Tải bản đầy đủ (.pdf) (1 trang)

Bộ 20 đề thi thử THPT Quóc gia môn toán từ trang moon (2)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (86.85 KB, 1 trang )


Tham gia trọn vẹn khóa LTĐH và Luyện giải đề để đạt 8 điểm Toán trở lên! www.moon.vn
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ THAM KHẢO

ĐỀ THI THỬ ĐẠI HỌC NĂM 2013
Môn thi: TOÁN; khối A và khối A1, lần 1
Thời gian làm bài: 180 phút, không kể thời gian phát đề
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm). Cho hàm số
3 2 3
3 4,
= − + −
y x mx m với m là tham số.
a) Khảo sát và vẽ đồ thị của hàm số với m = –1.
b) Tìm m để hàm số đã cho đạt cực đại, cực tiểu tại các điểm A, B sao cho điểm M(1; –5) nằm trong đoạn
thẳng AB.
Câu 2 (1,0 điểm). Giải phương trình
2
π
sin .sin 4 2 2 cos 4 3 cos .sin .cos2
6
x x x x x x
 
= − −
 
 

Câu 3 (1,0 điểm). Giải hệ phương trình
( )
2 2


2 2
2 17
; , .
12

+ + − =




− =


x y x y
x y
y x y

Câu 4 (1,0 điểm). Tính tích phân
π
2
0
ln(1 cos ).sin 2 .
= +

I x xdx

Câu 5 (1,0 điểm).
Cho hình chóp S.ABCD có SA vuông góc v

i

đ
áy,
đ
áy ABCD n

a l

c giác
đề
u n

i ti
ế
p
trong
đườ
ng tròn
đườ
ng kính AD, v

i AD = 2a. G

i I là trung
đ
i

m c

a AB, bi
ế

t kho

ng cách t

I t

i m

t
ph

ng (SCD) b

ng
3 3
8
a
. Tính th

tích kh

i chóp S.ABCD theo a và cosin c

a góc t

o b

i hai
đườ
ng

th

ng SO và AD, v

i O là giao
đ
i

m c

a AC và BD.
Câu 6 (1,0 điểm).
Cho các s

th

c x; y > 0 và th

a mãn x + y + 1 = 3xy.
Tìm giá tr

l

n nh

t c

a bi

u th


c
( ) ( )
2 2
3 3 1 1
.
1 1
= + − −
+ +
x y
P
y x x y x y

II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)
A. Theo chương trình Chuẩn
Câu 7.a (1,0 điểm).
Trong m

t ph

ng v

i h

t

a
độ
Oxy cho tam giác ABC có ph
ươ

ng trình
đườ
ng phân
giác trong c

a góc A là (AD) : x + y + 2 = 0; ph
ươ
ng trình
đườ
ng cao qua B là (BH): 2x – y + 1 = 0. C

nh
AB
đ
i qua
đ
i

m M(1; 1) và di

n tích tam giác ABC là
27
.
2
Tìm t

a
độ
các
đỉ

nh c

a tam giác
ABC
.
Câu 8.a (1,0 điểm).
Trong không gian v

i h

t

a
độ

Oxyz
cho các
đ
i

m
(2;0;0), (0; 3;6).
A M

Viết
phương trình mặt phẳng (P) đi qua A, M sao cho (P) cắt các trục Oy, Oz tại các điểm B, C sao cho thể tích
tứ diện OABC bằng 3, với O là gốc tọa độ.
Câu 9.a (1,0 điểm). Giải phương trình
2 2
1 2 4

4
4log 2log (8 ) 3log (2 ) 2
2
x
x
x x
+ − =

B. Theo chương trình Nâng cao
Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng

có phương trình x – y + 1 = 0
và đường tròn
2 2
( ): 2 4 4 0.
+ − + − =
C x y x y Tìm tọa độ điểm M thuộc

sao cho qua M kẻ được hai tiếp
tuyến MA; MB đến đường tròn (C), (với A, B là các tiếp điểm) đồng thời khoảng cách từ điểm
1
;1
2
 
 
 
N

đến AB là lớn nhất.
Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz cho điểm M(2; 4; 1) và đường thẳng

1 2 1
: .
1 1 2
x y z
d
− − −
= =
Tìm điểm
A
thuộc
d
sao cho diện tích tam giác
AMO
bằng
33
2
, biết
A
có hoành
độ lớn hơn –4 và
O
là gốc tọa độ.
Câu 9.b (1,0 điểm). Tìm số hạng không chứa
x
khi khai triển biểu thức
9
2
1
( ) 1 2 .
 

= + −
 
 
P x x
x

×