Tải bản đầy đủ (.pdf) (64 trang)

Mở rộng và ứng dụng bổ đề gronwall bellman

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (14.39 MB, 64 trang )

D~I HQC Quac GIA TP. HO CHi MINH
TRUONG DAI HOC KHOA HOC TU NHIEN

HoANG THANH LONG
MORaNGvA UNGDUNG
. .
~ ~
BODE GRONWALL-BELLMAN
Chuyen nganh : Toan Ghii Tich
Ma s6 : 1.01.01
LUA.N VAN THAC 51 ToAN HOC
. . .
NGUOI HUaNG DAN KHOA HOC:
PGS. TS. NGDYEN DINH PHU
_ .
I;Ht.~H.TlI' NHIEN
~.::(."; lTHtJ \t1~N
001103
I.

TP. Hfi CHi MINH - 2005
1
MlJri)ng va ung d~ng Bd d~ Gronwall-Bellman
Hoang Thanh Long
MUCLUC
. .
M1).C 11).c.
Loi Carn do.
Danh rn1).ccac ky hi~u.
Chu'dng 0 -T6ng quail.
Chu'dng 1 - B6 dS Gronwall- Bellman va mQt sf{


m(j rQng d(;lngtuy€n tinh.
Chu'dng 2 - MQt sf{m(j rQng d(;lngphi tuy€n.
Chu'dng 3 - MQt sf{m(j rQng d(;lng ham exponent.
Chu'dng 4 -MQt sf{ling dl;!ng
§4.1. Sl;!'duy nha't nghi~m cua phuong trlnh vi
phan va tich phan.
§4.2. Sl;!'lien tl;!Ccua nghi~m theo diSu ki~n
d~u va theo v€ phai.
§4. 3. £hinh gia tinh b~ch~n cua nghi~m.
Trang
1
3
4
5
7
13
34
38
38
43
45
§4.4. Sai l~ch nghi~m hai phuong trlnh vi phan. 48
§4.5. Sl;!'phl;! thuQc cua nghi~m theo thalli sf{.
A'
§4.6. On d~nh mil trong kh6ng gian Banach.
50
52
Lufjn wIn th[Jc Sf loan h{JC
Mil nganh : 1.01.01
2

Mlf ri)ng va ung d¥ng Btf di Gronwall-Bellman
Hoang Thanh Long
§4.7. On dinh cae h~ tlfa di~u khi€n.
~
§4.8. On dinh h~ kich dQngthu'ongxuyen.
Ke'tlu~n.
Tftili~u tham khao.
56
59
61
62
3
Mi'Jri)ng va ling d~tngBd di Gronwall-Bellman Hoang Thanh Long
, ?
L(J/ CAM (j N
Ddu lien toi xin chan thanh cam an sau sdc den Thiiy
PGS.TS. Nguy~n Dinh Phu:dii t(in tlnh huang ddn toi tit d~
cuang den luc hoan thanh lu(in van.
Toi xin chan thanh cam an haT Thiiy phiin bifn
PGS.TS. Dinh Ngl)c Thanh va Thiiy TS. Nguy~n Thanh
Long dii dQc lu(in van va dang gap nhi~u ykien quy bau.
Toi xin chan thanh cam an cac Thdy Co TruiJngDc;zi
HQc Khoa HQc T1;CNhien, TruiJng Dc;zi HQc Su Phc;zm,
TruiJng Dc;zi HQc Bach Khoa dii t(in tlnh giang dC;Zyva
truy~n dc;ztnhi~u kien thac mal, b6 ich giup tai lam quen
ddn Val vi~c nghien cau khoa hQc.
Tai ciing xin chan thanh cam an gia dlnh, cam an cac
bc;zndii luon luon df)ng vien, giup diJ va tc;zodi~u ki~n v~
mQi m(it di tai hoan thanh to/tvi~c hQc.
Luljn van tlUJCsl loan h{JC

Mil nganh 1.01.01
4
MlJri)ng va u'ng d~tngBlf di Gronwall-Bellman
Hoang Thanh Long
DANH MUC KY HIEU
. .
Trang lu~n van nay co sa dl,mgcae ky hi~u va quy tide cgn thi€t.
1. IRll:Khong gian thl;icn chi~u.
2. IR+= [0,00).
3. Q = [to,tr] c IR.
5. 1.1: Gia tfi tuy~t d6i .
6. 11.11: Chu§'n. Tren IRllta lfiy chu§'n euclide.
7. exp(u) = ell.
8. Sup : C~n tren.
9. inf : C~n dtidi.
10. max : Gia tri IOnnhfit.
11. L : T6ng.
12. A =(aik), i,k = I, ,n, la ma tr~n vuong cfip n.
n
13. IIAII = Sup I laikI, la chu§'n cua ma tr~n A.
k i=l
I
14. IIullL2= (1:,lu(xW dX)2 < 00.
15. Dam : Mi~n xac dinh.
16. Re : Phgn thl;ic.
17. (D) : K€t thlic chung minh.
Lllqn van thl!c si loan h(JC Mil nganh : 1.01.01
5
, MlJri)ngvallngd~tngBd dilGronwall-Bellman
Hoang Thanh Long

CHUaNG 0
~
TONG QUAN
Trang loan hQc t6n t~i mOt sf{phuong trlnh va ba-t phuong trlnh ra-t
quail trQng. Chung mang nhi~u
ynghla th1fcti~n cho nhi~u ling dvng khac
nhau. Ba-td~ng thuc Gronwall hay B6 d~ Gronwall-Bellman la mOttrong
sf{do. B6 d~ nay tuy co d~ng h€t suc ra-tdon gian, nhung duQcling dvng
ra-thi~u qua dS chung minh s1fduy nha-tnghi~m cua phuong trlnh vi phan,
dung danh gia s1fsai l~ch nghi~m, dung dS tlm di~u ki~n du cho mOt sf{
bai loan 6n dinh nghi~m, VI v~y doi h6i phai hoan thi~n ba-t d~ng thuc
nay nhu mOt di~u ta-tnhien cua quy lu~t phat triSn. Va co nhi~u lac gia ma
rOng theo
ytuang va mvc dich khac nhau (xem [1, 2, 3, 4, 5, 6]). Tuy theo
mvc dich giai quy€t bai loan ma cac lac gia ma rOng khac nhau. Theo
chung Wi v~n can ra-tnhi~u d~ng, nhu d~ng lilYthua, d~ng ham exponent,
cgn duQc ma rOng.
Mf:lCdich cua lu4n van la t6ng k€t cac d~ng cua B6 d~ Gronwall-
Bellman, d6ng thai ti€p tvc ma rOng va trlnh bay mOt sf{ling dvng cua
chung.
Lu~n van duQc chia lam nam chuang.
Chuang 0 - T6ng quail.
Chuang 1 - B6 d~ Gronwall-Bellman va mOt sf{ma rOngd~ng tuy€n
tinh. Chuang nay g6m B6 d~ Gronwall-Bellman va 9 dinh ly 1.1-1.9.
Chuang 2 - MOt sf{ma rOng d~ng phi tuy€n. Chuang nay g6m mOt b6
d~ b6 trQ va 23 dinh ly 2.1-2.23.
Luljn van lh{lc si loan h(JC
Mil nganh : 1.01.01
6
. Mli rf)ng va ling dl!-ngBd di Gronwall-Bellman

Hoang Thanh Long
Chuang 3 - MQt 86 md rQng d~lllg ham exponent. Chuang nay g6m
illQtb6 d€ va 04 dinh 19 3.1-3.4.
Chuang 4 - MQt 86 ling dvng. Chuang nay g6m 8 lInh v1,1'cling dvng
khac nhau. Nhling ling dvng nay 1a: Chang minh sf! duy nh{{t nghi~m cua
phuong trinh vi phan va rich phan; Sf! lien tl:lCcua nghi~m rhea di~u ki~n
ddu va rhea vi phdi; Danh gia tfnh hj chc;incua nghi~m; Sai l~ch nghi~m
><,7
cua hai phuang trinh vi phan; On djnh mil trang khong gian Banach; Sf!
d d
phl:l thuf)c cua nghi~m rhea tham s6; On djnh cac h~ tf!a ddu khiin; On
djnh cac h~ kich df)ng thuiJng xuyen.
Cac md rQng cua B6 d€ Gronwall-Bellman con co thS tie'p tvc phat
triSn nhi€u bon nlia. Nhi€u ling dvng cua chung co thS ap dvng cho vi~c
giai quye't cac bai loan 6n dinh cac h~ tu~n hoan, Nhi€u vfin d€ lien
quail de'n B6 d€ nay khi md rQng81,1'phv thuQc cua bfit d&ngthlic vao hai
hoi:icnhi€u bie'n 86, hoi:ic 81,1'phi tuye'n da dc;mgcua cac m6i quail h~ cac
ham trong bfit d&ng thlic. MQt d~ng khac cua B6 d€ cling rfit duQc quail
tam 1acac d~ng roi r~c (xem [2, 3, 6, 8, 9]).
Lufjn van th{lc sl loan h(JC
Mil nganh : 1.01.01
7
MlJ rfJng va lIng d(tng Bd di Gronwall-Bellman
Hoang Thanh Long
CHUaNG 1
N ~ ,
BO DE GRONWALL-BELLMAN VA
" K ? " K "
MOT SO MO RONG DANG TUYEN TINH
.

Trang B6 d~ Gronwall-Bellman co nhi~u d?i luQng tham gia. Ne'u
chung ta 19nluQt thay d6i cac d?i luQng nay chung ta se co nhi~u ma
fQng. Cac ma rQng nay co ra't nhi~u ling d\lng va duQc phat biSu dudi
d?ng cac dinh ly. Cac ma rQng chli ye'u la cac d?ng ba't d~ng thlic tkh
phan.
Trudc lien chung ta xem l?i B6 d~ Gronwall-Bellman dudi d?ng ba't
phudng trlnh vi phan va ba't d~ng thlic tkh phan.
I. B6 d~ Gronwall-Bellman.
1.1.1 B6 d~ 1.
Gid sa u(t) la ham sf;'khd vi tren n. Ne'u t6n tc;zicac hang so'k, c 7: 0
saD cho:
u'(t) S curt) + k, b1En,
(1.1)
thi ta co:
k
u(t) S u(to)exp[c(t - to)] +-(exp[c(t - to)] - l}, 't;1'tEn.
c
( 1.2)
1.1.2. B6 d~ 2.
Gid sa u(t), art) la cac ham so'lien tl;lc,khong am tren n. Ne'u t6n tc;zi
hang so'k ;::0 saD cho:
Lllqn van thlJc SI loan h(JC
Mil nganh : 1.01.01
8
MlJrf)ng va lIng d~mgBtl d€ Gronwall-Bellman
Hoang Thanh Long
u(t)~a(t)+k f' u(s)ds, VtEQ,
Jto
(1.3)
the ta co:

u(t)~a(t)+k
rta(s)exp[k(t-s)Jds, VtEo.
Jto
(1.4)
1.1.3. H~ qua.
N€u aCt) =a =constant,\ftEQ, thl ta co:
u(t) ~ aexp[k(t - to)]'\ftEQ.
(1.5)
II. MQt sf) md rQng d~ng tuye-n Hnh.
1.2.1. Djnh Iy 1.1 (Xem[3 D.
Gid sa u(t) la ham so'lien tl;lc,khong am tren 0. N e'u tbn tC:licac hang
so' a ~O, k ~O, c > 0 saD cho:
u(t) ~ a + rt[cu(s) + kids, VtEQ,
Jto
( 1.6)
the ta co:
k
u(t) ~ aexp[ crt - to)J+ -{exp[ crt - to)J -I}, VtEo.
c
(1.7)
Chung minh djnh Iy 1.1.
Ta co th6 chung minh bang cach ap dl;lngb6 d~ 1 nhusau.
Di:it
v(t)=a+ rt[cu(s)+k]ds,\ftEQ.
Jto
(1.8)
TO'(1.6) va (1.8), ta suy fa u(t) ~ vet), veto) =a.
K€t hQp Iffyd~o ham hai v€ (1.8), ta duQc:
v'et) ~ av(t) + k, \ftEQ. (1.9)
Lllqn van th(lc si loan h(Jc

Mil nganh : 1.01.01
9
MlJri)ng va ung dlJng Bd di Gronwall-Bellman
Hoang Thanh Long
Ap dlJng b6 a~ 1, ta au'qc (1.7).(0)
1.2.2. Djnh Iy 1.2 (Xem [2]).
Gid sit u(t), k(t) la cac ham so'lien tl;lc,khong am tren Q. Niu tbn tqzi
hang so'a ;?0 saD cha
u(t)~a+ rt k(s)u(s)ds, b1EQ,
Jto
(1.10)
thE
u(t)~aexp[ rtk(s)ds], \1tEQ.
Jto
(1.11)
1.2.3. Djnh Iy 1.3 (Xem [6]).
Gid sit u(t), a(t), k(t) la cac ham so'lien tl;lc,khong am tren Q. Niu
u(t)~a(t)+ 1:k(s)u(s)ds, b1EQ,
(1.12)
thE
u(t)~a(t)+ 1:a(s)k(s)exp[ fk(r)dr]ds, b1EQ.
Chung minh djnh Iy 1.3. Xem [6].(0)
(1.13)
1.2.4. Djnh Iy 1.4 (Beesack, Xem [3]).
Gid sit u(t), a(t), b(t), k(t) la cac ham lien tl;lc,khong am tren Q.
a). Niu
u(t) ~ a(t) + b(t) 1:k(s)u(s)ds, b1EQ,
(1.14)
thE
u(t) ~a(t)+b(t) 1:a(s)k(s)exp[ fb(r)k(r)dr]ds, \1tEQ. (1.15)

b). Kef qua a) vdn dung ntu thay dau H~' bJi dau H;?"trang (1.14)
va (1.15).
Luqn van th{lc sf loan h{JC
Mil nganh : 1.01.01
10
Md rqng va ung dljng Bd di Gronwall-Bellman
Hoang Thanh Long
c). Ke'tqua a) va b) win dung neu thay r biJi r' va
S
t biJi r'.
Jto Jt s Jt
Chung minh dinh Iy 1.4. Xem [3].(0)
1.2.5. Dinh Iy 1.5 (Xem [4D.
V6i cac gid thie/; nhu djnh ly 1.3. Va gid sit a( t) la ham khd vi tren Q.
Neu
u(t)~a(t)+ rt k(s)u(s)ds, btEQ,
Jto
(1.16)
thE
u(t)~a(to)exp[ (k(s)ds] + (a/(s)exp[ fk(r)dr]ds, tltEQ.(1.17)
Chung minh dinh Iy 1.5. f)~t vet)la vii phai cua (1.16), ta co:
v'et) = alet)+ k(t)u(t).
~ a'(t) + k(t)v(t).
(1.18)
Suy ra
vet)
~ a(to)exp[ ( k(s)ds] + (a'(s)exp[ fk(r)dr ]ds
(1.19)
Tli b~t d~ng thlic nay, ta du<;5c(1.17).(0)
1.2.6.Dinh Iy 1.6 (Xem [4D.

Gid sit u(t), kef) la cac ham lien tf:lC,kh6ng am tren Q; art), bet) la cac
ham duCfng,khd vi tren Q. Neu
u(t)~a(t)+b(t) (k(s)u(s)ds, btEQ,
(1.20)
thE
u(t)
~ betHc(to)exp[ (b(r )k(r )dr]
+rc'(s)exp[ fb(r)k(r)dr]ds), tltEQ.
~ s
(1.21)
Lll{jn van thlJc Sf loan hQc
Mil nganh : 1.01.01
11
Mil ri)ng va ung d1!ngBd di Gronwall-Bellman
Hoang Thanh Long
trang do crt) =art)
b(t) .
Chung minh djnh Iy 1.6.
Chia hai v6 cua (1.20) cho bet), ap dlJngdinh ly 1.5.(0)
1.2.7.Djnh Iy 1.7 (Xem[10], tr.191-192).
Cho u(t), art) la cac ham lien tl:lc,khong am tren n. Gid sa K(t,s) 2!O,
gi6i nQi v6i to::{s::{t ::{t]va K(t,s)
= 0 v6i to::{t < s ::{t]. Ne'u
u(t)~a(t)+ rl K(t,s)u(s)ds, \?tEn,
J/o
( 1.22)
thl
u(t) ~ rp(t), \?tEn,
trong do rp(t)la nghi~m cua phuong trlnh
rp(t)

=art) + rl K(t,s)rp(s)ds.
J/o
(1.23)
Dinh ly 1.8, 1.9 sau day duqc ap dlJngra'thi~u qua trong vi~c khao
sat cac bai loan 6n dinh. No la h~ qua cua dinh ly 1.5.
1.2.8.Djnh Iy 1.8 (Xem [3]).
Cho u(t) la ham lien tl:lc,khong am tren n va thoa man bat dcing thac
u(t) ~ exp[ -art - ta)]u(ta)
+ r (au(s) + b)exp[-a(t-s)]ds, \?tEn,
J/o
(1.24 )
trong do a, 0 < a, 0 < b la cac hling so: Khi do, ta co:
u(t) ~ exp[ -( a - a)(t - ta)]u(ta)
+b(a - at! [1- exp[ -(a - a)(t - to)]}' \?tEn. (1.25)
Chung minh djnh Iy 1.8. Tlnh loan tnjc ti6p tu dinh ly 1.5 ho~c chung ta
Luqn van th{lc sf loan h(JC
t)H.~H.TtfNH'EN
THtr\lIEN
.
Mil nganh : 1.01.01
12
MlJrQngva u'ngdlJng Bii d€ Gronwall-Bellman
Hoang Thanh Long
c6 thS chung minh nhl1 sail:
B~t
x(t)
=u(t)exp( at).
Khi d6, tu (1.24), ta dl1Qc:
(1.26)
x(t) S Keto)+ i~ [axes) + bexp(as)]ds,

Ap dl;lngdinh 1:91.5, ta dl1Qc:
(1.27)
x(t) S x(to)exp[a(t - to)] + bexp(at) rt exp[(a - a)s]ds.
Jto
S x(to)exp[a(t - to)]
+ b(a - arl exp(at){ exp[(a - a)t] - exp[(a - a)to]}' (1.28)
V~y u(t) S u(to)exp[ -(a - a)(t - to)]
+ b(a - arl{l- exp[-(a - a)(t - to)]} .(D)
1.2.9. Djnh Iy 1.9.
Cha u(t), art), b(t) fa cac ham lien tl;lc, khong am tren Q. Ne'u
u(t) S exp[ -art - to)]u(to)
+ 1:[a( s)u( s) + b(s)] exp[ -art - s)]ds ,\ftED., (1.29)
trang do a fa hang so: thEta co:
u(t) S u(to)exp[ -art - to)+ rta(s)ds]
Jto
+ rb(s)exp[-a(t-s) + fa(r)dr]ds,\ftED (1.30)
to s
Chung minh djnh Iy 1.9. Tl1ong tl! chung minh dinh 1:91.8.(D)
Binh 1:91.9 t6ng qu:H h6a dinh 1:91.8. Binh 1:91.8 dl1Qcsuy ra tu dinh
1:91.9 trong trl1dng hQp a, b 1a cac ham h~ng,
Lllqn van thfJc sl loan h{Jc
Mii nganh : 1.01.01
13
MiJr{}ngva ung d1!ngBli d€ Gronwall-Bellman
Hoang Thanh Long
CHUaNG 2
" ,," ? " ""
MOT SO MO RONGDANG PHI TUYEN
.
Trang chuang 1 chung Wi da trlnh bay mQt 86 k€t qua md rQng d(;mg

tuy€n tinh d6i voi ham u(t). Trang chuang nay chung Wineu md rQngmQt86
d(;lngphi tuy€n d6i voi ham u(t).
2.1. B6 d~ b6 trQ (Xem [5]).
Cho u(t) la ham duong, khd vi tren Q, a(t), b(t) la cac ham lien tl:lc
tren Q va p 20 la mQt hdng so: Gid si/:co bat dcing thuc
u'(t)sa(t)u(t)+b(t)uP(t), 'r7tEQ. (2.1)
Khi do tuy theo p, ta co cac ket qua sau:
a. Ne'up
=1 thi
u(t) S u(t )exp[
([a( s) + b( s)Jds, 'r7tEQ.
(2.2)
b. Ne'u p :;z!:1 thi
I
u(t)sexp[ rta(s)ds]{uq(to)+qrtb(s)exp[-q r~a(r)drJds/J, (2.3)
J~ J~ J~
'r7tE[to ,tp), q =1- p va
tp =SUp{tEQ Iuq(to) + q rtb(s)exp[ -q r~a(r )drJds > OJ.
Jto Jto
Chung minh b6 d~ b6 trQ. Xem [5].(0)
2.2. Dinh Iy 2.1.
Cho u(t) la ham lien tl:lCtren Q. Gid si/:art), bet), cp(t)la cac ham lien
Luijn van thlJc si loan h{Jc
Mil nganh 1.01.01
14
Mil ri)ngva ring d(tng Bd d~ Gronwall-Bellman Hoang Thanh Long
tf:lC,khong am tren £2 Ne'u
2 rt
u (t)~a(t)+2b(t) Jtocp(s)u(s)ds, l7tEQ,
(2.4 )

thi
1
lu(t)1 ~(a(t)+b(t) r[cp2(s)+a(s)]exp[ fb(r)drJdsj2, [7tE£2(2.5)
to s
Chung minh dfnh If 2.1. Di;it
vet) = 2 rt <p(s)u(s)ds, 'v'tEQ.
Jto
(2.6)
Lffy d~o ham hai vii cua (2.6), ap dl;lngbfft d~ng thlic Cauchy va kiit
hqp voi (2.4), ta duQc:
v'et) ~ <p\t) + aCt)+ b(t)v(t).
(2.7)
Suy fa
vet) ~ f[cp2(S) + a(s)]exp[ fb(f)dfJiS].
to s
Thay vao (2.4) va Iffy din, ta duqc (2.5).(0)
(2.8)
2.3. Dfnh If 2.2.
Cha u(t), b(t), <P(t) la cac ham lien tf:lC,khong am tren £2 0 ::;p :;z!:1, a
la cac hang so: Gid sit b(t) la melt ham khong gidm va khd vi tren £2 Ne'u
u(t)~a+b(t) rt<p(s)uP(s)ds, l7tEQ,
Jto
(2.9)
thi
I
u(t) ~ b(t){[ ~Jq + q r<p(s)bP (s)dsj,q l7tE[to,tp),
b(to) to
(2.10)
trang do tp =SUp{tEQ I[~Jq + q r cp(s)bl'( s)ds > OJva q = 1- p.
b(to) Jto

Luqn van th{lc sl loan h(JC
Mil nganh : 1.01.01
15
MlIri)ng va ung d~tngBif d€ Gronwall-Bellman Hoang Thanh Long
Chung minh dinh Iy 2.2. E>~tvet) la v€ phili cua (2.9). Khi do, ta co:
b'(t)
viet) S -[ vet) - a] + b(t)qJ(t)vP(t).
bet)
S b'(t) vet) + b(t)qJ(t)vP(t).
bet)
(2.11)
Ap dlJng b6 d~ b6 trq, ta duqc:
b
'
(
)
b
'
( )
I
t S t s r -
vet) s;exp[ r -ds]{aq + q rqJ(s)b(s)exp[-q r -dr]ds}q (2.12)
Jto b(s) Jto Jto her) .
I
V~y vet) S;betH [~]q + q rt lp(s)bP(s)ds}4(D)
beta)
Jto .
2.4. Dinh Iy 2.3.
Cho u(t),fer), qi.t)la cac ham lien t¥c, khong am tren Q. 0 ~p <1 la
m(jt hling so: q =1 -p. Ne'u

u(t) S;f (t) +
rtlp(s)uP(s )ds, VlEQ,
Jto
(2.13)
thi
I
u(t) S;fer) + [M<f + qfqJ(s)ds/q VlEQ,
0
(2.14 )
trang do M =Sup{f(t) E IRI tED}.
Chung minh dinh Iy 2.3. E>~t
vet) = rt lp(s)uP(s)ds.
Jto
(2.15)
La'y dC;lOham hai v€ va chu yrAng u(t) S;f(t) + v(t), ta thu duqc:
v'et) s;qJ(t)[f(t) + v(t)]P.
v'(t) s; lp(t)[M + v(t)]P.
(2.16)
Lufjn van th{lC si loan h(Jc Mil nganh : 1.01.01
16
MiJri)ng va ung d(tng Bd di Gronwall-Bellman Hoang Thanh Long
Chia hai v€ cua (2.16) cho [M +v(t)]P, ta dtiQc:
viet)
[M + v(t)]P ~ lp(t).
(2.17)
Lgy tich phan hai v€ tu tod€n thai v€ bgt d~ng thuc, ta dtiQc:
[M + v(t)]q ~ Mq + q
rtlp(s)ds.
Jto
(2.18)

Suy ra
vq(t) ~ Mq + q rtlp(s)ds.
Jto
(2.19)
Lgy din hai v€, ta dtiQc:
I
vet) ~ {Mq + q ( lp(s)ds}q (D)
Dinh ly tren khong c~n tinh don di~u, kha vi cua ham f. Tuy nhien ta
c~n phai tinh Sup{f(t)EIR ItEn}.
2.5. Dfnh ly 2.4 (Xem [3]).
Cha u(t), a(t), b(t) la cac ham lien tl;lc,khong am trenD, p 20, c la
cac hang so'saa cha
u(t) ~c+ rl [a(s)u(s) + b(s)uP(s)]ds, 'rItEil.
Jlo
(2.20)
Khi do tuy thep p, ta co cac kit qua sau:
a. Niu 0 sp <1 thi
I
u(t) ~ exp[ (a(s)ds]{ cq + q (b(s)exp[ -q 1:a(r)dr]dsii (2.21)
lit ED, trang do q = 1 -p.
b. Niu p =1 thi
u(t)~cexp[ ([a(s)+b(s)]ds], 'rItEQ
(2.22)
Llli)n van th{lc sf loan h{Jc
Mil nganh : 1.01.01
17
Milri}ngva ung d1!ngBfl di Gronwall-Bellman Hoang Thanh Long
c. Ntu p >1 thz
1
u(t)::; c{exp[ q 1: a(s)ds] + c-'1q1: b(s)exp[ q ra(r )dr ]ds}q (2.23)

1 I
VtE[to,tp), t =Sup{tEQlexp[q rta(s)ds]/q{-q rtb(s)ds]}q >c}.
fJ Jto Jto
Chung minh dinh If 2.4. Ta chung minh r5 rang nhusau:
D~t vet)la vfiphai cua (2.20). Ta co:
v'(t)::; a(t)v(t) + b(t)vP(t).
(2.24 )
a. Nfiu 0 ::;p <1, thl ap dl;mgb6 d~ b6 trQ, ta duQc (2.21).
b. Nfiu p
=1, tu (2.20), ta co:
u(t)::; c + ([a(s) + b(s)]u(s)ds.
Ap dlJng dinh 1y 1.2, ta duQc (2.21).
c. Nfiu p > 1, ap dlJng b6 d~ b6 trQ cho (2.24), ta duQc (2.23).(0)
2.6. Dinh If 2.5.
Cho u(t), a(t), b(t) la cac ham lien tl;lc,khong am tren Q, c ;:::0, p ;:::0,
0 ::;q ::;1 la cac hang so: p ;:::q. Ntu
u( t) ::;c + rt a( s)uP (s)ds + rt b( s)14'1(s )ds, tit ED.
Jto Jto
(2.25)
Khi do tuy theo p, ta co cac kef qua sau:
a. Ntu p
=1 thz
u(t)::;exp[ rta(s)ds]
Jto
1
(Cl-'1 +(1-q) rt b(s)exp[(q-1) r~a(r)dr]dsp-'1 (2.26)
Jto Jto
b. Ntu p < 1 thz
Lu{jn van th{Jc si loan h(Jc
Mii nganh : 1.01.01

18
MlJrl)ng va ung dljng Bd dff Gronwall-Bellman
Hoang Thanh Long
I-p I
u(t) So[ZI-q(t)+(1-p) rta(s)dst-p,
Jto
(2.27)
trong do Z(t)
=Sup{K( s) I s E[ta,t]}.
c.Ne'u p > 1 thi
I p-l I
u(t) SoK1-q(t)[1+(1-p) rta(s)K~(s)dsJ'-p,
Jto
(2.28)
p-l
'r7tE[ta,tp), t =Sup{tEQI(p-l) rta(s)KI-q(s)ds<l},
p J~
trong cae bat dcing thac tren K(t) =c1-q + (1- q) rt b(s)ds.
Jto
(2.29)
Chung minh djnh Iy 2.5. £)~t vet) Ia vfi phiii cua (2.25). Khi do, ta co:
v'et) = a(t)uP(t) + b(t)uq(t),
Soa(t)vP(t) + b(t)vq(t),
So[a(t)vp-q(t) + b(t)]vq(t).
(2.30)
Chuy~n vg(t) sang tnii va Iffytkh phan hai vfi tll todfin t, ta dU<;lc:
vI-get) Socl-q + (1- q) rt[b(s) + a(s)vp-q(s)]ds.
Jto
(2.31)
£)~t yet) =vi-get)va e= p - q

1-q'
Tll (2.31), ta dU<;lc:
yet) SoK(t) + (1- q) (a(s)y8(s)ds.
(2.32)
a. Nfiue =1, tuc Ia p =1, tll (2.32), ta co:
yet) SoK(t) + (1- q) (a(s)y(s)ds.
(2.33)
Ap d1;1ngdinh Iy 1.5, ta du<;lc:
Lluln van th{lc si loan h{JC
Mii nganh : 1.01.01
19
MlIri)ng va llng d~tngBli di Gronwall-Bellman
Hoang Thanh Long
yet) ~ cl-q exp[(I- q) rt a(s)ds]
Jto
+(1- q) (b(s)exp[(I- q) fa(r)dr]ds.
(2.34)
net) ~ exp[ (a(S)dS]
1
{cH + (1- q) rtb(s)exp[(q -1) rsa(r)dr]ds}l-q (2.35)
J~) J~
b. N€u 8
< 1, tuc la p < 1, ap dl;lngd~nh ly 2.7 trong truong hQp d~c
bi~t vao (2.32), ta duQc:
I-p I-q
yet) ~ [Zl-q (t) + (1- p) rt a(s)ds]I-P,
Jto
(2.36)
I-p I
hay net) ~ [ZI-q (t) + (1- p) rt a(s)ds]I-P

Jto
(2.37)
c. N€u 8 > 1, tuc la p > 1, ap dl;lngd~nh ly 2.10 vao (2.32), ta duQc:
p-I I-q
y(t)~K(t)[l+(I-p) rta(s)KI-q(s)ds]I-P,
Jto
(2.38)
I p-I I
hay net) ~ KI-q (t)[1 + (1- p) rt a(s)K 1=4(s)ds]1=P.(0)
Jto
2.7. Dinh Iy 2.6 (Xem [2]).
Cia sit u(t), b(t), K(t,s), h(t,s,o-) la cac ham lien tf:lc,khong am trang
to :;;() :;;s :;;t :;;tJsaG cha
u(t)~a+ rtb(s)uP(s)ds+ rt r~K(s,1:)uP(1:)d1:ds
Jto Jto Jto
+ rt r~ rt h(s,1:,a)uP(a)dad1:ds, VtEQ,
Jto Jto Jto
(2.39)
trang do 0 < a la mQt hang so'va 0 :;;p ::;z!: 1 thi
Luqn van th{lc si loan h(Jc
Mii nganh : 1.01.01
20
M1Jri)ng va ung d(tng Bd di Gronwall-Bellman
Hoang Thanh Long
I
u(t)~{aq+qr[b(s)+ rK(S,T)dT+ rs r'h(S,T,cr)dTdcr]dsjq,(2.40)
Jto Jto Jto Jto
tit E{to ,tp),
tp
=SUp{tEQ Iaq + q f[b( s) + rl' K( s, T)dT + r r'h(s, T,cr)dTdcr]ds > OJ.

to Jto Jto Jto
Chung minh djnh ly 2.6. Xem [2].(0)
2.8.Bjnh ly 2.7 (Xem [2]).
Cho u(t), b(t), K(t,s), h(t,s, a) la cac ham lien tl;lc,khong am trong to::;
, .? ?
a::; s ::;t ::;tj va gza sa
u(t)~a(t)+ rt b(s)uP(s)ds+ rt r~K(S,T)UP(T)dTds
Jto Jto Jro
+ rt r r'h(s,T,a)uP(a)dadTds, 'r/tEQ,
Jto Jto Jto
(2.41)
trang do a(t) 20 la mqt ham so' lien tl;lc,khong gidm tren Qva O::;p;z:Jla
ml)t h!:ingso:Ta co:
]
u(t)~{Aq(t)+q rt[b(s) + rK(S,T)dT+ r r'h(S,T,cr)dTdcr]dsjQ,(2.42)
Jto Jto Jto Jto
tltE[tO,tp),A(t) =Sup{a(s)lsE[to,tJ},
tp= Sup{tEQIAq(t)+q rt (b(s) + r~K(S,T)dT+ rs r'h(S,T,cr)dTdcr]ds> OJ
Jto Jto Jto Jto
Chung minb djnb ly 2.7. Xem [2].(0)
£)~t Ii ={ (tl,h, ,ti)EIRI Ia ~ ti ~ ~ t1 ~ t ~ ~}, i =1, ,n.
2.9.Bjnb ly 2.8 (Xem [2]).
Cho u(t), b(t) la cac ham lien tl;lc,khong am trong J =[ a,p] va
u(t) ~ b(t)[ a +
IK](t,tj)uP(tl)dtl
r rl rtl1 I
+ + Ja(Ja ( Ja- Kn(t,tl' ,tn)uP(tn)dtn) )dt]], 'r/tEJ,(2.43)
Lllqn van th{lc sFloan h(JC
Mil nganh : 1.01.01
21

MiJrl)ng va ling d~tngBd di Gronwall-Bellman
Hoang Thanh Long
trang doa > 0 va 0 S'p :/=1la cac hang so: Ki (t,t], ,U la ham so'lien tl;lc,
khong am trang Ji WYii =1, ,n. Gid sit a:i ton tc;zi,khong am va lien tl;lc
trang Ji wJi i =1, ,n. Khi do, ta co:
I
u(t)~b(t)[alJ + q((R[bPJ(s) + Q[bPJ(s))dsjq, WE[a,fJ]), (2.44)
trang do q =1 - p,
fJ]
= SupftEJlalJ+q(fR[bPJ(s)+Q[bP](s)}ds>O},
R[wJ(t) = KJt,t)w(t) + (K2(t,t,t2)W(t2)dt2
n I 12 Ii I
+~
I
(
I
(
1
- KJt,t,t2, ,t)w(t)dt) )dt2, (2.45)
~ a a alii
1=3
I
laK
Q[w](t) = 1-(t,ti)W(ti)dti
a at
~
I
I
i
ll

i
l;-I aK,
+L ( ( 1-(t,tp ,t)w(t)dt) )dtp (2.46)
, a a a
at
1 1
1=2
wJi mQi ham lien tl;lcw(t) trang J.
Chung minh dfnh ly 2.8. Xem [2].(0)
Dinh 19sau day Iiih~ qua cua dinh 192.8.
2.10. Dfnh ly 2.9 (Xem [2]).
Cha u(t) la ham lien tl;lc,khong am tren J
=[a,fJ]. Gid sit
u(t)~a+ (K(t,s)uP(s)ds+ ({h(t,s,i:)uP(r)di:ds, WEJ,
(2.4 7)
trang do a > 0 va 0 S'p :/=1 la hang so:'K(t,s) va h(t,s,r) la cac ham lien
kh
A A ,.
< < <
<fJ,
aK ,ah ~ .
kh
A A
I
.A
tuc, an
g
am val a - r - s - t - ,. -va - tan tal, an
g
am, len tUG

. at at' .
Lt«fn 1'0'1 tlt(lC sf todn It(lC
Mti nganlt IJllJJI
22
MlJr(mg va ung dl.lngBd di Gronwall-Bellman Hoang Thanh Long
, . < < < <
j3.
Kh
'
d
' ,
vO'l a - 'f - S - t 1 0, ta co:
I
u(t)::=;;[ail + q L (R( s) + Q(s))dsjq, b1E[a,fJJ),
(2.48)
WJiq
=1 - p va fJJ=Sup{t E J Iail + q L (R(s) + Q(s))ds > O},
R(t)=K(t,t)+ Lh(t,t,1:)d1:,
(2.49)
I
t aK
I
t
I
sah
Q(t)= -(t,1:)w(t)dt+ -(t,s,1:)d1:ds.
a at a a at
(2.50)
2.11. Djnh ly 2.10 (Xem [2]).
Cho u(t), b(t) la cae ham lien tl:le,khong am tren 12 K(t,s), h(t,s, (J)la

cae ham lien tl:le,khong am trong to::; (J::;s ::;t ::;tJ va gid SU:
u(t)::=;;a(t)+ r b(s)uP(s)ds+ rt C'IK(s,1:)uP(1:)d1:ds
Jto Jto Jto
+ rt rs r' h(s,1:,a)u"(a)dad1:ds, L7tEQ,
Jto Jto Jto
(2.51)
trang do a(t) ;:0 la melt ham so'lien tl:le,khong gidm tren Q, 1 < p la hang
so: Ta co:
J
I
t -~
u(t)::=;;a(t)[1-r B(s)ar(s)dsj , b1E[to,fJp),
to
(2.52)
vJi
B(t)=b(t)+ rtK(t,s)ds+ rt r'h(t,s,1:)d1:ds,
Jto Jto Jto
(2.53)
fJp= Sup{tEOll-rrB(s)d'(s)ds>O}var=p-l.
Jto
Chung minh djnh ly 2.10. Xem [2].(0)
2.12. Djnh ly 2.11 (Xem [2]).
Cho u(t), b(t), K(t,s), a(t) la cae ham lien tl:le,khong am trong to::;s::;
Luijn van th{lc si loan h(Jc
Mil nganh : 1.01.01
23
MlJr{}ngva ung d~tngBd d~ Gronwall-Bellman
Hoang Thanh Long
t :::::tj.Ne'u
u(t) S;a(t){ a +

i
t b(s)uP(s)ds +
i
t
i
s K (s, T)UP('r:)dTds), t7t6.0,(2.54)
to to to
trang do a :? 0, P :? 1 fa cae hling so: thi ta co:
I
u(t) s; aa( t)[1- rar
i
t B( s)ar (s)ds ] ;, t7t6[ to,f3r),
to
(2.55)
vcfi
B(t)=b(t)+
fK(t,s)ds,
to
(2.56)
J3r =SUp{tEQ. I rd' rtB(s)ar(s)ds<l}var=p-l.
Jto
Chung minh dinh Iy 2.11. Ta chung minh ro rang nhu sail: D~t
vet) = rt b(s)uP(s)ds + rt rs K(s, T)uP('r:)d'T:ds.
Jto Jto Jto
(2.57)
La'y dqo ham hai vS (2.57), ta du<;jc:
v'(t) = b(t)uP(t) + rt K(t, 'T:)uP('T:)d'T:.
Jto
s;B(t)aP(t)[a+v(t)]p.
S;R(t)a+R(t)v(t).

vdi R(t) = B(t)aP(t)[a+v(t)]P-l.
(2.58)
(2.59)
Tu (2.58), ta suy fa:
vet)+ as; aexp[ rt R(s)ds].
Jto
(2.60)
La'y lUy thua hai vS va nhan r vao hai vS ba't d£ng thuc, ta du<;jc:
fRet) S;rB(t)af (t)af exp[r rtR(s)ds].
Jto
(2.61)
Nhan hai vS (2.61) vdi exp[-r r R(s)ds] va la'ytkh phan hai vS tu to
Jto
Lllqn van th[Jc Sfloan h{Jc
Mii nganh : 1.01.01
24
MlJrQng va ling d1!ngBd d~ Gronwall-Bellman
Hoang Thanh Long
dSn t, ta duQc:
1 - exp[ -r rt R(s)ds]:::;far rt B(s)crP(s)ds.
Jto Jto
(2.62)
Vdi to:::;t:::;PP' tu (2.62), ta suy fa:
1
exp[ rt R(s)ds]:::;[1 - far rt B(s)crP(s)dsf~.
J~ J~
(2.63)
Thay vao (2.60), ta duQc:
I
t

vet) + a:::;a[l- far rB(s)crP(s)ds] r.
Jto
(2.64)
)
t
V~y U(t):::;acr(t)[l- far r B(s)crP(s)ds] r .(0)
Jto
2.13. Dfnh Iy 2.12 (Xem [2]).
Cha u(t) ;;:0, art) ;;:0, b(t) > 0, la cac ham lien tl;lctrang J =[a, 13],
Gid sit aCt) la mot ham tang trang J,
b(t) .
u(t) :::;a(t) + b(t)[ IK/t,tl)UP (tl)dt)
rl r/l rn I
+ + Ja ( Ja ( Ja - Kn(t,tl' ,tn)uP(tn)dt,J )dt1J, MEJ,(2.65)
trang do p > 1 la m(Jt hiing so: Ki (t,tj, ,ti) la ham so'lien tl;lc,khong am
trang Ji wJi i =1, ,n, va a:i tbn t(li, khong am va lien tl;lctrang Ji wJi i =
1, ,n. Khi do, ta co:
1
u(t):::;a(t)[l- r r[a( s)T( R[bP](s) + Q[bP](s))dsJ ;., ME[a ,131),(2.66)
a b(S)
trang do r
=p -1,
Llli)n van th(lc sf loan hf)C
Mil nganh : 1.01.01

×