Tải bản đầy đủ (.doc) (4 trang)

đề thi thử kì thi tốt nghiệp thpt môn toán, đề thi số 18

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (103.21 KB, 4 trang )

S GDĐT ĐNG THP
TRƯNG THPT THP MƯI



 !"!#$%&'()*+$"*,( !"!#$&-(./0
I.Phn chung cho tt c cc th sinh: ( 7 đi%m)
Câu I ( 3 đim):
12345
6
6
+−= xxy

 7824-(49:!;$(!<$=3=>.?(@345.A2
 B9#=32.?(@345(C<$D:!E$FGH$(I245$"!E&JK$"(CL$
6
6
+=− mxx
Câu II (3 đim):
 !8!:M(&JK$"(CL$
( )
( )
%F2"%NF2"


%
≥+++− xxx
 O$(O&P$
dxxxI

−=





6 L"!-(C@FQ$$M(=3$R$M(S#345
6
N
−−= xxy
(C<$TUV
Câu III ( 1 đim):
12L$W&./GXYZ1B[$ \#D:!;("W"!]#[$:<$=3 \:^$"_

O$
(,(OS#L$W&`
II. Phn riêng ( 3 đi%m)
O4!$JK$"(CL$$32(La.JbF3&c$d3$C!<$"2JK$"(CL$.W)&c$
2e0
1. Theo chương tr/nh chu0n:
Câu IVa(2 đim):
C2$"*+$""!#$=Q!E(2[.fg\h2
( ) ( ) ( )
UUD6UUDUU CBA −−
i!;(&JK$"(CL$e(&j$"
( )
α
kG#:#.!,YDZD1
LL$!;G=G+$""WS#"5(2[.f(C<$e(&j$"
( )
α
Câu Va( 1 đim):L45&lF!<$b&S#45&l
( )

6
N% iiZ −+−=
2. Theo chương tr/nh nâng cao:
Câu IVb ( 2 đim):
C2$"*+$""!#$=Q!E(2[.fg\h2
( ) ( ) ( )
UUD6UUDUU CBA −−
i!;(&JK$"(CL$e(&j$"
( )
α
kG#:#.!,YDZD1
i!;(&JK$"(CL$e(cG(PZ(!;&g'=Q!.J $"(j$"Y1
Câu Vb( 1 đim)O$
( )

6 i−
);(0
ĐP N – THANG ĐI6M
1PG -&-$ !,
)6.!,0 1.(2đi%m0
mBno %
xxy _6p

−=
%



−=→=
=→=

⇔=


p
yx
yx
y
%
ZZ %
ppD__pp =⇔=−= xyxy
.!,G5$
( )
UU
!#2d!,
6q

±==⇒=
=⇒=
xxy
yx
?(@ %
2.(1 đi%m)
666
66
+=+−⇔+=− mxxmxx
%
X5$"!E&(:^$"45"!#2.!,S##!.?(@
6q6
6
+=+−= myxxy

%
;Gr&(W$"!E
;G
±=m
&(W$"!E
%
;G
% −<<− m
&(W6$"!E
;G
%−<m
&(W$"!E
%

)6.!,0
1.(1đi%m)
!/G*!E$
%−>x
%
( )
( )

%N
%
F2"




+−

+

xx
x
%
s


%N
N

−≤⇔≤
+−
+
⇔ x
xx
x
%
!#2.!/G*!E$$"!E:&(F3
s

% −≤<− x
%
2.(1đi%m)
e(
xt −= 


 tx −=→


tdtdx −=→
 =→= tx
 =→= tx
%
( )

−=


N
 dtttI
%
n


%6
%6










tt
%
%

N
=
%
3.(1đi%m)





=
=
−=
⇔=−=



pDNNp
6
x
x
x
yxxy
%
%
( )
( )
( )
%
N
6

=
−=
−=
f
f
of
%
[ ]
( ) ( )
[ ]
( ) ( )
N!$
%#g
U
U
−==
==
fxf
fxf

%
).!,0 L$=> %
!F3(PL$=G+$"D=LXYZ1Bd/G$<$X=G+$""W=Q! \
4G\C#"WX1:^$"_

%
_ aSOaOC =⇒=
%
6
_N

6
a
V =
%
i#).!,0 1.(1đi%m)
( ) ( )
6UUDNUU −=−−= ACAB
%
[ ]
( )
%U%UD −−−== ACABn
%
( ) ( ) ( ) ( )
%% =+−−−−− zyx
α
%
( )
α

6 =−++ zyx
%
).!,0
!dF3.J $"(j$"kG#=G+$""W
( )
α
D(#W
( )
UU=u
%
(d






=
=
=
tz
ty
tx 
%
!F3L$!;G=G+$""WS#(C<$
( )
α
D(2[.fF3$"!EE
&(







=−++
=
=
=
6


zyx
tz
ty
tx
%








U


UH
%
i#).!,0
6
_N% iiiiZ −+−+−=
%
iii +−−+−= _N%
%
n
i%s −
%
iZ %s +=⇒
%
=:).!,0 1.(1đi%m)

( ) ( )
6UUDNUU −=−−= ACAB
%
[ ]
( )
%U%UD −−−== ACABn
%
( ) ( ) ( ) ( )
%% =+−−−−− zyx
α
%
( )
α

6 =−++ zyx
%
2.(1đi%m)
iLe(cG(PZ(!;&g'.(Y1$<$W
( )
[ ]
AC
ACBA
ACBdR
D
D ==
%
( ) ( )
[ ]
( )
%U%UD6UUDNUU =⇒−=−= ACBAACBA

%
s
s%
=R
%
&JK$"(CL$e(cG
( ) ( ) ( )
s
s%
6

=−+++− zyx
%
i:).!,0
e(
iZ −= 6
4G\C#
=Z
D
_

4!$D

6
24
π
ϕϕϕ
−=→−==
%













−+






−=
_
4!$
_
24
ππ
iZ
%













−+






−=
_

4!$
_

24

ππ
iZ
%









−−=

6




i
%

×