Tải bản đầy đủ (.doc) (5 trang)

ĐỀ THI HỌC SINH GIỎI CÁC TRƯỜNG CHUYÊN DUYÊN HẢI VÀ đồng bằng bắc bộ NĂM 2015 -Toán 10 trường chuyên Ninh Bình

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (127.08 KB, 5 trang )

HỘI CÁC TRƯỜNG CHUYÊN
VÙNG DUYÊN HẢI VÀ ĐỒNG BẰNG BẮC BỘ
TRƯỜNG THPT CHUYÊN LƯƠNG VĂN TỤY
TỈNH NINH BÌNH
ĐỀ THI ĐỀ XUẤT
ĐỀ THI MÔN TOÁN, KHỐI 10
NĂM HỌC 2014 – 2015
Thời gian làm bài 180 phút
(Đề này có 01 trang, gồm 05 câu)
Câu 1 (4,0 điểm)
Tìm tất cả giá trị của tham số m để hệ phương trình sau có nghiệm:
3 3 2
2 2 2
x 12x y 6y 16 0

4x 2 4 x 5 4y y m 0

− − + − =


+ − − − + =


Câu 2 (4.0 điểm)
Các đường tròn
1 2 3
, ,ω ω ω
nằm trong mặt phẳng và tiếp xúc ngoài với nhau
từng cặp. Gọi P
1
, P


2
, P
3
thứ tự là điểm tiếp xúc của
2
ω

3
ω
,
3
ω

1
ω
,
1
ω

2
ω
.
Gọi A, B là hai điểm khác P
1
, P
2
và nằm trên
3
ω
sao cho AB là đường kính của

3
ω
.
Đường thẳng AP
2
cắt lại
1
ω
tại X, đường thẳng BP
1
cắt lại
2
ω
tại Y, và các đường
thẳng AP
1
, BP
2
cắt nhau tại Z. Chứng minh rằng X, Y, Z thẳng hàng.
Câu 3 (4.0 điểm)
Tìm các số nguyên không âm x, y thỏa mãn:
x y x y 1
3 2.3 2 1
+ +
+ = −
Câu 4 (4.0 điểm)
Cho các số thực a, b, c, d thỏa mãn :
2 2 2 2
a b c d 1+ + + =
. Tìm giá trị lớn nhất

và nhỏ nhất của biểu thức:
2 2
1
E a c (a c)(b d)
2
= + + − −
.
Câu 5 (4.0 điểm)
Trong tam giác vuông cân cạnh huyền có chiều dài n lấy
2
(n 3)
1
3
 
+
+
 
 

điểm.
Chứng minh rằng luôn tồn tại ít nhất 1 cặp điểm có khoảng cách nhỏ hơn 1.
HẾT
Người ra đề

ĐÁP ÁN + BIỂU ĐIỂM CHẤM MÔN TOÁN, KHỐI 10
Câu Ý Nội dung chính cần đạt Điểm
1
4
điểm
3 3 2

2 2 2
x 12x y 6y 16 0 (1)
4x 2 4 x 5 4y y m 0 (2)

− − + − =


+ − − − + =


Ta có
( ) ( )
3
3
(1) x 12x y 2 12 y 2⇔ − = − − −
2 2 2
(x y 2) (x x(y 2) (y 2) 12) 0⇔ − + + − + − − =
Ta có
x

y 2

cùng thuộc đoạn
[ ]
2;2−
suy ra
2 2
x x(y 2) (y 2) 12 0+ − + − − ≤
Do đó
(1) x y 2

⇔ = −
Thay vào (2) ta được
2 2
3 4 x 4x m− = +
(3)
Đặt
2
t 4 x (0 t 2)= − ≤ ≤
:
2
(3) 4t 3t m 16 0 (4)⇔ + − − =
t 0 2
2
4t 3t m 16
+ − −
6 – m
– m – 16
Do đó: hệ phương trình đã cho có nghiệm ⇔ (3) có nghiệm
⇔ (4) có nghiệm
[ ]
x 0;2∈

16 m 6− ≤ ≤
1,0
1,0
1.0
1,0
2
4
điểm

Gọi O
1
, O
2
, O
3
thứ tự là tâm các đường tròn
1 2 3
, ,ω ω ω
Gọi O là giao của các tiếp tuyến chung tại P
1
, P
2
, P
3
của
1 2 3
, ,ω ω ω
.
O
1
A
O
3
B
O
2
P
3
P

1
Z
O
X
P
2
Ta có: (ZP
1
, ZP
2
) = (ZP
1
, AP
2
) + (AP
2
, ZP
2
) =
3 1 3 2
1
(O P , O P )
2 2
π
+
(P
3
P
1
, P

3
P
2
) = (P
3
P
1
, P
3
O) + (P
3
O, P
3
P
2
)
=
2 1 2 3 1 3 1 2
1 1
(O P , O P ) (O P , O P )
2 2
+
=
3 2 3 1
1
(O P , O P )
2 2
π

=

3 1 3 2
1
(O P , O P )
2 2
π
+
⇒ (ZP
1
, ZP
2
) = (P
3
P
1
, P
3
P
2
) ⇒ P
1
, P
2
, P
3
, Z đồng viên.
(P
3
X, P
3
Z) = (P

3
X, P
3
P
2
) +(P
3
P
2
, P
3
Z) =

1 1 2 1 2 1
1
(O X, O P ) (P P , P Z)
2
+
uuuur uuuuur
=
1 1 2 3 2 3
1 1
(O X, O P ) (O P , O A)
2 2
+
uuuur uuuuur uuuuur uuuuur

1 2
,ω ω
tiếp xúc ngoài nên

1 1 2 3 3 2
(O X, O P ) (O A, O P )=
uuuur uuuuur uuuuur uuuuur

⇒ (P
3
X, P
3
Z) = 0 ⇒ X, Z, P
3
thẳng hàng.
Tương tự: Y, Z, P
3
thẳng hàng ⇒ ĐFCM
0,5
1,0
0,5
0,5
0,5
0,5
0,5
3
4
điểm
Đặt n = x + y ta có:
x y n 1
3 2.3 2 1
+
+ = −
n 1 n 1 2

(n 1)
x y n 1
3 3 3
2
3 ,3 2 8 9 3 x,y (n 1)
3
n 2 2(n 1)
x,y
3 3
+ +
+
+
⇒ < = < = ⇒ < +
− +
⇒ < <
+ n = 0 ;1 ;2 ; 4 : không tồn tại x, y
+ n = 3: x = 2, y =1
+ n = 5 : x = 2, y = 3
+
n 6

: Đặt
n 1 m n 1
m min{x;y} m>1 2 1 3 2 1 9 n 1 6
+ +
= ⇒ ⇒ − ⇒ − ⇒ +
M M M
(vì bậc của 2 theo mod 9 là 6)
Đặt
n 1 6k+ =

1
0,5
1
0,5
0,5
k k 2k k
k m 1
2k k k 2 k
k m 1
n 1
m 1 k k
6
(2 1)(2 1)(4 4 1)
2 1 3
4 4 1 (4 1) 3.4 3, 9
2 1 3
3 2 1 3 3
n 2 n 1
1 m 1 n 11 n 1 6
3 6


+

⇒ − + + +


/
+ + = − + ⇒


+


⇒ ≤ + ≤ =
− +
/
⇒ − < − ≤ ⇒ < ⇒ +
M
M M
M
M
Vậy phương trình vô nghiệm khi n ≥ 6.
Kết luận: (x; y) = (2; 1), (2; 3)
0,5
4
4
điểm
2 2 2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2
2 2
2 2 2 2
1
( )( ) ( )( )
2
[( 2 1)( )][( 2 1)( )]
( 2 1)( ) ( 2 1)( )
2
2 1 2 1
( )

2 2
= + + − − ≤ + + + +
= + + − + + +
− + + + +
≤ + +
+ +
= + + + ≤
E a c a c b d a c a c b d
a c a c b d
a c b d
a c
a c b d
Đẳng thức xảy ra khi và chỉ khi:
2 2 2 2
2 2 2 2
;
8 8
( 2 1)
2 2 2 2
;
1
8 8
= −


+ +

= = −
= −
 


 
= +
 
− −
= = −
 
+ + + =


a c
a c
b d
a b
b d
a b c d

hoặc
2 2 2 2
;
8 8
2 2 2 2
;
8 8

+ +

= − =




− −
= − =


a c
b d
2 2 2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2
2 2
2 2 2 2
1
( )( ) ( )( )
2
[( 2 1)( )][( 2 1)( )]
( 2 1)( ) ( 2 1)( )
2
1 2 1 2
( )
2 2
= + + − − ≥ + − + +
= + − + + − +
+ + + − +
≥ + −
− −
= + + + ≥
E a c a c b d a c a c b d
a c a c b d
a c b d

a c
a c b d
Đẳng thức xảy ra khi và chỉ khi:
0,5
0,5
0,5
0,5
0,5
0,5
0,5
0,5
2 2 2 2
2 2 2 2
;
8 8
( 2 1)
2 2 2 2
;
1
8 8
= −


− −

= − =
= −
 

 

= − −
 
+ +
= = −
 
+ + + =


a c
a c
b d
a b
b d
a b c d
hoặc
2 2 2 2
;
8 8
2 2 2 2
;
8 8

− −

= − =



+ +
= = −



a c
b d
5
4
điểm
Dựng
2
(n 3)
1
3
 
+
+
 
 
đường tròn bán kính
1
2
có tâm là
2
(n 3)
1
3
 
+
+
 
 

điểm đã cho.
Tổng diện tích các hình tròn là
2 2
(n 3) (n 3)
1
3 4 4
 
 
+ π +
+ >
 ÷
 
 
 
Diện tích được phủ của họ tất cả các đường tròn có tâm thuộc
miền tam giác vuông cân (tính cả biên), bán kính bằng
1
2
nhỏ
hơn
2
(n 1 2)
4
+ +
.
Do đó tồn tại ít nhất 2 đường tròn cắt nhau trong
2
(n 3)
1
3

 
+
+
 
 
đã dựng. Suy ra điều phải chứng minh.
1
2
1
(Họ tên, ký tên -Điện thoại liên hệ)

×