12
CHUaNG 2
CAC CONG CT)
Trang chuang nay, chung toi lieU mQt s6 dinh Iy, b6 d~ va cac h~ qua dn
thi€t cho vi~c danh gia cac d<,tiuQng hlnh hQc d6i vdi cac lOp ham F va G.
l
2.1 nilt diing thuc Carleman, cae h~ qua va md r{)ng
n6 d~ 2.1: (nilt diing thuc Carleman)
Gia
stt
w = fez)
A={zl(O<)r
la mQt PBHBG
don
di~p
hlnh
vanh
leu mQt mi~n nhi lien D khong chua di€m
bien trang C1 va bien ngoai C2 san cho
Izl
khan
00
vdi
= R tuong ling vdi C2. GQi S la di~n
tich (trong) cua t~p md do C2 ban bQc, s la di~n tich (ngoai) cua t~p dong do
ban bQc. Khi do, ta co:
(2.1)
S2(~JS.
D~ng thuc xay fa khi va chi khif(z) = az +b vdi a,b la hling s6 va a:;t:O.
~
w=f(z)
A
Or
R
z
w
Hlnh2.1
Chung minh: Xem [4, tr. 212].
C1
13
H~ qua 2.1: (Dinh nghia modun mi~n nhi lien)
Gia sa mi~n nhi lien D qua cac PBHBG / va 1; l~n hiQt bie'n leu hai hlnh
vanhkhan H={wlr
thl
R = RI
r
1J
(2.2)
Ti' s6 nay duQc gQi la m6dun cua mi~n nhi lien D va duQcky hi~u la
mod(D) .
Chung minh:
/
1;
~
~
D
HI
0
R
O~
z
R]
WI
ffinh 2.2
Xet PBHBG j:j;-I mi~n HI leu mi~n H, rhea b6 d~ 2.1, ta co
ffR'
hay
~
[ ~'
J ffr'
R
-2- RI
r
1J
(2.2a)
TucJngrtf, ta xet PBHBG 1;0/-] mi~n H ten mi~n H], rhea b6 d~ 2.1, ta co
2
2
1rRl 2
hay
R]
-2-.
1J
R
Tli (2.2a) va (2.2b), suy fa (2.2) .
r
R
[ -; )
2
1r1J
(2.2b)
14
H~ qua 2.2: (Tinh ba't bie'n cua modun mi~n nhf lien)
Ne'u mi~n nhi lien A eo cae thanh phffn bien kh6ng thocii boa thanh mQt
di6m du<;1e ie'n baa giae don di~p len mi~n nhi lien B thl
b
= mod(B) .
mod(A)
(2.3)
Chung minh:
~
f
g
h~
~
~
HI
O~
0
Rj
Rz
w
Hinh 2.3
GQi f la PBHBG don di~p mi~n A len mi~n B . X6t g la PBHBG don di~p
mi~n A !en hlnh vanh khan HI
Bien
={sh < Isl< RI}
va h la PBHBG don di~p mi~n
hlnh vanh khan Hz = {tlrz < ItI< Rz}.
Thea h~ qua 2.1, ta eo:
mod(A) = RI va mod(B) = Rz .
~
rz
D~t cp= hf
thl cp PBHBG don di~p mi~n A len hlnh vanh khan Hz.
la
Theo h~ qua 2.1, ta eo:
mod(A) = Rz va Rj - Rz
rz
lj -- rz
V~y ta eo mod(A) = mod(B)We(2.3) .
15
H~ qua 2.3: (Tinh don di~u cua modun mi~n nhi lien)
Trang m~t ph&ng z cha hai mi~n nhi lien A va B vdi modun tu'dng ung
la R va R] , co Hnh cha't A c B va A ngan cach hai thanh philo bien cua B.
r
lj
Khi do, ta co:
R
-~-. Rl
r
(2.4 )
1j
D&ng thuc xay ra khi va chi khi A = B.
Chung minh:
w=f(z)
~
R
Hinh 2.4
VI mod(B) = RI Den t6n t!;liPBHBG ddn di~p f mi~n BIen
lj
khan
11= {wi'i
nhi lien
A vdi
hlnh vanh
mi~n A trd thanh mi~n
mod(A) = R co bien trong la C] va bien ngaai la Cz saD cha C]
r
baa quanh ha~c trung vdi
!wi
= 1j va Iwl = Rl baa quanh ha~c trung vdi Cz. GQi S
la di~n rich (trong) cua t~p md da Cz baa bQc, s la di~n rich (ngaai) cua t~p
dong da C1baa bQc.
16
Khi do, ta co:
s~m/
S 5, 1rR)2 .
va
(2.4a)
(2.4b)
Vi mod(A) = R nen t6n t(;liPBHBG don di~p g mi~n A leu hlnh vanh
r
khan D = {t Ir
5, It 1 5,
R}.
Ap dl,mgb6 d~ 2.1 cho PBHBG w= g-) (t), ta co:
(2.4c)
s~(:Js,
trong do d~ng thuc xay ra khi va chI khi g-) (t) =at +b vOi a, b la hang s6, a;t: o.
Tuc A la hlnh vanh khan.
Ti'icac k€t qua tren, ta co:
(~ J
< ~(:J.
Ti'i do suy ra (2.4).
f)~ng thuc (j (2.4) xay ra khi va chI khi cac d~ng thuc (j (2.4a), (2.4b) va (2.4c)
cungxayra,tucA=B
hayA=B-
B6 d~ 2.2: (Md r{)ng bilt diing thuc Carleman bdi Thao[12, tr. 521])
Gia
su
w = fez)
la
PBHKABG
mQt
hlnh
vanh
A = {zl (0 <) r < Izi< R (< oo)} leu mQt mi~n nhi lien D khong chua di€m
bien trong c) va bien ngoai C2 sao cho
Izi
khan
00
vdi
= R tu'ong ling vdi C2. GQi S la di~n
tich (trong) cua mi~n do C2 baa bQc, s la di~n tich (ngoai) cua t~p dong do C)
baa bQc. Khi do, ta co:
2
s~(~)K
s.
(2.5)
17
D~ng thuc xay ra khi va chI khi fez) = alzr~.-I+b vdi a,b la h~ng s6 va a ~ o.
Chung minh: Xem [12, tr. 521], [17, tr. 13-14].
2.2 Md r{)ngcae bitt diing thuc Grotzsch va Kiihnau
B6 d~ 2.3: (Bitt diing thuc Grotzsch 1)
Gia sa w = fez) la PBHBG ddn di~p hlnh vanh khan H = {zl(O~)r
leu mi~n nhi lien D vdi bien ngoai Iwl= 1va bien trong c, sao cho mi~n gidi h~n
boi c luau chua hlnh troll Iwl
,
?
rang tren
C
co p
2bi
diem
Wk
= Me P ,( k = O,1,...,p-1).
Khi do, ta co:
(2.6)
MsT(p,r,s),
trong do d~ng thuc xay ra khi va chi khi f = fo
vanh
khan
H={zl(O<)r
D
= {wi s
Lj
= {w s:>!wI :>/,argw
< Iwl < 1} , (0
c~t
s s < r < 1) bi
la mQt PBHBG
leu
boi
mi~n
p
ddn di~p hlnh
lien
nhi
2
do~n
thang
~ 2;j },(o:> s < / <1),j ~ 1,2,.--,p.
Chung minh: Xem [6, tr. 372] hay [19, tr. 18 -20].
B6 d~ 2.4: (Md r{)ng bitt diing thuc Grotzsch 1 bdi Thao[13, tr. 63])
Gia sa A la hlnh vanh khan R
-
hi
c~t cung troll d6ng tam 0 sao cho A trung vdi chinh no boi phep quay z = ze P .
GQi f la PBHKABG mi~n A leu mi~n B n~m trong 0 < Iwl< 1 sao cho dliong
troll Iz 1= R tlidng ling vdi bien trong C giOi h~n mQt t~p dong chua g6c tQa dQ,
du'ong troll Iz 1= 1 tu'dng ling bien ngoai C cua B . Hdn nii'a gia thi€t B trling
2~i
vdi chinh no boi phep quay;:;:' = we P .
18
Khi do, ta co:
(2.7)
M~T(p,R*,m),
vdi M = max{lwl,WEc}, m =min{lwl, WEc}, 0 ~ m ~M < 1.
Ding thuc xay ra khi va ChI khi w=f(z)=ah(u),lal=l,u=bzlzlt-I,lbl=l,
h
la PBHBG don di<$phlnh vanh khan R* < lul< 1 ten mien nhi lie~ sao cho
lul = ltu'ong ling vdi bien ngoai C = {wllw\ =I},
trong
c~
con
lul
= R*
tu'ong ling vdi bien
{~I+ m}u{ ~m,;H,; M,argw~2;j,j ~1,...,+
Chung minh: Xem [13, tr. 63] hay [19, tr. 33 - 35].
Nho phep bien d6i z = Q va W = ml , b6 de 2.4 trd thanh
z
w
H~ qua 2.4:
Giasa A lahlnhvanhkhan
Q
pn,(p =1,2,...;n=0,1,2,...)
2/T'
cung troll d6ng tam 0 sao cho A trung vdi chinh no bdi phep quay;
sa
= ze . Gia
P
f la PBHKABG mien A ten mien B nam trong 0 < Iwl < 00 sao cho Iz I = Q
tu'ong ling vdi bien trong C] baa g6c tQa dQ, du'ong troll Iz1= R tu'ong ling bien
ngoai
C 2 cua B. Hon nua gia thiet B trung vdi chinh no bdi phep quay
2/T'
P
w=we
.
Khi do, ta co:
m2 2::
;1 *, !!!L
T [ p, ( R )
'
M2 J
vdi M2 = max{lwl, WE C2}, mj = min{lwl, WE Cj },j =1,2.
(2.8)
19
B~ng thuc xay fa khi va chi khi w = f(z) = ah(u),Ial= I,u = bzlzlt-),Ibl= 1, h la
PBHBG hlnh vanh khan Qt < lul< Rt len mi~n nhi lien E saD cho lul = Qt tu'ong
voi
va
ling
voi
Gia sa w = fez) la PBHBG don di~p hlnh vanh khan A = {zl(O<)r
< Izi< I}
ling
c,
~
{wI1wi
~
c] = {wllwl= m)}
M,} u{ wllwl
~
m, ,; w,; M"argw
lul=Rt
~ 2;j
tu'ong
,j ~ 1,...,P}.
Chung minh: Xem [13, tr. 64] hay [19, IT.35 - 36].
Be}d~ 2.5: (Ba't diing thuc Grotzsch 2)
len mi~n nhi lien B n~m trong hlnh troll
Iwl
= 1 va bien trong c) saDcho
Izl
Iwl
= 1, c6 bien ngoai C2 Ia du'ong troll
= 1 tu'ong ling
voi C2.
Khi d6, du'ong kinh D cua c) thoa
D::; Do
(2.9)
= 2T(2,r,O),
trong d6 D = Dokhi va chi khi c) la do~n th~ng nh~n w = 0 lam trung di~m.
Chung minh: Xem [8, tr. 220].
Be}d~ 2.6: (Ba't diing thuc Grotzsch 2 md rQng)
Gia sa w=f(z)
la PBHKABG hlnh vanh khan A={zl(O<)r
mi~n nhi lien B c6 bien ngoai C2 va bien trong c) saD cho
C2. B~t M
= max {IwllWE
Izl
= R tu'ong ling voi
C2} . Khi d6, du'ong kinh D cua c) thoa
(2.10)
D';Do ~2MTH~rol
trong d6 D = Do khi va chi khi w= fo (;)
voi; = azlzl-t-] ,Ial = 1 va fo
la PBHBG
don di~p hlnh vanh khan A=FI r-t < 1;1 < R-t} len hlnh troll Iwl< M bi ciit dQc
do~n th~ng nh~n w = 0 lam trung di~m saD cho 1;1= R-t tu'ong ling voi Iwl= M .
20
Chung minh:
.:. Tru'ong hQp 1: K = 1, C2 trung voi du'ong tron Iwl = M
w=j(z)
~
B
R
Bo
(]
M
0
w
------
M
w
~
w=fo(z)
Hinh 2.5
Chi dn thljc hi~n cac phep co dan
; = ~ va ; =
;
, d~ dang du'a tru'ong
h<,Jp
nay ve tru'ong hQp cua b6 de 2.5 voi mien A thay bdi
B thay bdi l3 nQi tie'p trong hih tron
1;1
A= {;I ~
< 1;1 I} va
<
< 1. Trd ve cac bie'n z va w ta thu du'Qc
(2.10) vdi K = 1 cling ke't lu?n cho D = Do'
.:. Tru'ong hQp 2 : K = 1, C2 Ia bien ngoai ba't kl cua B
GQi l3 la mien nhi lien chua B co bien ngoai la
!wi
= M, bien trong Hi C].
Do tinh don di~u cua m6dun mien nhi lien (xem h~ qua 2.3) , ta co:
mod(B) ~ mod(B).
Theo h~ qua 2.2, ta co:
mod(B) = R.
r
M~t khac, gia sa l3 co modun
mod(l3) = ~ .
r
21
V~y
r r
-
Thea tinh chfft don di~u (1.17) cua ham ph\) T(p,r,s), ta co:
(2.lOa)
T[ 2,~,O)~T(2, ~,O}
~
A
B
,,'
,/
Or
R
O
I
..
'
I
I
I
I
C
I
\
\
"M
.
:
Cz,'
I
1
\
\'
'''
'-------- - --
,,
,
,
I
B
M
CIG
w
Hinh 2.6
Ap d\)ng tfu'ong hQp 1, ta co:
DQMT(2,
~,o
J
Ke't hQp voi (2. lOa), suy fa
D:; Do= 2MT( 2, ~, 0).
Tuc (2.10) vOi K = 1.
22
.:. Tru'ong h<;lp3 : K ~ 1, C2 la bien ngoai ba't ld cua B
~
A
,/ '
Or
R
"
:
I
I
r
~,
B
'-\
G
\M
I
I
I
C
\
'-\
J
,
"""'
~
c2,',
"
~~----
u~g(w)
I
"
'\
l»I
O~
u
Hinh 2.7
Mi~n nhi lien B co th~ bie"n baa giac ddn di~p bdi u = g (w) len hlnh vanh
khan
BI = {ulo < fJ < lul< Rj} sao cho C2 tu'dng ung voi lul = RI'
Ap dl;mg tru'ong h<;lp2 cho PBHBO . w = g -I (u) hlnh vanh khan B( leu mi~n
B , ta co:
(2. lOb)
DSlMT(
2,~,0).
M~t khac, hlnh vanh khan Bj co th~ xem la anh cua hlnh vanh khan A qua
phep bie"nhlnh h<;lp
cua PBHKABO f
voi PBHBO g, tuc qua PBHKABO gof.
Do do, theo (1.2), ta co:
~
-<
RJ -
-
r
(R )
*
.
Hdn nii'a, theo Hnh cha't ddn di~u (1.17) cua ham phl,l T(p,r,s), ta co:
24
B6 d~ 2.8: (Ba't diing thuc Kiihnau md rQng)
Trang m~t ph&ng z cho mQt hlnh v~lllhkhan A = {zl(0 <)r < Izl< R}. G<;>i
w = f( z) Ia PBHKABG bie'n mi€n A Ien mi€n nhi lien B co bien ngoai C va
bien trang c sao cho
Izl
= R tlidng ling vdi C. G<;>i Ia di~n rich (trong) cua mi€n
S
do bien ngoai C bao b<;>c D la Quang kinh cua bien trong c.
va
Khi do, ta co:
S In(1D s; 1/
-i(
(2
)
,
,
.
VOl
D&ng thuc xay ra khi va chi khi
r t
(= T 1,( R ) ,0.
(2.13)
)
(
f(z)=fo(~)=bln(1-(~)+c,lbl=1
In(l- ( )
-1..
~=a~zK-'
RR
11
,lal=1.
Chung minh:
w=f(z)
----------.
de
R
AOr
z
w
s=g(w)
B,
1
Q'i
s
~
Hlnh 2.9
1
vdi
25
D§u lien, bi€n baa giac ddn di~p mi€n B boi s = g( w) leu hlnh vanh khan
BJ
= { sl 0
< fj < Isl < I} .
San do, th\lc hi~n PBHBG u = h( s) hlnh vanh khan BJleu mi€n nhi lien B2
gioi h~n boi du'ong troll lul=1 va nh£it c~t L(t)={uIO
saD cho Isl= 1 tu'dng ung voi /u/= 1. Theo dinh nghla ham ph1,1ta co fj = R"(I,t,O)
hay t = T(l,fj,O).
Ap d1,1ng d€ 2.7 cho ph6p bi€n hlnh hQp g-Joh-Jmi€n B2 leu mi€n B, ta co:
b6
Sln(1-t2)
-1(
D ~ ~I
M~t khac,
BJ
".
, VOl t = T (1,fj,0) .
(2.13a)
co th6 xem la anh cua A qua PBHKABG f.g la hQp cua
PBHKABG f va PBHBG g.
Do do, ta co:
~~(~r.
Theo (1.17) v€ tinh ddn di~u cua ham ph1,1T(p,r,s),
ta suy ra
(2.13b)
T(l,~,O)';TH~r
,0).
K€t hQp (2.13a) va (2.13b) ta co (2.13) voi phat bi6u v€ tru'ong hQp d£ng thuc 8
2.3 Ba't diing thuc theo Iy thuye't de)dai ctfc tri
Ly thuy€t dQ dai c\lc tri b~t ngu6n tu mQt s6 cac ba"td£ng thuc lien h~
giii'a modun cua mQt tu giac hay mi€n nhi lien, di~n tich mi€n do va dQdai ng~n
nha"tcua du'ong cong thuQc mQthQ du'ong trai trong mi€n do tinh theo mQt dQ do
ba"tky du'QcAhlfors va Beurling[l] d€ xu'ong nam 1950 dfftro thanh cong C1;1
huu
hi~u d6 giai nhi€u bai loan t6i u'utrong Iy thuy€t hlnh hQc ham bi€n phuc.
26
Trang m~t ph~ng z = x+iy, cho tu giac cong Q co cac dinh lfin Iu'Qtla A, B,
C va D. Qua PBHBG don dit%pw=f(z)=u+iv,
Q'={w=u+ivIO~u~a,O~v~b}
Q du'Qcbi€n ten hlnh chu nh~t
co dinh tu'dng ling lfin Iu'QtIa A', B', C', D' sao
cho A'B' = a; B'C' = b.
GQi r Ia hQ cac du'ong cong r n6i hai canh d6i dit%n va CD cua tugiac
AB
cong Q, <Dla hQ cac ham de>do p=p(Z)~O,ZEQ
sao cho dit%ntich cua tu giac
cong Q theo de> p la huu h~n, nghia Ia
do
Sp(Q)= Hp2(z}iS<+oo.
(2.14)
Q
De>dai cua cac du'ong cong r theo de>do p du'Qctinh b~ng cong thuc
lp(r)= Jp(z)ldzl(~+oo),rEr,pE
(2.15)
Sp(Q)~al~ vdi lp=inflp(r),
b
yer
(2.16)
y
B6 d~ 2.9:
Vdi cac ky hit%u
nhu'tren, ta co:
d~ng thuc xay ra khi va chi khi p(z) = kif (z)l,z EQ,k = canst.
Chung minh:
Ta co
Sp(Q)= Hp2(z}iS= Hp2(z)dxdy
Q
2
dudv
= [fp (Z)jf'(zt
b p2(Z)
=
Q
at b
(Z)
1;/
= II !If'(z)12 dvJu
b
du
2dvJdv ~=J Jdv
0 olf'(z)1
0
~
p2
J
0
1
b p2(Z)
J
~
bo olf'(z)1
b
2dvJdv
0
}
u
-
27
<: 7;
A JI;'~~I dv
du (Do
J'
ap d\lngBDT tich
phiin Schwarzt cho hai ham
p(z) va 1 trendOc;ln[O,b])
If'(z)1
2
1oJ
=b dlJp(z)ldzl J du
(ru Ia nghich anh cua doc;ln
th~ng u = canst,
~
0 ~ u ~ a, 0 ~ v ~ b ).
1a
=b 0
JI~(ru)du ~ a 12
b p'
Ding
!hac
a (2.15) xaY fa
khi
va chi khi
II
I~ gifta
hai ham
I;'~;)I va I la hang
sf), d6ng thai Ip(ru)=lp voi mQi ru,(O~u~a)<=>
p(z)=kl/(z)l,k=const,zEQ
vi khi d6 Ip(ru)= Jp(z)ldzl=k JI/(z)lldzl=kb=lp voimQi uE[O,a]
Yu
Yu
,
.
B6 d~ 2.10:
Trang m~t ph~ng w cho mQt tu giac cong Bo c6 hai cc;lnhn~m tren hai
duang troll Iwl=cva Iwl=d,O
c,
=
Gia sa z = g(w) la PBHKABG mi6n Bo len mi6n .40cua m~t ph~ng z .
Ta d~t Cr = g(Cr) , 0 < c ~ r ~ d < +00.
Hon
1p
mIa,
gia
( Cr) = f p(z) I dz I~
c,
sa
00,
p = p(z) ~ 0
c ~ r ~ d
duQc
xac
dinh
trong
.40 saD
va Sp (.40)= Hp2 (z)dxdy < oo,Z= x+iy
A
theo nghla Lebesgue. Ngoai ra Ip( Cr) ~ I~,c ~ r ~ d.
cho
t6n tc;li
28
Khi do, ta co:
1
2d
Sp(Ao)~ K(l~)
dr
J
crO(r)"
(2.17)
Chung minh:
GQi dS la vi phan cua Sp (Ao) tu'dng ling voi [r,r +dr] c [c,d] , tuc dS xa'p
"
Xl dt theo dQ do p(z) cua anh mi€n D = Bo n{wlr < Iwl< r +dr} bdi z = g( w). Do
dr(> 0) ra't be va O(r) kha tich tren [c,d]co th€ thay D bdi
15= Bon{wlr
giac cong 15n~m tren
Iwl
=r
Ham t = Inw bie"nmi€n 15 len hlnh chii'nh~t voi cac q.nh
r + dr
r
In-=
dr
,"
.
dr 'n
In 1+~va,!,,!; r.) Vlv(;J.ymo d uncuatuglaccong
(
r )
r
(
?
/
/
-
'
D Ia
dr
dr
mod(15) = O(r) = r.O(r) .
Theo [ 3, tr. 19], ta co:
.
0 2
1 dr 2 1 dr
(Ip ) , trong d0 Ip = Ip Cx VOl r < x < r + dr
dS ~ K rO (r ) Ip ~ K rO (r )
~
/
( )
/
La'y tich phan hai ve"tren [c,d] ta du'cjc(2.17) .
2.4 Cae b6 d~ khae
B6 d~ 2.11: (Bie'n hai du'ong troD l~ch tam thanh hai du'ong troD d6ng tam)
Ne"u A la mi€n nhi lien gioi h(;J.n di hai du'ong troll Izi= 1 va Iz- hi= lj voi
b
0 < h < 1, 0 < lj < (1- h) du'cjcbie"n baa giac ddn di~p len hlnh vanh khan r < Iwl< 1
thl
r = r(r),h)= 1- h2 +r)2 -~(1-
h2 - r/ Y -4h2r)2
2r)
.
(2.18)
29
Truong
hQp A la mien
0
nhi lien
gioi h~n bdi
Izl= r2 va
Iz- hi = r) voi
thi
r = r(rl'r2,h) = r22
-h2 +r/ -~(r22 -h2 -r/Y
2r)r2
Chung minh: Xem [18, tr. 20
(2.19)
-4h2r12
- 22].
B6 d~ 2.12: ("D~o ham" cua ham ngtiqc cho PBHKABG)
Voi cae ki hi~u d phfin 1.2, giii sa W = f (z)la PBHKABG cua mien chua
z=O voi f(O)=O va m'(O,f»O.
f)~t g = I-I , ta co:
I
(2.20)
m '(0,f) = M* (o,gfX,
I
(2.21)
M'(O,f) = m*(o,gfX.
Chung minh:
Lfty R>O du be , d~t CR ={zllzl=R}va
C~ =/(CR),
r6 rang
t6n
t~i
WIE C~ va z) E C R saD cho
m(R,f)=lw)I=lf(z))I=r,
r>O.
f)~t Lr ={wllwl=r} va Lr =g(Lr)
Vi Lrn~mtrong
Izl~R,taco
M(r,g)=lg(w))I=lzII=R.
Dodo
I
'
"
m,(0 1) =1 m(R,f)
1m
r->O
-I
RK
= 1"
1m
r
r->O
M (r,g
-
)
)K
. M(r,g) -X
=1
1m
r->O [
rK ]
Tudng tlf, lfty R>O du be , d~t CR={zllzl=R}va
t~i W2E C~ va Z2 E CR saD cho
M(R,f)=lw21=lf(z2)I=r,
r>O.
=M *(O,g.)-t
C~ =f(CR),
r6 rang t6n
30
B~ t L, = {wllwl r} va I, = g (L, ) .
=
VI
Izl R
=
nflm trong t~p dong gioi h(;ln bdi I" ta co:
m(r,g) =lg(wz)1=lz21 R.
=
I
Dodo
M'(O,f)=limM(R;f)=lim
,~O
RK
r
-'- =lim
,~O m(r,g)K
,~O
[
m(r;g)
r
]
=m*(O,gft.
-K
H~ qua 2.5:
Cho
K = 1,
ta
co
m'(O,f) = If'(o)1
va
M* (O,g) =lg'(O)I.
m'(O,f) = M* (O,gft trd thanh cong thilc quell thuQc If'(O)1=lg'(OfI.
Luc
do
(2.22)
2.5 Cae daub gia eho lop ham F
BS xay d1!ng cac danh gia cho lOp ham G ta c~n cac danh gia duoi day
cho lOp ham F , tilc lOp ham nguQccua lOp ham G .
Dfnh Iy 2.1:
Duoi cac ky hi~u va giii thie"t d ph~n 1.2, voi mQi f EF, z EA,z *-0,z *- 00 ,
0 < R < 00 , ta co:
(2.23)
S'(O,f)~l,
PSI
(2.24)
~(l-S'(O,f))1Z"Rt,
2
2
S'(O,f)1Z"RK ~ S(R,f)
~ 1Z"RK,
(2.25)
1
~ RK ,
(2.26)
M(R,f) ~ Rt ~S'(O,f),
(2.27)
m(R,f)
m(R,f)
~ 4-; m'(O,f)Rt
1
M(R,f)~4P
(2.28)
-'-
RK,
.l
D(R,f)
,
-'-
~ 2AP RK ,
(2.29)
(2.30)
31
4-im'(O,J)lzlt ~IJ(z)I~4ilzlt,
4-im'(O,J)Rt ~c(R,J)~d(R,J)~4i
(2.31)
Rt .(2.32)
M6i d£ng thuc tu (2.23) d€n (2.21) xay fa khi va chi khi J(z) = azlzlt-l voi lal= 1.
Chung minh: Xem [19, tr. 54 - 56].