEBG lần lượt là 7,97 dB và 6,09 dB. Như vậy,
anten vi dải sử dụng cấu trúc EBG đã giảm được suy hao ở đầu vào tiếp điện và cải thiện hiệu suất bức xạ
của anten so với trường hợp sử dụng mặt phẳng đế thông thường.

(a)

(b)
Hình 3.7. Mô phỏng đồ thị bức xạ của anten tham khảo, anten BEBG và anten DEBG tại tần số 5 GHz
khảo sát trong: (a) Mặt phẳng XZ, (b) Mặt phẳng YZ.
Kết quả mô phỏng đồ thị bức xạ của các anten tại tần số 5 GHz trong hai mặt XZ và YZ được tổng hợp
ở hình 3.7. Anten vi dải tham khảo thực hiện bức xạ ngược lớn, trong khi hai anten sử dụng cấu trúc EBG có
búp sóng ngược nhỏ, đồng nghĩa với việc năng lượng lãng phí ở hướng bức xạ ngược sẽ giảm. Cụ thể, búp
sóng ngược của anten BEBG và anten DEBG đã lần lượt giảm được 9,16 dB và 8,03 dB so với anten tham
khảo. Vì vậy, đồ thị bức xạ của anten sử dụng cấu trúc EBG đã được cải thiện đáng kể.

3.6. Tổng kết chƣơng
Chương này đã đề xuất và thực hiện giải pháp thiết kế cấu trúc EBG mới dựa sử dụng các tam giác
Sierpinski Gasket. Đây là một thiết kế linh hoạt khi thay đổi khoảng hở ghép giữa các tam giác Sierpinski
trong một đơn vị EBG, hai cấu trúc EBG khác nhau được tạo ra, tương ứng với cấu trúc EBG băng rộng và
cấu trúc EBG hai băng tần. Hai cấu trúc EBG đề xuất đã được sử dụng như mặt phẳng đế trở kháng lớn để
cải thiện đặc tính bức xạ cho anten vi dải ở tần số 5 GHz.

Anten tham khaûo, Anten BEBG, Anten DEBG
-30
-20
-10
0
0
30
60
90
120
150
180
210
240
270
300
330
-30
-20
-10
0

Anten tham khaûo, Anten BEBG, Anten DEBG

-30
-20
-10
0
0
30
60
90
120
150
180
210
240
270
300
330
-30
-20
-10
0


20

CHƢƠNG 4
GIẢI PHÁP GIẢM NHỎ KÍCH THƢỚC CẤU TRÚC EBG

4.1. Giới thiệu chƣơng
Về cơ bản, có hai xu hướng thiết kế được đề xuất để giảm nhỏ kích thước của cấu trúc EBG: (1) Tăng
giá trị điện cảm tương đương tổng cộng L và (2) Tăng điện dung tương đương tổng cộng  của cấu trúc

EBG. Các đề xuất này sẽ được phân tích một cách chi tiết trong chương này. Trên cơ sở đó, đề xuất một giải
pháp giảm nhỏ kích thước cấu trúc EBG dạng hình nấm.
4.2. Các nghiên cứu giảm nhỏ kích thƣớc cấu trúc EBG
Cấu trúc chắn dải điện từ EBG có vai trò như một bộ lọc chắn dải ở một dải tần số nào đó. Khi đó, cấu
trúc EBG được biễu diễn bởi một sơ đồ mạch LC tương đương. Tần số trung tâm của dải chắn điện từ được
xác định bởi công thức (2.1). Từ công thức (2.1) ta thấy, tần số cộng hưởng trung tâm của dải chắn điện từ
phụ thuộc vào điện cảm tương tương và điện dung tương đương . Vì vậy, để giảm 

mà không làm thay
đổi kích thước của phần tử EBG, ta có thể tăng giá trị điện cảm , hoặc tăng giá trị điện dung . Đã có nhiều
công trình nghiên cứu về các giải pháp giảm nhỏ kích thước cấu trúc EBG dựa vào nguyên lý trên.
4.2.1. Giảm nhỏ kích thƣớc bằng cách tăng điện dung tổng cộng C
Về cơ bản việc tăng điện dung tổng cộng C có thể đạt được bằng cách tạo ra nhiều điện dung ký sinh
trên phạm vi bề mặt tấm kim loại phía trên của phần tử EBG. Cụ thể, các đường vi dải dạng gấp khúc, xoắn
ốc sẽ được tạo ra. Từ đó hình thành một chuỗi các điện dung ký sinh 


nối tiếp nhau. Khi đó, điện dung
tổng cộng sẽ xác định bởi điện dung ban đầu mắc song song với tổng điện dung ký sinh 

. Vì vậy, tần số
trung tâm của dải chắn điện từ (4.1) được viết lại như sau:













(4.1)
4.2.2. Giảm nhỏ kích thƣớc bằng cách tăng điện cảm tổng cộng L
Bên cạnh việc tạo ra các điện dung ký sinh để giảm nhỏ kích thước cấu trúc EBG, một số nghiên cứu
đã tạo ra các điện cảm bổ sung 

. Tuy nhiên, các điện cảm 

cần phải mắc nối tiếp với điện cảm ban đầu 
để tăng tổng giá trị điện cảm của cấu trúc EBG. Một số cấu trúc EBG được đè xuất như sử dụng mặt phẳng
đế dạng xoắn ốc, hoăc sử dụng cột nối kim loại dạng xoắn ốc để thay cho cột nối kim loại dạng thẳng của cấu
trúc EBG hình nấm. Khi đó, biểu thức (4.1) sẽ được viết lại như sau:







  




(4.2)
4.3. Giải pháp giảm nhỏ kích thƣớc cấu trúc EBG
Từ những phân tích trên ta thấy, các cấu trúc EBG đã đề xuất hoặc chỉ sử dụng phương pháp tăng điện

dung tổng hoặc chỉ sử dụng phương pháp tăng điện cảm tổng để giảm kích thước của cấu trúc EBG. Từ
biểu thức (2.1), nếu kết hợp đồng thời việc tăng giá trị tổng cộng của điện dung và điện cảm thì tần số
cộng hưởng của dải chắn điện từ sẽ giảm nhỏ hơn. Điều này đồng nghĩa với kích thước của cấu trúc EBG sẽ
nhỏ gọn hơn khi so với cấu trúc EBG khác có cùng tần số cộng hưởng. Mô hình được chọn lựa để áp dụng
giải pháp giảm kích thước đề xuất là cấu trúc EBG hai chiều dạng hình nấm.

C
L
C
L
L
L
C
R
L
R
L
R
C
L
C
L
L
R
L
R

Hình 4.1. Cấu trúc các phần tử đơn vị EBG hình nấm và sơ đồ mạch LC tương đương

Nguyên lý hoạt động của cấu trúc EBG hình nấm có thể giải thích bằng sự kết hợp của một dãy mạch

LC và một mạch LC song song được biễu diễn ở hình 4.1. Đây chính là mô hình đường truyền tổng hợp giữa
các thành phần LH và thành phần RH (CRLH). Các thành phần LH là điện dung 

được tạo nên từ khoảng
cách các đơn vị EBG và điện cảm 

được tạo nên từ dòng điện chạy qua các cột nối hình trụ bán kính r. Còn
C
R
L
L
C
L
L
R
Đế kim loại
Cột nối
kim loại
Tấm kim
loại


21

các thành phần RH là điện dung 

được tạo nên từ điện thế giữa các tấm kim loại với mặt phẳng đế và điện
cảm 

được tạo nên từ biến đổi dòng điện chạy từ tấm kim loại phía trên xuống mặt phẳng đế.

Tần số trung tâm của cấu trúc EBG hình nấm thông thường ở hình 4.1 được xác định:











(4.3)
Trong đó, 


và 

tương ứng với thành phần điện cảm LH và điện dung LH ban đầu.
Trong giải pháp đề xuất, các phần tử điện dung và điện cảm tương đương sẽ được tạo ra đồng thời để
tăng thành phần điện dung và điện cảm tổng cộng, từ đó giảm tần số cộng hưởng trung tâm của dải chắn
trong công thức (4.3). Cấu trúc EBG sẽ được thiết kế lần lượt theo ba bước ứng với các cấu trúc EBG-1,
EBG-2 và EBG-3.
4.3.1. Cấu trúc EBG-1


(a)
(b)

(c)


(d)
C
L
L
R
L
R
C
L
C
LP
C
LP
L
LA
L
L
C
R

(e)
Hình 4.2. a) Cấu trúc EBG hình nấm, (b) và (c) Cấu trúc EBG-1, (d) Thành phần điện dung và điện cảm bổ
sung tạo ra từ mặt phẳng đế, (e) Sơ đồ mạch LC tương đương
Trong thiết kế, các thành phần điện dung và điện cảm bổ sung sẽ được tạo ra từ việc biến đổi mặt đế
kim loại ban đầu. Mô hình cấu trúc EBG-1 được mô tả ở hình 4.2(b). Ta thấy rằng, mặt đế kim loại hình
vuông được thay bằng một cấu trúc dạng đồng phẳng. Với dạng đế này ta tạo ra thêm thành phần điện dung
ký sinh 

và điện cảm bổ sung 


như hình 4.2(d). Vì vậy, sơ đồ mạch LC tương đương của cấu trúc
EBG-1 ở hình 4.2(e) là sự kết hợp các thành phần LC ở hình 4.1 và hình 4.2(c). Trong đó thành phần 


xem như mắc song song với 

và thành phần 

mắc nối tiếp với 

.
Tần số trung tâm của dải chắn điện từ của cấu trúc EBG-1 được xác định bởi công thức sau:









 




 




(4.4)
Cấu trúc EBG-1 được khảo sát bằng phần mềm mô phỏng CST. Dải chắn điện từ của cấu trúc EBG
dạng nấm cũng được khảo sát và so sánh với cấu trúc đề xuất. Cấu trúc EBG đề xuất và cấu trúc thông
thường sẽ được khảo sát ở cùng tham số về kích thước phần tử đơn vị, tấm kim loại, lớp điện môi nền và bán
kính cột nối kim loại. Lớp điện môi được chọn là FR4 có chiều dày 1,6 mm, hệ số điện môi 4,4. Kích thước
phần tử EBG là a = 8,5 mm.
Đặc tính dải chắn điện từ được xác định dựa vào đồ thị tán xạ của cấu trúc EBG. Quan sát ở hình 4.3,
ta thấy một dải cấm tần số xuất hiện giữa mode sóng TM và mode TE trong kết quả mô phỏng đồ thị tán xạ
của hai cấu trúc EBG. Đối với cấu trúc EBG hình nấm ở hình 4.3(a), dải chắn điện từ bắt đầu tại tần số 4,15
GHz và kết thúc tại tần số 5,08 GHz. Trong khi đó, cấu trúc EBG-1 ở hình 4.3(b) có dải chắn điện từ ở tần số
thấp hơn từ 3,18 GHz đến 4,12 GHz.
Từ kết quả trên ta thấy rằng tần số trung tâm của cấu trúc EBG-1 đã giảm so với cấu trúc EBG thông
thường có cùng kích thước. Tiếp theo, với mục đích tiếp tục giảm nhỏ kích thước cấu trúc EBG-1, cấu trúc
EBG -2 cải tiến sẽ được thiết kế với ý tưởng tiếp tục tăng điện dung tổng cộng của cấu trúc EBG-1 ban đầu.
g/2
a
a
1
r
g
2
a
2
g
1
H=1.6mm
C
LP
L

LA


22



(a)
(b)
Hình 4.3. Đồ thị tán xạ. a) Cấu trúc EBG hình nấm, và b) Cấu trúc EBG-1
4.3.2. Cấu trúc EBG-2
Cấu trúc này được bổ sung thêm một vòng kim loại hình vng và được đặt ở giữa lớp điện mơi
FR4_epoxy. Vòng kim loại này có độ dài cạnh ngồi là 8,5mm và chiều rộng của vòng là a
R
= 1.25 mm. Chi
tiết cấu trúc EBG-2 được trình bày ở hình 4.4.



L
L
C
R
L
LA
L
R
C
LP
C

L
C
L
C
LP
L
R
C
LC
C
LC

Hình 4.4. Cấu trúc EBG-2 và sơ đồ mạch LC tương đương
Như vậy, với việc bổ sung một vòng kim loại hình vng vào cấu trúc EBG-1 ban đầu, ta đã tạo ra một
điện dung 

mắc song song với các thành phần điện dung ban đầu. Khi đó, sơ đồ mạch LC tương đương
của cấu trúc EBG-2 được vẽ lại ở hình 4.4. Tần số trung tâm của cấu trúc EBG-2 được viết lại như sau:









 





 

 



(4.5)
Cấu trúc EBG-2 được mơ phỏng hồn tồn tương tự như cấu trúc EBG-1 ban đầu. Kết quả mơ phỏng
đồ thị tán xạ, Dải chắn điện từ bắt đầu tại tần số 2.52 GHz và kết thúc tại tần số 3.27 GHz. Như vậy, từ biểu
thức (4.5) ta thấy rằng, bằng việc bổ sung thêm một điện dung ghép nối C
LC
(tạo bởi vòng kim loại hình
vng) đã làm cho điện dung tổng cộng tăng lên từ đó làm giảm tần số cộng hưởng của cấu trúc EBG-2. So
sánh kết quả mơ phỏng đồ thị tán xạ, ta thấy rằng dải chắn điện từ của cấu trúc EBG-2 đã dịch xuống vùng
tần số thấp hơn so với trường hợp cấu trúc EBG-1
4.3.3. Cấu trúc EBG-3
Ở bước thứ ba, cấu trúc EBG-3 được đề xuất bằng cách kht các khe chữ L trên bề mặt vòng kim loại
hình vng. Khi đó, các thành phần điện dung ký sinh sẽ được tạo bởi các khe này. Mơ hình cấu trúc EBG-3
được trình bày ở hình 4.5.



C
L
C
LC
C
LP

C
P
C
L
C
LC
C
LP
C
P
L
R
L
L
C
R
L
LA
L
R

Hình 4.5. Cấu trúc EBG-3 và sơ đồ mạch LC tương đương
Trong cấu trúc này, bốn khe chữ L được khắc ở bốn góc trên bề mặt vòng kim loại hình vng. Khi ấy,
vòng kim loại này có dạng của vòng cổng hưởng dạng khe hình tròn. Các khe chữ L sẽ tương ứng với các
thành phần điện dung ký sinh 

và làm tăng điện dung tổng cộng ban đầu. Sơ đồ mạch LC tương đương
được vẽ lại ở hình 4.5. Tần số trung tâm của dải chắn điện từ của cấu trúc EBG-3 được viết lại như sau:

0 180 360 540

0
1
2
3
4
5
6
7
8
9
10
11


Tần số (GHz)
Số sóng
Mode TM
Mode TE
Đường ánh sáng
Dải chắn 4,15 - 5,08 GHz

0 180 360 540
0
1
2
3
4
5
6



Tần số (GHz)
Số sóng
Mode TM
Mode TE
Đường ánh sáng
Dải chắn 3,18 - 4,12 GHz
H/2
H/2
g
2
a
2
g
1
a
R

g
2
a
2
g
1
a
R


23











 




 

 

 




(4.6)
Cấu trúc EBG-3 cũng được mô phỏng tương tự như ở các bước trước đó. Từ kết quả mô phỏng đồ thị
tán xạ của cấu trúc EBG-3, dải chắn điện từ bắt đầu tại tần số 2.18 GHz và kết thúc tại tần số 2.82 GHz.
4.3.4. So sánh với các cấu trúc EBG khác
Một số mô hình cấu trúc EBG như cấu trúc hình nấm, cấu trúc Hilbert bậc 2, cấu trúc với cột nối đặt
lệch, cấu trúc đường cong cực sẽ được khảo sát trong phần này. Từ các kết quả mô phỏng dải chắn các cấu
trúc EBG, các cấu trúc EBG với cột nối đặt lệch, cấu trúc EBG đường cong cực và cấu trúc EBG-3 đề xuất

đều tạo ra dải chắn có độ rộng băng thông tương đương nhau (khoảng 9 %) và nhỏ hơn băng thông của cấu
trúc EBG hình nấm (23%). Tuy nhiên, các cấu trúc này đã giảm nhỏ được kích thước so với cấu trúc EBG
hình nấm lần lượt khoảng 41%, 56% và 61%.
4.3.5. Ứng dụng giảm ảnh hƣởng tƣơng hỗ cho hệ thống anten mảng
Mảng anten gồm hai phần tử anten vi dải được in trên đế điện môi FR4, với hệ số điện môi là 4,4 và
ghép nối trong mặt phẳng E. Cấu trúc EBG-3 được tối ưu để tạo ra dải chắn bao phủ tần số hoạt động của
anten mảng. Kích thước phần tử EBG tối ưu là 6 mm  6 mm, với kích thước phiến kim loại ở mặt trên là 5,5
mm  5,5 mm. Để giảm ảnh hưởng tương hỗ cho anten mảng, một mảng 27 phần tử EBG-3 được chèn giữa
hai phần tử của mảng như minh họa ở hình 4.6. Trong đó, anten vi dải được thiết kế tối ưu ở tần số cộng
hưởng 5,1 GHz có kích thước 9 mm × 13,2 mm. Khoảng cách giữa hai phần tử anten đơn tính từ điểm tiếp
điện đến điểm tiếp điện là 40 mm (0,68
0
). Hai phần tử anten được tiếp điện độc lập bởi đường dây đồng trục
có trở kháng 50 với điểm tiếp điện được đặt cách tâm của anten vi dải 1,75 mm. Kích thước tổng thể của
anten mảng là 60 mm  90 mm  1,6 mm.

x
13,2 mm
Điểm tiếp điện
Anten vi dải
Cột nối kim loại
EBG
9 mm
1,75 mm
40 mm
y
x
z
5,5 mm


6 mm
2 mm
Điểm tiếp điện
0,4 mm
Cột nối kim loại


Mặt phẳng đế
của EBG
Điểm tiếp
điện
Mặt phẳng đế của anten
mảng
Mặt phẳng đế
của EBG
Điểm tiếp điện
Mặt phẳng đế của
anten mảng

(a)
(b)
(c)
Hình 4.6. Mô hình anten mảng có cấu trúc EBG (a) Lớp trên, (b) Lớp dưới, (c) Mặt phẳng đế
Kết quả mô phỏng tham số tán xạ của anten mảng
khi có và không có cấu trúc EBG cho thấy tần số cộng
hưởng trung tâm của hai phần tử mảng là 5,1 GHz. Giá
trị ghép nối tương hỗ S21 của anten mảng có EBG đạt
-46 dB, và đã giảm được 24 dB so với trường hợp khi
chưa có cấu trúc EBG (-22 dB). Mô hình hai anten mảng
đã được chế tạo và đo thực nghiệm. Cụ thể, tần số cộng

hưởng của hai mảng anten đạt lân cận 5,2 GHz. Giá trị
ghép nối tương hỗ S21 của anten mảng có EBG đạt -42.5
dB, và giảm được 19 dB so với trường hợp khi chưa có
cấu trúc EBG (-23.5 dB). Các kết quả đo thực nghiệm
này đã chứng minh tính khả thi của cấu trúc đề xuất.


Hình 4.7. Kết quả đo tham số tán xạ S của anten
mảng khi không có và khi có cấu trúc EBG-3
4.4. Tổng kết chƣơng
Chương này đề xuất và thực hiện giải pháp giảm kích thước của cấu trúc EBG hình nấm thông thường.
Giải pháp này tạo ra đồng thời các phần tử điện dung và điện cảm nhằm mục đích tăng giá trị tổng điện dung
và tổng điện cảm của cấu trúc EBG. Cấu trúc EBG-3 đã giảm kích thước 61% so với cấu trúc EBG hình nấm
và đã giảm được 24 dB ảnh hưởng tương hỗ do ghép nối khi sử dụng cho mảng anten vi dải hoạt động tại 5,1
GHZ.

4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
-45
-40
-35
-30
-25
-20
-15
-10
-5
0


|S11| & |S21| (dB)

Frequency (GHz)
Without EBGs
With EBGs
Không có EBG
Có EBG
Tần số (GHz)
|S11|
|S21|

×