1
ng lc hc ca dt
nt chng ca ti trng phc v
cho vit cu
Dynamic analysis of a cracked double beam subjected to moving vehicle and its application for
crack detection
NXB H. : , 2014 59 tr. +
n Anh
i h
Lu thut; : 60520101
ng dn: TS. Nguyn Vit Khoa
o v: 2014
Keywords: c k thut; ng lc hc; D; t cu
Content
Kt cu dt quan trng trong k thuc bi
ng. Kt cu dc u t cu d
v kt cu dm t
nhiu hn chu c v h t [4], d [1]
[8, 9]u v ng bc ca hai tm m nht [4]
kt vi nhau bi, chu ti tr b c
nghim giu kin ti
tr u v h d [1], mu dao
ng t do ca h n ti tri ti tr
cu v ng ca h t vi nhau bi [8, 9], chu ti trng
ng cng ca dm
M. [10] ng dc trc ca h thng hai dm const vi
nhau b gii h ng, thit
hai d cng gi
ng nghip [3] ng bc ca h d
i gi thit hai d cng gi gii h
vy, u ch
do s
ging
.
,
.
.
, ,
,
.
, u
h d .
hai d.
b
.
2
c n ng ca vt n ng ca h d dng bi i
liu dang ca h dm nhn v t nt
References
[1] Z. Oniszczuk, Free transverse vibrations of elastically connected simply supported
double-beams complex system, Journal of Sound and Vibration (232) (2000) 387403.
[2] Y.H. Chen, J.T. Sheu, Beam on visco elastic foundation and layered beam, Journal
of Engineering Mechanics 121(1995), 340344.
[3] H.V. Vu, A.M. Ordonez, B.H. Karnopp, Vibration of a double-beam system, Journal
of Sound and Vibration (229) (2000) 807822.
[4] Z. Oniszczuk, Forced transverse vibrations of an elastically connected complex
rectangular simply supported double-plate system, Journal of Sound and Vibration (270) (2004)
9971011.
[5] Seelig JM, Hoppmann II WH. Impact on an elastically connected double-beam
system. ASME, Journal of Applied Mechanics 1964; 31: 6216.
[6] Rao SS. Natural vibrations of systems of elastically connected Timoshenko beams.
Journal of the Acoustical Society of America 1974; 55:12327.
[7] M. Shamalta, A.V. Metrikine, Analytical study of the dynamic response of an
embedded railway track to a moving load, Archive of Applied Mechanics (73) (2003) 131146.
[8] Z. Oniszczuk, Transverse vibrations of elastically connected double-string complex
system—part I: free vibrations, Journal of Sound and Vibration (232) (2000) 355366.
[9] Z. Oniszczuk, Transverse vibrations of elastically connected double-string complex
system—part II: forced vibrations, Journal of Sound and Vibration (232) (2000) 367386.
Longitudenal vibrations of a double-rod system coupled by
springs and dampers, Journal of Sound and Vibration (276) (2004) 419430.
[11] G. R. Liu and S. S. Quek, The Finite Element Method: A Practical Course. Linacre
House, Jordan Hill, Oxford OX2 8DP, 2003, Elsevier Science Ltd.
[12] Nguyen V.K., Assessment and online mornitoring of the integrity of structures
using vibration data processing, Lui hc Birmingham, Anh.
[13] Daubechies I., Ten lectures on wavelets. CBMS-NSF Conference series, 61.
Philadelphia, PA: SISAM, 1992.
[14] Khoa Viet Nguyen, Hai Thanh Tran, Mai Van Cao, Dynamic analysis of a cracked
double beam subjected to a moving load using finite element analysis. Hi ngh quc gia v
hc vt rn bin dng ln th
[15] Qian G. L., Gu S. N. and Jiang J. S., The Dynamic Behaviour and Crack Detection
of a Beam with a Crack. Journal of Sound and Vibration 1990,Vol.138 (2), 233243.
[16] Verboven P., Parloo E., Guillaume P. and Overmeire M. V., Autonomous Structural
Health Monitoring – Part I: Modal Parameter Estimation and Tracking. Mechanical Systems
and Signal Processing 2002, Vol. 16(4), 637-657.
[17] Verboven P., Parloo E., Guillaume P. and Overmeire M. V., Autonomous Structural
Health Monitoring – Part II: Vibration-based In-operation Damage Assessement. Mechanical
Systems and Signal Processing 2002, Vol. 16(4), 659-675.
[18] Newmark, N.M. "A Method of Computation for Structural Dynamics" ASCE
Journal of Engineering Mechanics Division, Vol 85. No EM3, pp. 67-94, 1959.