Tải bản đầy đủ (.pdf) (31 trang)

Đặc trưng Chern không giao hoán của C - Đại số đối với mặt cầu Sn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (288.29 KB, 31 trang )

C




n
K−


n


n
X H

(X) K

(X)
K− X.
X
ch : K

(X) −→ H

(X).
G H

D R
(G; Q)
Z/(2)− K


(G) K− G.
G
ch : K

(G) ⊗ Q −→ H

D R
(G; Q).
C


C


C

− S
n
.
C

− K−
C


S
n
K− S
n
.

S
n
.
C

− K−
K− C

− S
n
.
C


G G
dg. L
1
(G)
L
1
(G) =

f : G −→ C |

G
|f(x)|dx < ∞

,
(f ∗ g)(x) :=


G
f(y)g(y
−1
x)dy,
f

(x) := f(x
−1
)
L
1

∥f∥ :=

G
|f(x)|dx.
L
1
(G)
∥f ∗ g∥ ̸= ∥f∥.∥g∥.
L
1
(G).
∥f∥
C

:= sup
π∈

G

∥π(f)∥, (1)

G
G. L
1
(G) (1)
C
C


G

G
G.

G G
G
π G ∗− C

(G)

f(π) = π(f) :=

G
π(x)f(x)dx.
1 − 1 π G ∗−
C

(G).
π

n


G n ∈ N. ∀f ∈ C

(G) c = c
f


f(π
n
) − c
f
.Id∥ −→ 0 n −→ ∞,
Id



i=1
Mat
n
i
(C) =


f | ∥

f(π
n
) − c

f
.Id∥ −→ 0 khi n −→ ∞

.



i=1
Mat
n
i
(C) Mat
n
i
(C)
n
i
.
C

(G)

=



i=1
Mat
n
i

(C).
G C

(G) C

− G. I
N
:=
N

i=1
Mat
n
i
(C).
I
N
C

(G) C


G I
N
,
C

(G) = lim
−→
I

N
.
C

− A (π
1
, π
2
, F ),
π
1
, π
2
: A −→ £(H
B
) ∗− F ∈ F(H
B
)
F C

− H
B
= l
2
B
C

− B,
π
1

(a)F − Fπ
2
(a) ∈ K(B),
K(B) H
B
).
K− KK

(A, B)).
G A = C

(G) B = C
K

(C

(G))

=
KK

(C

(G), C).
KK
0
(C

(G), C)


=
K
0
(C

(G)) KK
1
(C

(G), C)

=
K
1
(C

(G)),
K

(C

(G)) K− C

(G).
A
HE

(A) K

(A)×HE


(A) −→ C.
HE

(A).
HE

(A) A {I
α
}
α∈Γ
A
τ
α
: I
α
−→ C ad
A

A {I
α
}
α∈Γ
A
τ
α
: I
α
−→ C,
τ

α
∥τ
α
∥ = 1,
τ
α
(aa

) ≥ 0 ∀a ∈ I
α
,
τ
α
(aa

) = 0 a = 0 α ∈ Γ,
τ
α
ad
A
− τ
α
(xa) = τ
α
(ax) ∀x ∈ A, a ∈ I
α
.
α ∈ Γ, τ
α
I

α
⟨a, b⟩
τ
α
:= τ
α
(ab

) ∀a, b ∈ I
α
.
I
α
I
α
Γ
α  β  γ ⇐⇒ I
α
⊆ I
β
⊆ I
γ
, ∀α, β, γ ∈ Γ.
{I
β
, j
β
α
} Γ : ∀α, β, γ ∈ Γ, α  β  γ
j

β
α
: I
α
−→ I
β
j
γ
β
j
β
α
= j
γ
α
: I
α
−→ I
γ
j
α
α
= id.
I
α
⊗(n+1)
(n + 1)− I
α
. I
α

I
α
⊗(n+1)

I
α
= I
α
⊕ C, ∀α ∈ Γ I
α
C
n
(

I
α
) =

φ : (

I
α
)
⊗(n+1)
−→ C | φ (n + 1) −

(n + 1)−

I
α

C
n
(

I
α
)
α, β, γ ∈ Γ α  β  γ,
D
β
α
: C
n
(

I
α
) −→ C
n
(

I
β
),
D
β
α
j
β
α

C
n
(

I
α
)
D
γ
β
D
β
α
= D
γ
α
, D
α
α
= id.
{C
n
(

I
α
), D
β
α
}

α∈Γ
Q = lim
−→
C
n
(

I
α
).
Q = lim
−→
C
n
(

I
α
)
α ∈ Γ
b

: C
n
(

I
α
) −→ C
n+1

(

I
α
)
(b

φ)(a
0
, a
1
, , a
n+1
) =
n

j=0
(−1)
j
φ(a
0
, , a
j
a
j+1
, , a
n+1
),
b : C
n

(

I
α
) −→ C
n+1
(

I
α
)
(bφ)(a
0
, a
1
, , a
n+1
) =
n

j=0
(−1)
j
φ(a
0
, , a
j
a
j+1
, , a

n+1
)
+(−1)
n+1
φ(a
n+1
a
0
, , a
n−1
, a
n+1
),
(a
0
, , a
j
a
j+1
, , a
n+1
) ∈

I
α
⊗(n+1)
;
λ : C
n
(


I
α
) −→ C
n
(

I
α
)
(λφ)(a
0
, a
1
, , a
n
) = (−1)
n
φ(a
n
, a
0
, , a
n−1
),
S : C
n+1
(

I

α
) −→ C
n
(

I
α
),
(Sφ)(a
0
α
, a
1
α
, , a
n
α
) = φ(1, a
0
, , a
n
),

I
α
= I
α
⊕ C I
α
b, b


b
2
= (b

)
2
= 0. b, b

b, b

, λ S
b, b

: lim
−→
C
n
(

I
α
) −→ lim
−→
C
n+1
(

I
α

),
λ : lim
−→
C
n
(

I
α
) −→ lim
−→
C
n
(

I
α
),
S : lim
−→
C
n+1
(

I
α
) −→ lim
−→
C
n

(

I
α
).
N = 1 + λ + λ + + λ
n
, N λ
k
.
N
N : lim
−→
C
n
(

I
α
) −→ lim
−→
C
n
(

I
α
).
A {I
α

}
α∈Γ
A, τ
α
: A
α
−→ C ad
A

C
n
(A) := Hom(lim
−→
C
n
(

I
α
), C)
lim
−→
C
n
(

I
α
)
b, b


, λ, S
b

, (b

)

, λ

, S

b, b

, λ, S. b, b

, λ, S b

, (b

)

, λ

, S

b
2
= b


2
= 0 N(1 − λ) = (1 − λ)N = 0
(b

)
2
= (b


)
2
= 0 N

(1 − λ

) = (1 − λ

)N

= 0.
b

, (b

)

, λ

, N


A
C(A))
(−b

)




b




(−b

)




←−−
1−λ

C
1
(A) ←−−
N

C

1
(A) ←−−
1−λ

C
1
(A) ←−−
N

· · ·
C(A)
(−b

)




b




(−b

)





←−−
1−λ

C
0
(A) ←−−
N

C
0
(A) ←−−
1−λ

C
0
(A) ←−−
N

· · ·
b

, (−b

)


C(A) C(A)
T ot(C(A))
even
= T ot(C(A))

odd
:=

n≥0
C
n
(A).
C(A) 2.
∂ :

n≥0
C
n
(A) 

n≥0
C
n
(A),
∂ = d
v
+ d
h
d
v
d
h
A
C(A)
A, HP


(A).
(f
n
)
n≥0
∈ C(A)

n≥0
n!

n
2

!
∥f
n
∥z
n
z ∈ C.
C(A)
C
e
(A). C
e
(A)
C(A).
C
e
(A) C(A)

T ot(C
e
(A))
even
= T ot(C
e
(A))
odd
:=

n≥0
C
e
n
(A),
C
e
n
(A) n−
∂ 2,
∂ :

n≥0
C
e
n
(A) 

n≥0
C

e
n
(A),
∂ = d
v
+ d
h
d
v
, d
h
A
C
e
(A)
A, HE

(A).
HE

(A) :
A, B {A
λ
}
λ∈Γ
,
{B
λ
}
λ∈Γ

A, B φ
t
= (φ
λ
t
)
λ
∈ Γ,
φ
λ
t
: A
λ
−→ B
λ
, t ∈ [0, 1]
δ
t
= (δ
λ
t
)
λ∈Γ
,
δ
λ
t
: A
λ
−→ B

λ
φ
t
.
φ
1∗
= φ
0∗
: HE

(A) −→ HE

(B).
A {A
λ
}
∈Γ
A. i = (i
λ
)
λ∈Γ
, i
λ
i
λ
:

A
λ
−→ Mat

q
(

A
λ
)
a
λ
−→




a
λ
0 . . . 0
0 0 . . . 0
0 0 . . . 0




q ≥ 1, ∀λ ∈ Γ. i
λ
HE

(A).
G H

D R

(G, Q)
G
K

(G)
K− G
G
ch : K

(G) ⊗ Q −→ H

D R
(G; Q)
K− G.
C


ch : K

(C

(G)) −→ HP

(C

(G))
K−
HP

HE


KK−
C

− G.
e M
k
(A)
k ∈ N) φ = ∂ψ φ ∈ C
n
(

I
α
) ψ ∈ C
n+1
(

I
α
) n
< e, φ >=

n≥0
(−1)
n
n!
φ(e, e, , e) = 0.
A
ch

C

: K

(A) −→ HE

(A).
K
n
(A) × C
n
(A) −→ C.
C
n
(A), Hom(C
n
(A), C)
C
n
(A).
K
n
(A) × C
n
(A) −→ C
K
n
(A)
C
n

−→ Hom(C
n
(A), C).
A {I
α
}
α∈Γ
A α ∈ Γ
K
n
(A)
C
α
n
−→ Hom(C
n
(

I
α
), C),
{I
α
}
α∈Γ
K
n
(A)
C
n

−→ Hom(lim
→α
(C
n
(

I
α
), C).
HE

(A)
A, C
n
ch
C

: K

(A) −→ HE

(A).
A
A
ch
C

: K

(A) −→ HE


(A).
A = C

(G) C


G.
ch
C

: K

(C

(G)) −→ HE

(C

(G))
C

(G).
T W = N
T
/T
G, N
T
T G.
ch

C

: K

(C

(G)) −→ HE

(C

(G))
C

(G) ch
C

ch : K
W

(C(T )) −→ HE
W

(C(T )),
C(T ) T
C, K
W

(C(T )) HE
W


(C(T )) K− HE

C(T ).
C

(G)

=



i=1
Mat
n
i
(C)
K− K

(C

(G))
K

(C

(G))

=
K






i=1
Mat
n
i
(C)


=
lim
−→
K


N

i=1
Mat
n
i
(C)


=
K




λ
C
λ


=
K
W

(C(T )),
C
λ
= C λ
G.
K

(C

(G))

=
K
W

(C(T )).
HE

(C


(G))
HE

(C

(G))

=
HE





i=1
Mat
n
i
(C)


=
lim
−→
HE


N

i=1

Mat
n
i
(C)


=
HE



λ
C
λ


=
HE
W

(C(T )),
C
λ
= C λ
G.
HE

(C

(G))


=
HE
W

(C(T )).
G
W.
K

W
(T )

=
K

W
(BT), BT
T.
K

(C

(G))
η
−−→ K
W

(C(T ))
ch

C




ch



HE

(C

(G))
δ
−−→ HE
W

(C(T ))
η : K

(C

(G)) −→ K
W

(C(T ))
δ : HE

(C


(G)) −→ HE
W

(C(T ))
ch : K
W

(C(T )) −→ HE
W

(C(T ))
C(T ).
ch : K
W

(C(T )) −→ HE
W

(C(T )).
ch
C

= δ
−1
◦ ch ◦ η : K

(C

(G)) −→ HE


(C

(G))
SU(n + 1), SO(2n + 1), SU(2n) Sp(n)
K

(G)

=
K
W

(C(T ))

=
K

W
(T )

=
K

(C

(G))

=
HE


(C

(G))

=
HE
W

(C(T ))

=
H
W

(C(T ))

=
H

W
(T )

=
H

(G)

=
HP


(C

(G)).
G R[G]
G.
Z/(2)− K

(G) G C,
K

(G) = Λ
C
(β(ρ
1
), β(ρ
2
), , β(ρ
n
)),
ρ
i
i = 1, 2, 3, , n) G
β : R[G] −→ K

(G)
G = SU(n + 1) SO(2n + 1)
K

(SU(n + 1)) = Λ

C
(β(ρ
1
), β(ρ
2
), , β(ρ
n
))
K

(SO(2n + 1)) = Λ
C
(β(ρ
1
), β(ρ
2
), , β(ρ
n
), ϵ
2n+1
)
ϵ
2n+1
∈ K

(SO(2n + 1))
p

: K


(SO(2n + 1)) −→ K

(Spin(2n + 1))
p


2n+1
) = 2β(∆
2n+1
), ∆
2n+1
: Spin(2n+ 1) −→ U(2
n
)
G T G,
i : T −→ G δ

: H

(BG, R) −→ H
∗−1
(G, R)
H

(BT; R)
W (G)
H

(BT; R)
W.

Z/(2)−
SU(2n), SO(2n + 1), SU(2n + 1) Sp(n)
H

(SU(2n))

=
Λ
C
(x
3
, x
5
, , x
4n−1
)
H

(Sp(n))

=
Λ
C
(x
3
, x
5
, , x
4n−1
)

H

(SU(2n + 1))

=
Λ
C
(x
3
, x
5
, , x
4n+1
)
H

(SO(2n + 1))

=
Λ
C
(x
3
, x
5
, , x
4n−1
).
ϕ : N × N × N −→ Z
ϕ(n, k, q) =

k

i=1
(−1)
i−1

n
k − i

i
q−1
n ≥ 1.
G = SU(n + 1)
ch : K

(SU(n + 1)) −→ H

(SU(n + 1))
ch(β(ρ
k
)) =
n

i=1
(−1)
n
i!
ϕ(n + 1, k, i + 1)x
2i+1
, ∀k ≥ 1

β : R(SU(n + 1)) −→ K

(SU(n + 1)) ρ
k
SU(n + 1) U(n + 1).
G = SO(2n + 1)
ch : K

(SO(2n + 1)) −→ H

(SO(2n + 1))
ch(β(λ
k
)) =
n

i=1
2.(−1)
i−1
(2i − 1)!
ϕ(2n + 1, k, 2i)x
4i−1
ch(ε
2n+1
) =
n

i=1
(−1)
i−1

2
n−1
.(2i − 1)!
ϕ(2n + 1, k, 2i)x
4i−1
β : R(SO(2n + 1)) −→ K

(SO(2n + 1))
ε
2n+1
∈ K

(SO(2n + 1)).
G C

(G)
C

− G,
K

(G)

=
K

(C

(G))


=
HE

(C

(G))

=
HE

(G).
K

(G)
η
−−→ K

(C

(G))
ch



ch
C





H(G)
δ
−−→ HE

(C

(G))
ch
C

= δ ◦ ch ◦ η
−1
: K

(C

(G)) −→ HE

(C

(G)).
C




n
C



S
n
.
ch
C

: K

(C

(S
n
)) −→ HE

(C

(S
n
)).
K−


n
S
n
= O(n + 1)/O(n)
ch : K

(S
n

) ⊗ Q −→ H

D R
(S
n
, Q)
C

(S
n
),
ch
C

: K

(C

(S
n
)) −→ HE

(C

(S
n
)).
C

− G

ch
C

: K

(C

(G)) −→ HE

(C

(G)).
C

(S
n
) C

− S
n
.
O(n) O(n+1) S
n
= O(n+1)/O(n)
C

− S
n
C



C

(S
n
)

=
C

(O(n)) ⊗ K(L
2
(S
n
)).
K

HE

C

(S
n
) C


O(n) O(n + 1).
T
n
O(n) N

T
n
T
n
O(n). C

(S
n
)
HE

(C

(S
n
))

=
H
W
D R
(T
n
)
H
W
D R
(T
n
)

T
n
.
S
n
= O(n + 1)/O(n)
C

(S
n
) C


C

(S
n
) = C


O(n + 1)/O(n)


=
C

(O(n)) ⊗ K

L
2

(O(n + 1)/O(n))

K

L
2
(O(n + 1)/O(n)

C


L
2
(O(n + 1)/O(n)).
HE

(C

(S
n
)) = HE


C

(O(n + 1)/O(n))


=
HE



C

(O(n)) ⊗ K(L
2
(O(n + 1)/O(n))


=
HE


C

(O(n))


=
HE

(C(N
T
n
))
HE

(C

(S

n
))

=
HE

(C(N
T
n
)).
N
T
n
T
n
O(n), C(N
T
n
) C−
HP

(C(N
T
n
))

=
H

D R

(N
T
n
).
HP

(C(N
T
n
))

=
HE

(C(N
T
n
)).
HE(C

(S
n
))

=
HE

(C(N
T
n

))

=
HP

(C(N
T
n
))

=
H

D R
(N
T
n
)

=
H
W
D R
(T
n
)

=
H


(SO(n))
HE

(C

(S
n
))

=
H
W
D R
(T
n
)

=
H

(SO(n)).
SO(n),
H

(SO(n))
H

(SO(n))

=

Λ
C
(x

3
, x

7
, , x

2n+3
),
x

2i+3
∈ σ

(p
i
) ∈ H
2n+3
(SO(n)),
σ

: H

(BSO(n), R) −→ H

(BSO(n), R), R
p

i
= σ
i
(t

1
, t

2
, , t

n
) ∈ H

(BT
n
; Z)
HE

(C

(S
n
))

=
Λ
C
(x


3
, x

7
, , x

2n+3
).
T
n
O(n) N
T
n
T
n
O(n). K− C

(S
n
)
K

(C

(S
n
))

=
K


(N
T
n
)

=
K

(SO(n + 1))/T or.
C

(S
n
)

=
C

(O(n + 1)/O(n)).
K

(C

(S
n
))

=
K


(C

(O(n + 1)/O(n)))

=
K

(C

(O(n))) ⊗ K(L
2
(O(n + 1)/O(n))))

=
K

(C

(O(n)))

=
K

(C(N
T
n
)

=

K

(N
T
n
)
K

(C

(S
n
))

=
K

(N
T
n
).
K

(N
T
n
)

=
K


(SO(n + 1))/T or.
K

(C

(S
n
))

=
K

(SO(n + 1))/T or.
K

(C

(S
n
)), K

(SO(n + 1))/T or.
G = SU(n + 1)
λ
1
: SU(n + 1) −→ U(n + 1), λ
1
∈ R(SU(n + 1)) λ
1

ω
1
= t
1
. {t
i
\ i = 1, 2, , n + 1}
λ
1
. λ
k
= λ
k

1
), λ
k
λ− k λ−
K−
R(SU(n + 1)) = Z[λ
1
, λ
2
, , λ
n
].
s

1
: R(SU(n + 1)) −→ R(SU(n + 1)),

s

1

k
) = λ
n+1−k
k = 1, 2, , n.
λ

1
= λ
1
i
1
: SO(n + 1) −→ U(n + 1)
i
1
: U(1) −→ U
λ

1
∈ R(SO(n + 1)) λ

1
ω

1
= t


1
, {±t

i
, 0 \ i = 1, 2, , n}
λ

1
λ

k
= λ
k


1
)
R(SO(n + 1)) = Z[λ

1
, λ

2
, , λ

n
].
i

1

: R(SU(n + 1)) −→ R(SO(n + 1))
i

1

k
) = λ

k
= i


n+1−k
), k = 1, 2, , n.
Spin(n + 1) SO(n + 1),
K

(Spin(n + 1)) = Λ
C
(β(α
1
), β(α
2
), , β(α
n−1
), β(∆
n
)), (1)

n

: Spin(n) −→ U(2
n
)
β : R(SO(n)) −→

K
−1
(SO(n))
ρ : SO(n) −→ U(n),
β(ρ) = [i
n
ρ] ∈ [SO, U] =

K
−1
(SO(n)).
(1), ε
n+1
∈ K
−1
(SO(n)) ξ
n+1
∈ K
0
(SO(n))
K

(SO(n + 1)) = [Λ
C
(β(λ


1
), β(λ

2
), , β(λ

n−1
), ε
n+1
) ⊗ T
n+1
]/(ε
n+1
⊗ ξ
n+1
),
T
2n+1
= Z{1} ⊕ Z(2
n
){ε
n+1
}.
K

(SO(n + 1))/T or = Λ
C

β(λ


1
), β(λ

2
), , β(λ

n−1
), ε
n+1

.
K

(C

(S
n
))

=
K

(SO(n + 1))/T or
= Λ
C

β(λ

1

), β(λ

2
), , β(λ

n−1
), ε
n+1

.


n
T
n
O(n), T
n
SO(n) W = N
T
n
/T
n
.
C

(S
n
)
ch : K


(C

(S
n
)) −→ HE

(C

(S
n
))
i) ch
C


β(λ

k
)

=
n

i=1

(−1)
i−1
2/(2i − 1)!

ϕ(2n + 1, k, 2i)x


2i+3
, k = 1, n − 1.
ii) ch
C


n+1
) =
n

i=1

(−1)
i−1
2/(2i − 1)!

1
2
n
n

k=1
ϕ(2n + 1, k, 2i

x

2i+3
,

×