Tải bản đầy đủ (.pdf) (45 trang)

nhóm con chuẩn tắc của nhóm tuyến tính tổng quát trên vành chính quy von neumann

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (7.93 MB, 45 trang )

CHUaNG

,

.

~

?

4

,

2: NHOM CON CHUAN TAC CUA NHOM
K
,
,.?
,
"
,
TUYEN TINH TONG QUAT TREN VANH
CHINH QUI VON NEUMANN

Vanh A dU<;1c la chinh qui von Neumann
gqi
\j x E A , 3 YEA:

nC'u :

xyx = x



NC'u A la vanh chinh qui von Neumann thl mqi ideal va mqi vanh
thuong cua A cling la vanh chinh qui von Neumann.
Ta khao sat cac nh6m con chuffn dc cua GL(M) trong tnfong h<;1p
M c6 co scihuu h?n. Khi d6 ,GL(M) ~ GL~(A).

Xet n 2:3 va A la vanh chinh qui von Neumann hay t6ng quat hall,
A la vanh kC'th<;1poi don vi 1 ma A/Rad(A) la vanh chinh qui von
v
Neumann, ta se khao sat cac nh6m con cua GLn(A) chuffn boa bCiiEn(A).
Chung la nhung nh6m con H dtNc xac dinh bCiidiSu ki~n: t6n t?i duy
nhit ideal B cua A thoa En(A,B) c H c Gn(A,B).
2.1 MQt s61{hai ui~m va Huh cha't cd sd :
NQidung cua m\lc nay neu ten mQts6 Hnh chit co ban nhit cua cac
tr~nsvection so cip. Cac nh6m con En(A), Gn(A,B), En(A,B) clla GLn(A)
se du<;1c inh nghIa , mo ta cac ph§n ti1'va nhung Hnh chit co ban clla
d
chung nham ph\lc V\lcho ph§n tiC'ptheo.
2.1.a MQt s6 Hoh cha't cua traosvectioo

sd c;1p :

Xet x,y E A , cac transvecsion so cip thoa nhling Hnh chit sau :
l)xij .yij~(X+y)ij,
l~i=l=j~n
2) (Xij rl = (-X)ij
3) [x~i , ykI] = In nC'u j =1= va i =1=
k
l
Sur ra:


..

xl]

.y

kI

xij . ykl
4)

Xik. yjk

=Yk I .xlj..
(- X)ij = ykl

j =1=k va
j =1=k va
i , j , k khac
i , j , k khac
i , j , k khac

= yjk.xik

xki.ykj=ykj.Xki

5) [Xij ,yjk]

= (xy)ik


i =1=l
i =1= l
nhau d6i mQt.
nhau d6i mQt.
nhau doi mQt.

6) VgE GLn(A) , Vy E A, V k, l E {I, 2, ... ,n }
kl -I
'
g. y .g = 1n + gk .y. g I
voi gk la cQt k cua g, g'tla dong l cua g-l.

15


Chung minh :
C~c tinh cha't ta I dSn 5 de dang suy ra ta dinh nghla, ta trlnh bay
chung minh tinh cha't 6 :
Vdi g=(gij),

g-I=(g'ij)

~

-

g e

g - L


i,j=1

k l -1

g.y g

1J 1J

= g ( I n + Yekl
= g.g

EGLn(A),YEA,tac6:

, g-1 - L
- ~

g ' t e t ' yk l - I n + y.ekl
S S

s,t=1

)g
n

-1

.

n


-1

+ c.~ gijeij)' yek[ .
I,J=1

I

g'stesl
s,I=1

n

=

In

n

+ ( .:?: gijyeijekl ) (
1,J=1

n

= In

g'stest)

n


+ (?:gikyeikekl)

(

1=1

= In

I

s,I=1

I

s,I=1

+ (t gikyeil) (~
1=1
s,t-l

g'steSl)

g'stest)

n

= In

+


L
i,s,t=l
n

= In

+

L
i,t=l
n

L
i,t=l

I

gik Yg steilest

'
gik yglteileZt
'
gikyg lteit .

= In

+

= In


,
+ gk.y. g l

vdi gk la cQt k cua g , g'l la dong l cua g-1

2.1.b Nhom con En(A) :
Trang I.l.b , ta da dinh nghla :
En(A) = < xij , I ~ i ofj ~ n va x E A >
Vdi B la ideal cua A, En(B) chI nh6rn can cua En(A) sinh bai
cac transvection so ca'p bij, b E B .


M~nh d~ 5 : ( xem [1] , 1.2.26

trang 36 )

.Vdi n C:: , i :;z!:va x E A, nhom can ehuctn tde sinh b(JixU
3
j
trang E,lA) La E,l Dge bi~t, hhom can ehuctn tde sinh b(Ji lij trang E,lA) LaE,lA).

2.1.c Nhom con Gn(A,B) :
Ki hi~u Gn(A,B) chi anh ngu'<;1c Him GLn(A/B) qua d6ng ca'u
cua
chinh t~c :
q>: GLn(A)

) GLn(A/B)


(aij)

~

(ai)

Ta co : q> la d6ng ca'u nhom .

Nh~n xet : Cell (GLn(A/B)) la nhom con chu~n t~c cua GLn(A/B)
nen Gn(A,B) la nhom con chu~n t~c cua GLn(A)
M~nh d~ 6: g

= (au)

E Cen(GLn(A)

<::::> = a ,In,
g

a E Cen(A)

(g Lama tr~n va hudng)

Chung minh :

all"""",

g.eij

a1n


1,0

00000000

=

[0 ::: 0 }

=

anI

t
(i,j)

a II

omo

eij.g

=

lo.k. ,

!

(i,j)


°}

[ ~ n1

( C(jt j )

~

aln \ I

a J
nn

ao

=(

a.

.10.ln

a.

(dong j )

)


,.
V 01:


\-I'

g. eij = eij.g

v

.

.,

1*J, 1,J=1,2 ;
"

"

.-

">
,n va n - 2 , ta co :

."

[

O:::O} .

=

anI


( a~j"J

dong
i

t
cQtj

a..

11

=>

= a.. J
J

f ak i = 0
lajt =0

'v'k;i: i

'v't;i:j

La"y i , j l~n htQt b~ng 1,2, 3,

, n , i * j , ta co :

all = a22= . . . = ann= a

akl = 0 ,. V k ::;c
l

all

g =
[

0

0
ann ]

rao °a)

= a .In (ma tr~nvo huang)
Ta chung minh a E Cen(A) :
'v'~ E A, (a In) . (~. In) = (~.ln) .(a .In)
~

~

a
a

~ .In = ~a .In
~

= ~a


V~y a E Cen(A).

Cu6i cling, ta chung minh a kha nghich.
g EGLn(A) ~:3 g-I E GLn(A) : g. g-I = In
Ta chung minh g-l ding thuQc Cen( GLn(A)).
Th~t v~y, 'v' h EGLn(A), g-I.h = g-I (h.g).g-l
-I
-I
-1
=g .( gh) g = h .g


V~y, g-l E Cen(A) => g-l = f3. In

, (f3 E Cen(A)

(a.1n ) ( f3.1n) = In => (a.f3).In => a.f3
Do do : a E Cen(A)*
M~nh df 6 da chang minh xong.
Ap dl,mg m~nh de 6 cho tam

)

.

= 1 =>

a kha nghich trong A

(GLn(AIB)), ta co :


1VI~nhd~ 7 :
gECenGL,lA/B)<:::::>

g=a.I

Trang d6 :

ra E (Cen(A/B)) *

-

,

0

11

')
I

I=lod
Til do ta co thS mo ta Gn(A,B) bc3im~nh de saD :
M~nh d~ 8 :
r

(aij)

E Gn(A, B)<:::>i
.


l

.

<:::>

a..
-

=0

~J-..-

aji - a JJ-

au = Oij.a

, i oF
j,

a E (Cen(AIB))*

ex

(mod B),

a E (Cen(A/B))*

2.t.d. Nhom COllEn(A,B) :

Ki hi~u En(A,B) chi nhom con chu§'n t~c cua En(A) sinh bdi cac
transvecsion sd dip xi.j trong Gn(A,B) .
En(A,B)
Nh~n xet:

= < g xij g -1I g

E En(A)

va xij

E

Gn(A,B) , i oF >
j

En(B) c En(A,B) c G,lA,B)

M~nh d~ 9: Voi n ~ 3 , ta co :
En(A,B)

=< yjixij(_y)

ji I XE B, YE A,l:::; i oFj:::; n >

Chung minh :
f)~t: E

= < yii xij (_y)ji I x E B,


Ta chung minh : En(A,B)

YEA,

1 . oF :::;n >
:::;i j

= E.

HiSn nhien: E c En(A,B), ta chI din chang mhlh: En(A,B c E.


Xet phftn ta sinh ba't kl cua En(A,B) co dC;lng:

.

= yk l xij( _y)k l , i * j , k *- I,
= [yk l , xij ]. xij

h

B va YEA.

X E

Ta co cae tn1C1ng
h
.k


*-j va I *-i :
[ yk l, xij ]

.k

= In ~ h = Xij

En(B) c E

E

*-j va I = i:

= (YX)kj~

[yki , xij ]

h=

(YX)kj :Xij

x E B ~ yx E B ~ (yx)kj . xij

. k =j
h

h

~


h

E

E.

va I *- i:

=yjl

= xij (-X)ijyjl

xij (_y)jl

= xij.
. k =j

E

E

[(-x)ij, yjl]

xij (_y)jl

= xij.(-xy)il

EE

va I = i:


= y.ii Xij (- Y)ji

E E

V~y h E E trong mQi tntC1nghDo do: En(A,B) c E
V~y : En(A,B) = E
Mt%nhd~ 9 da: chung minh Kong
Phdn tie'p theo ta xet eae ma triln boan vi : ]a ma tr~n ma m6i
dong va m6i cQt chI co duy nha't mQt phftn ta khac 0 1a 1. M6i ma tr~n
hoan vi p tlidng ung 1 phep the" (j

E

Sn co dC;lng: p

= (8j ,cr (j))

Ta co : p -1 = «>i,o--I(j))'

Th~t v~y , d~t q = ( <>i,o--I(j)),
ajj

= 1;1

i ,0-(0- -}(j)'

.


k

=

(j

-IU)

.

<> ,0-(k)
i

= (aij)

p.q

k ,CT -I (j)
0--1 U) ,0--1(j) ,

( so' hC;lng
khac 0 duy nha't ung voi

).

V~y : ajj

Suy fa:

= bij

p.q

, '\! i,j

= In

Xet : p .Xkt.P -1

-1

~

=

p

= ( <>i ,0--1(j)

'

)

In + (8 i,O"U»)k ,X.(

(CQt k)

i,CT -I (j) )t

(dong


t)


81,0- (k)
- I

= In+

X

(8

t,o-

-I

(1),...,8

t,o-

(n))

80 ,0-(k)

0

=

+


In

x ( 0 ... 1 ... 0)
!rI

dong cr(k)

CQt cr -I (t)

0

0
I

= 10 +

I

.'rIL~£!!!L(j(i<:)

I

0......

-fO
cQ't cr -let)

= X er(k), er-

I (I)


M~nh d~ 10: vdi n ~ 3 :
En(A,B) dli(/Cchu6n hod biJi tqp cdc lna trqn hodn vi.

Chung minh .
X6t ph~n tit sinh cua En(A,B) dc;wg :
kt

y.x.-y

ij

GQi p = (8 k ,er())
I
kt

P y.X

ij

kt

-1-

(

kt

..


) ,XE B ,YE A ,1*-J, k *-t

la ma tr~n hoan vi , ta co :
kt

-I

ij

-I

kt

-y ) P - P . Y .p .p.X P .p.( -y ) p

C

=yo-

(k) 0- -let)

.xo- (i)o- -I

-I

(j) ,(-y)o-

(k)o- -let)

EEnCA,B).



2.2. Nh6rn. con chufin tdc cua nh6m tuye'n tfnh tang quat tren vanh
chfnh qui yon Neumann:
Xet A ]a vanh ehinh qui van Neumann, ta se di de'n 2 dinh Ii m6
ta cae nh6m can H eua GLn(A) ehu§'n boa bdi En(A).
GQi B la ideal eua A. Nhom can H eua GLn(A) duQe gQi la
nh6m can mde B ne'u: En(A,B) c H c Gn(A,B) .
Dinh Ii 1 neu cae tinh eha"teua nhom EnCA,B)va eho ke't qua mQi
nh6m can mtie B eua GLn(A) d€u ehu§,riboa bdi EnCA).Dinh Ii 2 eho
ta chi€u ngtiQe l~i : mQi nhom can eua GLnCA) ehu§'n boa bdi En(A)
d€u la nhom can mde B. Tli do, ta co th€ mo ta tfit ea cae nhom can
eua GLnCA)ehu§'n boa bdi EnCA)thong qua cae idea] eua vanh A.
2.2.a Dinh If 1 :
Gid sa A/Rad(A) la vanh ehinh qui van Neumann, n 22 va B la
ideal eua A, fa e6 ..
(a) EnCA,B) ehua ede ma lr(in d(lng In + vu , lrong d6 v la n- d)1
frong A, u la n - dong trong B va u v = 0 .
Tit d6, fa co' EnCA,B) ehudn fde lrong GLnCA).
(b) En(A,B)::J [ EnCA), GnCA,B)] .
Suy ra mQi nh6m can mue B eua GLnCA) d~u ehudn hod biJi En(A).
(c) Khi n 2 3 , fa e6 ..
EnCA,B)

= [EnCA),EnCB)] = [ GLn(A),EnCA,B)] = [Eil(A~,H]

wJi H la nh6m can mue B.
(d) V&i A la vanh ehinh qui van Neumann, la co ..
EnCB) = EnCA,B)


H(m naa, v&i n 23, fa e6.. EnCB)= [EnCB), En(B)].

CluIng minh .


Chung minh

1.

a :

(v )

v=(Vj)=

U=(Uj)=(U',

, ujEB,j=l,...,n

un)

Truong h(jp 1:
f)~t : d

,VjEA,i=l,...,n

lvJ

1 + Vn Un E GL1(B)


= 1 + Vn Un

d' = 1 + UnVn => d' - 1
UV

=0

II

=>

"Uovo

L..,

1

E

B

=0

1

I

=> u'v'

=> d'


+ UnVn

=0

= 1 - u'v'

Taco:
( 1 - Und-1vn ) d'=

( 1 - Und-I Vn) ( 1 + UnVn)

= 1 + Un Vn - Un d-I Vn - Und-I (Vn Un ) Vn
= 1 + UnVn - Und-l Vn - UIId-I ( d -1 )Vn
-I
-I
=. 1 + Un Vn - Un d Vn - Un VII + Un d VII

= 1
d' ( 1 - Und-1vn ) = (1 + UnVn) ( 1 - Und-l Vn)
= 1 - Un d-I Vn+ UnVn - UII(Vn Un) d-I Vn

= 1 + UnVn- und-1vn - UII(d -1 ) d-I Vn
=

1+

-I
-1
UnVn - Und Vn - UnVn + Und VII


=1
V~y ( 1 - und-I vn)d'

Do d6 d'
Khi d6 :

E

~ d'( 1 - und-I Vn)= 1 , Suy fa d' kha nghich.

GI1(B) va (d' rl = 1 - Und-I Vn


VI

=

VU

(U'

[VnJ

In-ol +V'U'

In + VU =

(


VIUn

(V

nU '

V

111-1+ v' U'

=

l+vnun )

VnU'

v

v'U'

=

Un)

(

I

1.1


n

J

nun

v'u

n

d

VnU'

J

E)~t :
",
-1
,
,a ,- 1n - 1 + v u - V un d VnU
= 111- 1 + v'(1
=111-1

- Un d-1 Vn) U'

+ v'(d'ylu'
0

V,~"d')


Ta ch1?ng minh : In + vu ~ (l"~
XetO v€ phai

0

VIUO

d)

l

l

)

d

v 0 u'

v
( 10-1
.

ld-Ivo

d

0


-I

v

0

u
v'u

d

0

+,V'U'
0

01

I

1
OJ

v>J

U

V~y : In +vu

1)


u'

( ln--I

0

10-1

=( o

V';"d-')

(~

d

)

Voi :
'

n-I

(1

o

V Un d


1

ld-Ivn H' 1)

01
1)

(lool

(a +V'U d-Iv u'

=

(10-1

V.~"d-') (~

= (a 0

d)

:

10-1

g:= ( o

(~

(10-1


-I

(1n-I

)

'

l

d-Iv 0 u'

a
In + vu E En(A,B)

01

(o

)

1

E E'

B
n( )

0


d) En(A,B).

l

d -I V n U I

01
d

01


a

Ta c~n chung minh : 0
.
(

~)

E

En(A ,B)

111-1

0

Tnloc he't, ta phan tich :

-

(~UI

~) = (~"

yldl-I

) ( - u'

1

1)

0

,

d,-J

111_1

j

:') (~"'

(0

Tht vy , xet vS phcH:


h := ("'

) (n-J

1
-- V'd") C u'

("-'

')

d'--J)

y

=

.

- v'r'l
1

0
Co-'

)

C n-J
:- U


I

n (h

d

,

y' d 1-\

=

("-'

(1
In-I u I

- Y'd'-I,

=

- vor')
1

('"

(1

1


)

In-I

u'

(1
l

=

-Vt'd"'J

-u
e,,-:

=

-

1+V1dl-IUI

(-

(-:'

U I

~J


~)

nU I
- I

,

1-\

(-llIV'+l)dl')

y Id

1
-V'd'.')

=

- u'yldl-J+d,-1)

v'd

= ("-'

('"

'

0


n-I

d '. d'

v ' dJ ,-

'J

1- \

,

J)

I

d
1- I

,..1,

)


V~y :
1n-I

-Vldl-I

C:I


OJ

~

) (-

1

(~"'

Ta cung co:
Suy fa :

d,-1 -

= d'

(1 + u 'y 'd' -1). d'

-V'dl-I

1

~I'-'
J

=1

+ U 'y , = 1 - u 'y , + U 'y ,


1 + U'y' d,-l

1n-I

-

(0

- v' (1 + "; y' d ,-I )J

= (~"-'

(~"'

n (~"'

~) (~n-I

u'

- V'-V't:'V'd'-']

J

-

-

1n-I

(0

-

-

111-1

VIUIVldl_l

-

111_1

VIU

- (0

-

v;]

] (0

1

1

'Vld'-I)


j

1

.

: ')'

( 0"-1

Nen:
--!

a

(-u'

VI

J= (~~'

-V'U~V'd")

1)

(~"

111_1

(


111-1,
- U

0
I

) (0

V

1
.

I

In-1

) (0

Vdi:
1n-I

- VIUIV'd'-I

(~"'

1

J '


(-H'

0
1)

EE

In-I

(B )

VI

(0

n,

-I
In-1

Suy fa:

(0

VI

1

In-I


)

(-H'

.

~) (~n-I

~')

E

En(A,B)

1)

E

En(A)

0

d,-I J


V~y :

0
1 E En(A,B)

)

(-:'

0

10-1

(0

')

d 1-.1)

Nen:
O

(~

~)

J(~I

=C:

Ta cling co : (~

~)

10-1


(0

1 E En(A,B)
J

= (~

~) (~"

0
d'-I

10-1

J

( u'

~J

(:)

Nen:
0

10-1

d ). E En(A,B).


(~

0

(0

1n--1

d,-I J

( u'

OJ (~"'

~J

O)(
(

d
0) EEn(A,B)

0
(1,_,

d,-I

d

OJ (O,


d'
0
0 ) (I",

0
d'-I) (1,
on-')

Ta co:

("-I

d,-I
0)

u'
(1"_-

OJ ("-'

d'
0
0 ) = (1"-J

,,)

(:t

ad')


In-1

( (1'--1

0
(d"

d'-I)

Suy fa: (~
Tlido

') 1

;

(

l1'

~) E En (B)

.

0 ')

1

~)


= (~"-'

~) E En(A,B).

: ]0 + vu E En(A,B)

.

d'-l d) E En(A,B) , ( Ke't qua tU [5], ~2)

J


Truong hqp 2: ::3i E { 1, 2 , ... , n} : ViE Rad(A).

Ntu i =n :
Vn E Rad(A)

=>

=> 1 +

VnUn E Rad(A)

VnUn

kha nghich trong A

Soy ra : 1 + VnUnE GL1(B) => In + V U EEn(A,B) (tnf

Ntu

i < n:

xet phep

the- (j

=(

n)

i

Va ma tr~n hO
= ( 0 j ,0 (k) ).

p

£)~t :
(VI)

(OI.a(l)Vl +OI.a(2)V,
I

°

v


I

O'2,u (1) V 1

+ ...+OI,a(,,)V"

+ 52 ,crC V 2 + ... + O'2,cr) V n
2)
C
n

I

I

I

.

I
I

.

I

I
I

I


= pv =

=

I

V II

I.

l~","(l)Vl +O","CZ)VZ+ ...+o"."c,,)V,,)

I


I

l~J

( ma tr~n co du'Qcb~ng cach hoan vi cac dong' i & n cua v)

=

UO U P

= ( UIOlp(l) +:..+ullb;l,a(l)'Ul~,a(2) +"'+Ullb;1,O"(2)' U1O1,acn)
...,
+...+Unb;],acn))

= (U1

,. . . , Un ,...

Ui

)

( ma tr~n co du'<;1c
b~ng cach hoan vi cac cOt i & n cua u)
Ta co: uOvO= up.pv
vnO

= Vi E

In + v u

= u(p.p)v = 0

Rad(A)

=p.p-l +

=> In + va UOE En(A,B)

p.pv.up .p-I = P On + va DO)p-l E En(A,B)

Truong hqp tang quat:
Voi A / Rad(A) la vanh chinh qui vorl Neumann, ta co :
-


-

::3xEA:vn.x'Vn=Vn
vn - Vn . X . Vn E Rad (A)
(vn - Vn . X . Vn ). Un E Rad (A)


vn ( 1 - x Vn). UnE Rad (A)
1 + VnO - X Vn)Un kha nghich trong A.

1 + Vn(1 - X Vn)Un E GL1(B).
g := In + v(1 - X VB)U E En(A,B)

(tnrong

hQp 1)

Ph§n tie'p thea, ta ch(tng minh :

h := 1n + V X Vn U E En(A,B)

Xet:
t = (- Vn-l.xt-1,n ( In + V X VnU) ( Vn-l:Xt-1,n
.

= In

+ ( - Vn-l.X ) n-l,n . ( V X VnU )(
.


=. In

+

D~t

U1
1

V

= (-

V

Vn-l.X )
U

n-l,n

. ( Vn-I.X)

n-l,n

;.

(

V2


=I
l

l

.

v

n-I

V

-.
.V X Vn - U v X Vn -

I

I

U

I XVn

XV

V nn-I

n


J

= V n-l

( 1 - X. Vn )

= Vn-l
VI

n-l,n

VI

I

n- cQt trong A )

II V21
. I X.Vn

-V"l'.xJ

~.

n- dong trong B )

'\ (VI'\

.

.

l~

(U(Vn-l.xt-1,n)

(]a

( - Vn-l.X)

0

= I'

V \1-1

X Vn )

'.V

.V X Vn

1

\0
VI

n-I n

n-l,n


(la

0 ...

(1

VI

Vn-l.X )

= U .( Vn-l.xt-I,n

1 1-

U

(-

Vn-l.X )

( XVn

Vn

-

X Vn

- X . Vn X Vn) =


Vn X Vn E Rad(A)

lien

Vn-I X

(

Vn

-

Vn X Vn)

vln-I E Rad(A),

ta SHY ra :

0


t

= In + Ul

VI

E


h - (Vn-1.X )n-l,n t ( g.h

= (1n + v(1

(TnfOnghQp2 voi i = n-I)

En(A,B)
n-l,n

Vn-l.X )

E
En,

(A B)

- X Vn ) U ) .( In + V X Vn U )

= In + v(1 - X Vn) U + V X Vn U + v(l - X Vn) U . V X Vn U

= In + v(1 - X Vn)
= In +

U

+

V X Vn U

vu - V X Vn U + V X Vn U =.In + vu


g , h E En(A,B)

=> In + VU E En(A,B)

Ph§n tie'ptheo , ta chllng minh En(A,B) chu!Inuk trong GLn(A) :
Ta thl/c hi~n cac bu'oc san :
1. Tn(oc bet xet cac phgn tU'bgt kI

g E GIn (A) , xij E Gn(A,B),

i 7=j , ta co : X E B.

En (A,B) du'Qcchu§'n boa bdi t~p cac ma tr~n hoan vi Hen co th~ ghi
sU' (i, j ) = (1 , n ). Ta co :
g xl,n g-l = In + v X w
(VI'
I v21

voi

V

=I. I

Ia

cQt 1 Clla g .

lvJ

W =

( WI

,
'
... W n ) 1a d ong n cua g .
?-1

W2

WVla ph~n ti'ta dong n , cQt 1 clla
£>~t

-1

g g

u = XW , ta co Ui E B ,'\1i = 1,2, ..., n.

UV= (xw)v = X (wv ) = x. 0 = 0
Suy fa : g.x1,n.g-l = In + vu

E En(A,B)

= 1n

"

Den


WV

=0


2. Tie'p then , ta xet cac ph§.n ti't g E GIn(A), h

= yi i Xi j (-yy i , i *-j

,

X E B,YEA, ta CO:
g h g-1 = g yji Xij(_y)ji gol = (g yji) xij(g yii rl E En(A,B)
( Ap d\lllg bttoc

1 cho

g y-ii)
n-l

3. Cu6i cling, xet
vdi

h=

gE Gln(A) , h E En(A,B) ta co :

hi la ph§.n tit sinh d<;1ng y-iixij (-yi


Il

hi ,

i=l

cua En(A,B).

n-l

g h g-1 = g (

Il
i=1

hi) g-l

n-l

=TI
i=1

g hi g -I E En(A,B)

Chung minh l.b:

[En(A),

Gn(A,B) ] c En(A,B)


Ta thl,fchi~n qua cae buoc :
a) Trudc

h€t, ta chung minh : [1 ij, g ] E En(A,B)
. .
..
..
I
[11,.I,g]
=11,.I.g(-I)l,.I.g-

,\/ g E Gn(A,B).

En(A,B) c1t(Qcchu~n boa bdi t~p cac ma lr~n hoan vi Den co the
gia siT (i, j ) = ( 1 , n ), khi do :
[11,Il,g]=

11,Il.g.(-1)I,n.g-I

= 11,
=

(

:J

n

( 1n - VW )


H\CQt 1 cua g,

= ( W'

ydi

y

w.v

la ph§.ntud()ng n , cQt 1 cua g-l:g = In

A/Rad(A)

W

la vanh chinh qui van Neumann

W,,) Iii di,
~

ng n cua g
wv

~

I

= O.


lien :

.3 X E A : Vn X Vn - Vn E Rad(A)

Ta chung minh
Ta co:

(xvn )I,n va g giao hoan theo modulo En(A,B).

h:= In - vxvnW E En(A,B)

(Tntong hQp t6ng qUCtt iu (a), ap dvng cho u =
d

-

w)

gE Gn(A,B) va Vn la ph§.n tiTthuQc d()ng n , cOt 1 cua g nen VIlEB
Do do: X'Vn E B


(Xvn) I.il E En(B)

[ (xvn )1.0, g ]

= (xvn )1.n (1n - VXVnW)

E En(A,B)


Tiep theo ta chung minh (1 - x Vn)I,n cling giao hoan voi

g theo

modulo En (A,B) . Ta co :
[(1 - XVn)1,n , g ] = (1 - XVn)1,n, (1n - v(1 - XVn)w )

£)~t u:=

- (1 - XVn) W = ( u'

un).

[(1 - XVn)1,n, g ] = (1 - XVn)I,ll ( In + 'lU )
vdi

= - vn(1

VllUn

Suy fa:

£)~t :

- XVn) Wn

= (Vn

- Vn)W


X Vn

E Rad(A)

d := 1 + VnUn E GLI(B)
",
-I
,
,a .- 1n-1+ v U - V Un d VnU

Chung minh tu'dng tv Call la , ta co :
(1 -XVn )

1,n

(1 n + vu ) = (1 -XVn )

1,n

(

(1

(l-xv,,)

0

.

-


lo .

- -

,

.

-

(1,..

I I'OJ..,
II I -

-

1

I

)

1..

v2u"d-I

l'O.: :. :. . . 1 l:"d',
; <,

g

E

Gn(A,B) => V2, v3 ,
=>V2Ull

, D6ng thai,
g

=

d

-I

,

,v3un

Vn - 1 E
-I

d

B

,...,vn-IUn

.


d

ol

xet trong GLI1(A/B) va GLj(A/B),
-

a

.',

,

I

; g-l

=

f3

E,

I

j

B
ta co :


,

'

-. , . vur,1
v,u"d'
.
,. ,,(

I
I
.1

"n

= 10

d

-

vdi

a

II
I

0

1
l-- . . . . vn-Illnd,1)

vlud-'+I--xv)

I

0)

(1

°

.

(1,,1

d) ld--'vn u'

) (0

1

. . . I-xv,,)

V'U"do') 1°'
I
=1--

I,n (1"


0

a

V'l lnd-Ij

In-I

,

f3

E Cen(A/B)*


.

g
Vn E

u

.

g

-

=


-I

-

I

=>

=

B => xvn

= - (1 - xvn)

a

.

.

1

=>

=

-

1


0

-

=

d-I

Wn

VI

=> un = (1 - XVn) WII =>

W

.

U"

-

-

d E GL1(B) => d-l E GL1(B) =>
VI

=


B

Wn

-

~

==

.( - w "

VI

=-

U"

). I

1

=-

-

1

Nen : vlund -1+ 1 E B
vlund -1+ 1 - XVn E B

1n

(1-XVn)

In-I

(

,

0

V'~"d-')

E

(a

In

(1-XVn)

,

E,,(B)

(1n + Vu) E En(B) \0

0
d) En(B)

.

0
Ta co:

d) E En(A,B)

(~

[( 1 - xvn)l,n, g]

= (1-xvn)l,n

(Chang

minh 1a )

(1n+ vu) E En(A,B)

Tom l~i , ta co [(xvn )1,n,g], [(1-xvn )1,n,g] E En(A,B) , tU (10 :

[11,n,g] = [(xvn+l-xvn)l,n,g]
= [(xvn )I,n (J -XVn)1,n, g]
= (xvn )1,n(1-xvn )1,n g (-1 + XVn)1,n (- XVn)1,11
g-I
= (xvn)l,n. (1 - xvn)l,n g (-1 + xvn)l,n g-1 . g (-x.vlI)l.n g-1
= (Xvn)I,n. [(1-xvn)l,n,

g ](-xvll)I,II(xvn)I,n.g.(-


xvn)l,n g-l

= (xvn )1,n[(1- XVn)I,n ,g] (- XVIII,n . [(xvn )I,n , g] E En(A,B)
)

b) X6t phtln til' thuQc [En(A) ,Gn(A,B)] cI~ng I ylJ, g J , YEA,

i :;i:j,

gE Gn(A,B) :
En(A) la nhom con chu§'n t~c sinh boi ] l,n trong En(A) nen :
3ZEA:

yi,.i = Zkl 11,11(-Z)kl,k;t:.l.


[yi.j,g]=Zkll1.n(_Z)kl g

.

= Zkl.

11,n .

£)~t h = (- Z)kl .g.

E

(- Z)kl g


(_I)I,n

Zkl

(-Z)kl

g-1

. (-1 )l.n . (- Z)kl g-1 Zkl .(- Z)kl

Zk l

g

Zkl

E

Gn(A,B) => h

Gn(A,B)

Tli chung minh ph~n (a), ta co : [11,n,h] E En(A,B).
[yi,j,g]=

Zkl

11,nh(-1)1,n

= Zkl


[11,n,h]

h-1 (-Z)kl

(-Z)kl

EEn(A,B)

D~ ktt thuc chung minh phfin lb, ta gQi H la nh6m con mo.c II
va chung minh H chuan boa bdi En(A) :
Ta co : En(A,B) c H c Gn(A,B)
V xij E :Bn(A), V h E H, xij h (-x )ij
Ma:

[En(A),

. h-1

E

t En(A) , Gn(A,B) ]

Gn(A,B) ] C En(A,B) C H

Sur fa xij h (-x )ij . h-1 E H => xij h (-x )ij E H

V~y H chu~n boa bdi En(A).

Chung minh loc :

Chung minh En(A,ll)

c [En(A),

En(ll) ] :

X6t ph~n tl'i sinh ba't ki cua En(A,B) co d~ng :
yj i xij (-y )j i , X E B, YEA

~ I ~ i -:(::.i ~ n

Taco:
yjixij(_y)ji

= [yji,xij]xij
= [yj i , Xi j ] ( I.X )i j
= [yji,xij].[1ik,xkj]

Sur fa yji xij (_y)ji E [En(A),

En(A,B) c [En(A),

(ChQnk-:(::i,j)
En(B)]

En(B) ]

Hi~n nhi~l1, ta co : [ En(A) , En(ll) ]c [ GLn(A), En(A,B) ]



Chung minh [GLn(A), En(A,B) ] c En(A,H) :
X6t ph~n tU' [g, h]

E [ GLII(A), En(A,B)],

g E GLn(A),

h

E En(A,B)

En(A,B) la nhom con chu§'n t~c cua GLII(A),( chang minh la) nen :
g h g-l E En(A,B) ~
Do do : [ GLII(A), En(A,B) ]

[ g , h ] = g h g-l.h-1 E En(A,B)
c'

En(A,B)

.
Suy fa : En(A,B) c [ En(A),EII(B) ]c [GLn(A), En(A,B)]c

En(A,B)

V~y ta CO : En(A,B) =[ En(A),En(B)]= [GLn(A), En(A,B)]

D~ ke't thue ph~n Ie, ta ehu'ng minh En(A,H)

= [ En(A),


H) :

Ta co : En(A,B) c H c Gn(A,B)
En(B) c En(A,B) c H
Dodo:

En(A,B) = [En(A), En(B)] c [En(A), H ]
D6ng thoi :
[En(A), H ] c [En(A), Gn(A,B) ] c En(A,B)

V?y En(A,B) = [En(A), H ]
Chung minh l.d :
Chung minh En(B)

=En(A,B)

:

Ta da co: En(B) c En(A,B) , chI c~n chung minh :
En(A,B)

c En(B)

X6t ph~n tti sinh bat ki cua En(A,B)
YE A, 1 ~ i =I: ~ n ) . Vi
j

q<;lng (- yi i) Zij yi i, ( ZE B ,


En(B) dl«;1C
chu~n hoa hdi t?P cac ma tr?n .

hoan vi, ta co th€ giil sU' (i, j ) = (1 , 2). Ta chang minh

h:=(_y)12z21y12EEn(A,B),

(zEB,YEA)

:


Vi A chinh qui van Neumann nen t6n t~i phfin tU' x

E

z = z x z . Khi do :

h := (- y ) 12 Z2 1Y12
= (-xzy)1 2 (Xzy)1 2 (-y )12 Z2 1yl 2 (-xzy)1 2 (Xzy)1 2

= (-xzy)1

2. ( xzy - Y )12 Z2 I( Y - xzy ) 12 . (xzy) 12

vdi (xzy)12 E En(B).

X6t g : = ( xzy_y)12 . Z21 . ( Y - xzy )12
Ta l~p cong thlic tinh aI2b21(-a)12,


a, bE A.

( a 1
1

=

I

I

a12b21 (-a)12

I

I

b (1 -a 0 ...

In +

0)

l )
I
(CQt 2 cua a12)
(ab

= In +


I
I

I
l

b
0

-aba
-ba

(D()ng
0
0

...
...

0

01

0\

.\

0

Ap dl,lng cong thlic tren cho a


1 cua (-a)12

)

= (xz-I)y

E

B,b

ab

=

ba

= z (xz - 1) y = (zxz)y - zy = zy - zy = 0

-aha

(xz-l)y.z

= -a (ba) = 0

Ta co: g

= a12b21

(-a)12


=z

)

A thoa :


0

0

...

z

0

0

... 0 I

0

0

.

.


0

0

(xz - l)yz

0\
I

I

g

= In +

I

l

=

~j

0

z
0

0


...

1

(1 + (xz - 1)yz
I

'1

0

...

0
0

\
I

I

I

l

0

Ij

0


Ta co th€ pMin tich g thanh d<;lng:

g

=rl~
l0

. (xz-\)yzx

= «xz

0

01 (I

".

0
I

:..::::::::.. O I~
: I
J ~O

~

01 (I
:::::::.o II~


(I-xz)yzx 0 ... 01
'
~
'.'~~~.'..'.
O
1J ~O ..."
1 J

-1)yzx )12. Z21.« 1 - xz )yzx )12 E En(B)

Th~t v~y , xet :

(1
t :=

~

I

(xz-l)yzx
~

0 ... 0\ (1

0

o I! ~

1


::::::::..

I0

(1+(xz-l)yzxz

=
I

~

I

1

0\ (1

(l-xz)yzx 0 ... 0 \

l

::::::::.

()

I

~~""""'~"""":"'::::::~:"~"

I J l0


J ~O

(xz-l)yzx

...

0\ (1

1.

...::::::... O

1
J

(I-xz)yzx 0 ... 0\
I

I

~

1 J ~o '

l"."".""::::::::"~
I.
J



. .

(1+(xz-l)yz

=

z

I

...

(xz-l)yzx

.

01 (1

1...

0 110

j

l0

I

1


0I
1
)

1 ~O

(1 + (xz - l)yz (l + (xz -l)yz)(l-

=

\

(l-xi)yzx 0 ... 01

z

xz)yzx + (xz -l)yzx

01

z(l- xz)yzx+ 1

0

,

I

j


l0

1

Taco:

z(1 - xz )yzx

= zyzx

- zxz. yzx

= zyzx - zyzx = 0

(1 + (xz-1)yz)(1 - xz )yzx + (xz-1)yzx

= (1 + (xz-l)yz
= (xz-]

)yz(xz-] )yzx

= (X7,-])(yzxz
= (xz-l

- ] ) (xz-l)yzx

- yz) yzx

)(yz - yz) yzx


=0
/.

Do do : g

= t = «xz -1)yzx)

12

21

. z . « I - xz )yzx)

J2

E En(B)

Suy fa h = (- xzy)12 g (XZy)12 E En(B)

V~y En(A,B) c En(B) .

Chung minh En(B)

= [En(B),

En(JJ)] vOi n 2 3 :

Hi~n nhien [En(B),En(B)] c En(B) .

Ta cling co :

V ZlJ E En(B),

zij

= (zxZ)ii , x E

A

zij= (ZXZ)ij=[(ZX)ik, zkj]E [En(B),En(B)] (chQn k:f=i,j)
Nen

En(B) c [En(B),En(B)]

V~y : En(B) = [En(B),En(B)].
Dinh Ii 1 da chung minh xong.


D~ di dSn dinh 11 2, ta c§n mQts6 b6 d~ . Trang ph§n sau , ta ki
hi~u A ia v~nh kSt hqp voi ddn vi 1 va thai man di~u ki~n A/Rad(A)
la vanh chinh qui van Neumann,
2.2.b. B6 d~ 1 :
Cho n 2 3, a E A , a :;r 0 va a kh6ng La LtcJC 0 . H La nhom con
dla
cua GLn(A)

= (gij)

g

ij 1 <.

- l

a,

chwin hod biJi tqp cac aU, i :;rj

thod
:;rJ

gn]

=0

va t6n tc;zii, j

thod tlnh chat H chaa

sao cho g kh6ng giao hoan vcJi

'< n,
-

Khido , H chaa mQt transvection sa cap khac ill'
Chung minh :

n-I

Il

Tru'ong hqp 1: g = i=1b;,n voi bi E A va t6n t~i j < n thoa bj -:f= .

()
ChQns6 nguyen du'dng k thai: k < n va k -:f= ta co :
j,
-I
kj
kj
kj
- kj
kj
a .g. ( - a ) E.H => [ a, g ] - a .g.( - a ) .g E H
.

n-I,n
n-I,n
kj
j,n
- kj I,n
kj
( -a )(b- n-I)
[ a , g ] - a b 1 ... bj ... b n-I
... (b) j
-

N Su j

=n

j.n

... (b) I

-

I,n

- 1 , ta co :

[akj, g]

=akj

bIl,n

... bjj,n

(-a)kj(-bj)j,n...

(- bI) I,n

NSu j < n -1 :
bn-In-I,n (-akj).(- bn-dn-I,n = (-a)kj [aki, bll_tll-I,n] (-a )ki
=
Dodo:
I,n
n-2,n
n-2,n
kj
kj
j,n
(- .
)

[ a , g ] = a kj b I "'.1b .j,n ... b n-2 (- a ) (-b n-2
"'.1'" b )

= akjblI,n ... bjj,n (-a)kj(-bj)j,n...

( - b t)

(- bt) I,ll

V~y :
[akj, g] = akj blI,n ... bjj,n (-a)kj(-bj)j,n... (- bI) I,n, V j S; n - 1
kj
.
= a kj.b I,n "'.1-1. j-I,n .(- a) kj .a,.1.' b .j,n ] (-b.1-1) j-J,n ... ( _b)I
b
[
.
.
.
= akj b I,n ... b.I-Ij-I,n (-a)kj (ab .1' k,n ( - b.I-I ) j-I,n ... ( - b 1) I,n
)
= kj b I,n b. j-I,n (-a) kj ( -b . ) j-I,n ( -b ) I,n (ab .) k,n
a

[akj, g]=

... .1-1

.


.1-1

...

I

.

I,n

.1

akj bl,n ...( bj-2)j-2,n (-a)kj,(-bi-2)j-2,FI ... (_b])I,n, (abl,n
= akj bI,n (-a)kj (-bI)I,n (abj )k,n

V~y H chlia (abj )k,n-:f=In

= akj

(-a)ki. (abj

/,n

= (abj

)k,n

I,n



×