Tải bản đầy đủ (.pdf) (42 trang)

Khoá luận tốt nghiệp toán cấu trúc của tập nghiệm toán pareto yếu của bài toán tối ưu đa mục tiêu tuyến tính từng khúc trong không gian định chuẩn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (992.5 KB, 42 trang )

T R Ư Ờ N G Đ Ạ I HỌC s ư P H Ạ M H À N Ộ I 2
KHOA TOÁN

H O À N G TH Ị N H U N G

CẤU TRÚC CỦA TẬP NGHIỆM PARETO YEU
CỦA BÀI TOÁN TỐI ƯU
ĐA MỤC TIÊU TUYẾN TÍNH TỪNG KHÚC
TRONG KHÔNG GIAN ĐỊNH CHUAN

K H O Á L U Ậ N TỐ T N G H IỆ P Đ Ạ I HỌC
Chuyên ngành: Toán giải tích

H À N Ộ I, 2015


LỜI C Ả M Ơ N
Em xin được bày tỏ lòng biết ơn chân thành tới T h .s N g u y ễn V ăn
T uyên, người thầy đã truyền thụ kiến thức, tận tình giúp đỡ, hướng
dẫn em trong suốt quá trình học tập, nghiên cứu và hoàn thành khóa
luận này.
Em xin được gửi lời cảm ơn tới các thầy cô giáo trường Đại học Sư phạm
Hà Nội 2, các thầy cô giáo khoa Toán đã giúp đỡ em trong quá trình học
tập tại trường và tạo điều kiện cho em hoàn thành đề tài khóa luận tốt
nghiệp. Trong quá trình nghiên cứu, không tránh khỏi những thiếu sót
và hạn chế, em kính mong nhận được sự đóng góp ý kiến của các thầy
giáo, cô giáo và toàn thể bạn đọc đổ khóa luận được hoàn thiện hơn.
Hà Nội, tháng 5 năm 20ỉ 5
Sinh viên

H oàng T hị N hung




LỜI C A M Đ O A N
Em xin cam đoan dưới sự hướng dẫn của thầy giáo N guyễn Văn Tuyên
khóa luận của em được hoàn thành không trùng với bất kì đề tài nào
khác.
Trong khi làm khóa luận này, em đã kế thừa thành quả khoa học ciia
các nhà khoa học với sự trân trọng và biết ơn.
Hà Nội, tháng 5 năm, 2015
Sinh viên

H oàng T hị N hung


M uc
luc


ChtfcJng 1. B ai toan toi \iu vector

3

1.1 Mot so khai niem cd ban.

3

1. 2 .

8


Quan he hai ngoi va quan he th \i tii.

1.3. Diem hffu hieu.

10

1.4. Sif ton tai ciia diem hiiu hieu,

13

1.5. Bai toan toi mi vector (VOP)

15


MỞ Đ Ầ U
Tối ưu đa mục tiêu tuyến tính được nghiên cứu rộng rãi và được áp dụng
để giải quyết nhiều vấn đề khác nhau trong kinh tế, tổ chức khoa học,
năng lượng, ... Ta biết rằng họ các hàm tuyến tính từng khúc lớn hơn họ
các hàm tuyến tính và tồn tại một lớp rộng các hàm có thẻ xấp xỉ bằng
các hàm tuyến tính từng khúc. Vì thế việc nghiên cứu các bài toán tối
ưu đa mục tiêu tuyến tính từng khúc càng có ý nghĩa quan trọng hơn.
Trong không gian hữu hạn chiều, một số nhà toán học đã nghiên cứu
các bài toán tối ưu đa mục tiêu tuyến tính từng khúc khi

các hàm mục

ticu là lồi và nón sinh thứ tự là đa diộn (xcm Pi [16]).
Trong khóa luận này chúng tôi nghiên cứu các bài toán tối ưu đa mục
tiêu tuyến tính từng khúc trong không gian định chuẩn với thứ tự được

sinh bởi một nón lồi đóng với phần trong khác rỗng.
Như chúng ta đã biết, một trong những vấn đề quan trọng trong tối
ưu đa mục ticu là nghicn cứu vồ cấu trúc của tập nghiệm Parcto (xcm
ps 0 ,0 , [BỊ [2ÕỊ, EH [24]). Arrow, Barankin và Blackwell ỊH] đã chứng minh
rằng nếu hàm mục tiêu là một ánh xạ tuyến tính giữa hai không gian
hữu hạn chiều và nếu nón thứ tự và tập ràng buộc là các đa diện thì
tập tất cả các nghiệm Pareto yếu là hợp hữu hạn các đa diện và là liên
thông đường.
Mục đích của khóa luận này là trình bày các kết quả trong bài báo
[27]. Các kết quả này là một mở rộng của Ẹị từ trường hợp các không

1


2

gian hữu hạn chiều sang trường hợp các không gian định chuẳn. Chúng
tôi sõ chỉ ra rằng nếu hàm mục ticu là tuyến tính từng khúc, lồi theo nón
giữa hai không gian định chuẩn, nón thứ tự có phần trong khác rỗng và
tập ràng buộc là đa diện thì tập các nghiệm Pareto yếu là hợp hữu hạn
các đa diện và là liên thông đường. Nếu bỏ qua giả thiết về tính lồi theo
nón của hàm mục tiêu, bằng phản ví dụ, chúng ta thấy rằng các kết quả
trcn không còn đúng. Nhưng nếu nón thứ tự là đa diện và hàm mục ticu
là tuyến tính từng khúc (không nhất thiết lồi), thì chúng tôi cũng chỉ ra
rằng tập nghiệm Pareto yếu là hợp hữu hạn các đa diện.
Khóa luận được chia thành hai chương. Chương 1 giới thiệu một số
kiến thức cơ bản về tối ưu vector.
Chương 2 trình bày cấu trúc của tập nghiộm Parcto yếu của bài toán
tối ưu đa mục tiêu tuyến tính từng khúc trong không gian định chuan.
Các ví dụ cũng được trình bày trong chương này để phân tích các kết

quả đạt được.


Chương 1
B ài toán tối ưu vector

1.1. M ột số khái niệm cơ bản.
Giả sử E là không gian tuyến tính, R là tập các số thực.
Đ ịnh nghĩa 1.1. Tập Ả c E được gọi là lồi, nếu:

Vxi,x2 G ^4ịVÀ G M : 0 ^ A

^ 1 =7*Axi-\- (1 —A)x2 £Á.

V í d ụ 1.1. Các nửa không gian là các tập lồi. Hình tam giác, hình tròn
trong mặt phẳng là các tập lồi. Hình cầu đơn vị trong không gian Banach
là tập lồi...
N hận x ét 1.1. a) coA là một tập lồi. Dó là tập lồi bé nhất chứa A;
b) A lồi khi và chỉ khi A —
Đ ịnh nghĩa 1.2. Tập

cc

COA.

E được gọi là nóncó đỉnh tại 0 nếu:

Vx G C,VÀ > 0 ^ Àx Ễ c .

c được gọi là nón có đỉnh tại x OÌ nếu c — x 0 là nón có đỉnh tại 0.

Đ ịnh nghĩa 1.3. Nón

c có đỉnh tại 0 được gọi là nón lồi, nếu c là một

tập lồi, nghĩa là:
Vx, y € c , VÀ, n > 0 =^> Xx + ịiy G c.


4

V í dụ 1.2. Các tập sau đây trong Rn:
€ R " : 6 SâO,i =
(nón orthant không âm)
{fi> Ỉ2ì •••5 £n £ M'1 :

> 0, i = 1 , n}

(nón orthant dương)
là các nón lồi có đỉnh tại 0. Đó là nón lồi quan trọng trong Mn.
Ngoài ra, nếu cho D C R m là một nón lồi, nón cực dương của D được
xác định bởi:
D * := {x* e
Cho a, b 6 Mm, a

:< x \ x

0,Vx € D} .

b khi và chỉ khi a — b € D] a ^ 0 khi và chỉ khi


dị ^ 0, %= 1 , m. Kí hiộu R"* := {x G Mm : X ^ 0} và cho p : X —»■Rm.
Hàm (/ được gọi là D- giống lồi trên 5 C I khi và chỉ khi :
Vxi, x 2 € 5, Vq e [0,1],

e 5.

sao cho
(1 - oOổÌtì) + (yg(x2) - g(x) e D.
Diều này được biết đến trong [13] rằng g là một hàm D- giống lồi khi
và chỉ khi tập g(S) + D là lồi.
Đ ịnh nghĩa 1.4. Phần trong tương đối của tập A c Mn là phần trong
của A trong a f f A (bao affine); kí hiộulà riA. Cấc điổm thuộc rii4 được
gọi là điểm trong tương đối của tập Ả.


5

N hận x ét 1.2.
intA := {X € Rn : 3e > 0, X + dB c ^4} ,
riA := {x £ a f f A : 3e > 0, (x + eB) n a f f A c A} ,
trong đó, B là hình cầu đơn vị đóng trong Rn.
Tiếp theo, chúng ta s ẽ đỉ x e m xét m ộ t số n ón thường gặp
Cho
Kí hiệu
của

c là nón lồi trong không gian vector tôpô E.
l(C) := c n ( - C ) (phần tuyến tính của ơ); clơ (baođóng

C); một tập con A c E, A c là phần bù của A trong E, nghĩa là


A c = E\A.
Đ ịnh nghĩa 1.5. Chúng ta nói nón

c là:

(a) Nhọn nếu l(C) = 0;
(b) Nón sắc nếu bao đóng của nó là nhọn;
(c) Nón có giá chặt nếu C\l (C) là được chứa trong một nửa không gian
mở thuần nhất;
(d) Nón đúng nếu (cỉC) + C\l (C) c c , hoặc tương đương
clC + C\l (C) C C\l{C).
V í dụ 1.3. Theo định nghĩa L5
1.
âm

Cho Mn là không gian Euclide n-chiều. Khi đó, nón orthant không
gồm tất cả các vcctor của wn với toạ độ không âm là nón lồi,

sắc, đóng, có giá chặt và là nón đúng.
Tập {0} cũng là một nón, nhưng là nón tầm thường.


6

Tập hợp của 0 và các vector với toạ độ đầu tiên dương là một nón
đúng, nhọn, có giá chặt nhưng không là nón sắc.
Bất kì nửa không gian đóng thuần nhất là nón đúng, có giá chặt
nhưng không là nón nhọn.
2. Cho


c

là không gian vector gồm tất cả dãy

= {x E £} : x n ^ 0,Vn}, thì

biết nón

c

X

= {xn} số thực. Cho

là nón nhọn, lồi. Tuy nhiên, ta chưa

c là nón đúng hoặc nón sắc vì ta chưa biết tôpô xác định trên

không gian này.
3. Nón thứ tự từ điển: Cho
lp =

Kí hiệu

|.T E n

c là hợp

: || . t | | =


|.Tn |p ) ỉ I

, 1 ^ p <

oo.

của 0 và các dãy mà số hạng đầu tiên khác

không của

dãy là dương. Dây là một nón lồi, còn gọi là nón thứ tự từ điển. Nó là
nón nhọn nhưng không là nón đúng và cũng không phải là

nóncó giá

chặt.
M ệ n h đề 1.1. Nón

c là đúng

khỉ và chỉ khi một trong các điều kiện

sau thoả mẫn:
(a)

c

là đóng;


(b) C\Ỉ(C) ỉ,à mở, khác rỗng;
(c)

c

là hợp của 0 và giao của các nửa không gian mở và nửa không

gian đỏng trong E.
Chứng minh, (a) Hiển nhiên
(b) Nếu C\l (C) mở thì ỉ n t c Ỷ 0 và

ỉntc =

C\l(C). Do đó, ta có

clC + C\l (C) = (clC) + i n t c c c ,


7

hay С là nón đúng.
(с) Giả sử, С = {0}и(п {Ял : Л £ Л}), ở đây, Н\ là nửa không gian đóng
hoặc mở trong E. Nếu tất cả H\ là đóng thì điều này tương đương với
С là đóng. Do đó, ta có thể giả sử ít nhất một nửa không gian là mỏ thì
1(C) = {0} và b E C\l (C) khi và chỉ khi b E Ял, VA £ Л. Hơn thế nữa,
ta thấy a G cl с khi và chỉ khi a € с/Я л,\/Л G Л nên clHx + H\ G H\.
Vậy Hx là mỏ hoặc đóng thì a + b G с , a G с , b G C\l(C). Mệnh đề
được chứng minh.




Đ ịn h n g h ĩa 1.6. Cho một nón с trong không gian E. Một tập в ç E
sinh ra nón

С và viết с = cone(B)

nếu

С — {tb : b G Æ, t ^ 0} .
Hơn nữa, nếu В không chứa 0 và với mỗi с E с , с Ỷ 0, tồn tại duy nhất
b G Æ, t > 0 sao cho с — tb thì D được gọi là cơ sở của с . Khi đó в là
một tập hữu hạn, cone(coĩiv(B)) được gọi là một nón đa diện.
N h ậ n x é t 1.3. Rõ ràng trong không gian hữu hạn chiều một nón có cở
sở là lồi, đóng bị chặn khi và chỉ khi nó là nhọn, đóng. Tuy nhiên, nó
không đúng trong không gian vô hạn chiều.
M ệ n h đề 1.2. Nếu E là không gian Hausdorff thì một nón với một cơ
sở lồi, đóng bị chặn là nón đóng, nhọn vì vậy nó là nón đúng.
Chứng minh. Trước hết ta chỉ ra rằng

с

là đóng. Cho dãy{cữ} là một

lưới từ С hội tụ tới c. Do в là một cơ sở nên tồn tại một lưới {ba} từ
В và một lưới {ta} các số dương mà ca — taba. Dỗ thấy ta là bị chặn.


Thật vậy, giả sử ngược lại lim ta = 00. Vì E là không gian Hausdorff
nên lưới {ba = ca/ t a} hội tụ tới 0. Hơn thế nữa D là đóng, dẫn tới mâu
thuẫn: 0 = lim ba E B. Bằng cách này, ta có thổ giả sử {ta} hội tụ tới

điểm t 0 ^ 0. Nếu ta = 0 thì từ tính bị chặn của D , lim taba = 0. Do đó
c = 0 và hiển nhicn c G c . Nếu t0 > 0, ta có thể giả sử tn > e, Va, e > 0.
Từ ba = ca/ t a hội tụ tới c/ t 0 và hơn nữa, D đóng nên vector c / t a G D.
Do đó c G c và c đóng nên c nhọn là hiển nhiên.



1.2. Quan hệ hai ngôi và quan hệ th ứ tự.
Cho một tập hợp E tuỳ ý, một quan hệ hai ngôi trong E được định
nghĩa bởi một tập con D của tập hợp tích E X E. Diồu này có nghĩa là,
một phần tử

X

€ E có quan hệ với y E E nếu 0 ,y) G B.

Đ ịn h n g h ĩa 1.7. Cho B là một quan hệ hai ngôi trong E. Ta nói quan
hệ này là:
(a) Phản xạ nếu (x,x) G D với mọi X G E]
(b) Dối xứng nếu(x, y ) G D suy ra (y , x) G D với mỗi X, y G
(c) Bắc cầu nếu (x,y) € B , (y, z) G B suy ra (x,z) € D với x , y , z € D;
(d) Dầy đủ hoặc liên thông nếu (x,y) G D hoặc (y,x) G D với mỗi

x , y e E , x Ỷ y\
(e) Tuyến tính trong trường hợp E là không gian vector thực nếu:
(x, y) E D suy ra (tx + Z, ty + z) G D với mọi X, y ì z £ E, t > 0;
(f) Dóng trong tníờng hợp E là không gian vector tôpô, nếu nó là đóng
như một tập con của không gian tích E X E.



9

Dể làm rõ định nghĩa này, chúng ta xem xét một số ví dụ cổ điển sau.
Cho E là một cộng đồng dân cư của một thành phố và chúng ta định
nghĩa quan hộ hai ngôi như sau (số dân cư được gánbởi

X,

y, z,...)

1. (x,y) G

Bị nếu

X,

y là

những người tuổi cao hoặccótuổi.

2. (x, y) G

B 2nếu

X,

y là

hai giới tính khác nhau.


3. (x, y) €

B 3nếu

X,

y là

những người có họ.

Ta thấy rằng Dị là phản xạ, bắc cầu, không đối xứng, đầy đủ. B 2
không phản xạ, đối xứng, không bắc cầu, không đầy đủ. z?3 là phản xạ,
không bắc cầu, đối xứng, không đầy đủ.
Đ ịnh nghĩa 1.8. Quan hộ hai ngôi là một quan hộ thứ tự nếu nó là
phản xạ, bắc cầu.
Thật vậy, nếu D là một quan hộ thứ tự mà là tuyến tính trong một
không gian vector thì tập
C = { x e E : (.T, 0) € B}
là một nón lồi. Hơn nữa, nếu D là không đối xứng thì c là nhọn. Ngược
lại, mỗi nón lồi trong E cho một quan hệ hai ngôi
Bc = {{x, y) e E X E : X - y e C}
là phản xạ, bắc cầu và tuyến tính. Ngoài ra, nếu

c

là nhọn thì Dc là

không đối xứng. Bây giờ, chúng ta SC xct một vài thứ tự sinh ra bởi
các nón lồi. Dôi khi chúng ta viết: X ^ c y thay cho X — y € C; hoặc
X ^


y

nếu nó chắc chắn là quan hệ hai ngôi được định nghĩa bởi

C;

X >c y nếu X ^ c y và không phải là y ^ c X, hay là X G y + C\l(C).
Khi ỉ n t c

0,x ^>c y nghĩa là

X >K

y với K = {0} u i n t c .


10

V í d ụ 1.4. 1. Cho Ш11 và tập с = R” . Thì в с là phản xạ, bắc cầu,
tuyến tính, đóng, không đối xứng nhưng không đầy đủ.
Cho X = {xu ...,xn) , y = (ỉ/1 ,

2/„)

G Mn:

X ^ с У khi và chỉ khi Xị ^ у ị với i = 1,..., n;
X > c у khi và chỉ khi Xi ^ Уг với i = 1,..., n và ít nhất m ột bất đẳng


thức là ngặt;
X ^ с У k h i v à c h ỉ k h i Xị >

Ui v ớ i m ọ i i =

1 , . . . , Ĩ1.

2. Trong M2. Nếu С = (м 1, o) thì B c là phản xạ, bắc cầu, tuyến tính,
đóng và đối xứng. Trong trường hợp này X ^ с у khi và chỉ khi hai thành
phần của các vcctor trùng nhau. Thứ tự này không đầy đủ.
3. Nón thứ tự từ điển là một quan hệ phản xạ, bắc cầu, tuyến tính
đầy đủ trong lp.

1.3. Đ iểm hữu hiệu.
Cho E là không gian vector tôpô thực với quan hệ thứ tự (^ ) được sinh
bởi một nón lồi С .
Đ ịn h n g h ĩa 1.9. Cho A là một tập con khác rỗng của E. Ta nói rằng:
(a) X G A là một điểm hữu hiệu lí tưởng (hoặc cực tiểu lí tưởng) của A
tương ứng với С nếu у ^ х,Уу E A;
Tập các điểm cực tiểu lí tưởng của A được kí hiệu là I E (Ả , C)\
(b) X G A là điểm hữu hiộu (cực tiểu-Parcto hoặc không cực tiểu) của
A tương ứng với С nếu X ^ у , у € A thì у ^ x\
Tập các điểm hữu hiệu của A kí hiệu là E{A, C)\


11

(c)

X


G A là điểm hữu hiệu thực sự (toàn cục) của A tương ứng với

с

nếu tồn tại một nón lồi к ф E với ỉ n t K D C\l (C) sao cho X £ E(A, K)\
Tập các điổm hữu hiộu toàn cục của A được kí hiộu là P r E ( A , C)\
(d) Giả sử i n t c Ф 0,.T G A là một điểm hữu hiệu yếu của A tương ứng
với С nếu X £ E(A, {0} u ỉntC)\
Tập các điểm hữu hiệu yếu của A kí hiệu là w E ( A , C).
V í d ụ 1.5. Cho
A = {(x, y) e R2 : X2 + y2 ^ l , y ^ ũ} и {(x,y) : X ^ 0,0 ^ у ^ -1 } ;
В = А и { ( - 2 ,- 2 ) } .
Nếu cho С = М+, ta có:
IE{D) = P r E ( B ) = E( B) = W E ( B ) = { (-2 , -2 )} ;

I E (A) = 0,
Pr E( A) = {(x, y) € К2 : X2 + y2 = 1, ũ > X, 0 > y},

E ( A ) = PrE(A) u {(0 ,-1 )} u {(—1,0)},
w E ( A ) = E(A) и {(ж,y) : y = —1, X ^ 0}.
Bây giờ cho С = (К1, Ũ) С К2. Ta có :

IE(B) = 0,
PrE(D) = E{D) = W E ( B ) = Б,

I E (A) = 0,
PrE ( A ) = E(A) = W E (A) = A.
Từ định nghĩa của các điểm hữu hiệu, ta có mệnh đề sau:
M ệ n h đ ề 1.3. Cho A ç E thì :

(a) X 6 I E ( A ) khi và chỉ khi X 6 A và A ç X + С;


12

(b) X G Ĩ E ( A ) khi và chỉ khi A n (x — C) c X + l(C) hoặc tương đương:
ß y G >4 sao cho X > y. Dặc biệt khi c là nhọn, X G E(A) khi và chỉ khi
A n (x — C) — {x};
(c) Khi c ^ EjX £ w E(A) khi và chỉ khỉ A n (x —i n t c ) = 0 hoặc tương
đương với ß y £ A sao cho X

y.

M ệ n h đề 1.4. Cho tập khác rỗng A c E có
P r E( A) C E(A) C W E ( A ) .
Hơn nữa, nếu I E ( A ) ^ 0 í/ù I E( A ) — E(A) và nó là tập một điểm
khi c ỉ,à nhọn.
Chứng minh. Lấy X € PrE(A). Nếu X ị E(j4) c ố y E A v ầ x — y £
C\l(C). Lấy nón lồi K

+ E với i n t K C Ơ \/(C ) và X £ £(i4, K ). Thì

X — y £ ỉ n t K C K \ l ( K ) . Diều này mâu thuẫn với £ E E ( A , K ) suy ra
PrE ( A ) C E(A).
Lấy X G E(A). Nếu X ị w E ( A ) theo Mệnh đồ 1.3 tồn tại y E A sao
cho X — y € ỉ n t c . Do c Ỷ E, ỉ n t c C C\l (C) nên ta có X — y E C\l(C).
Diều này mâu thuẫn với X G E(A). Vậy Ü7(j4) C WE ( A ) .
Rõ ràng, I E ( A ) C -E(i4). Nếu I E ( A ) Ỷ

05


ch° X € I E( Á ) thì X €

£(A ). Cho y G i£(j4) thì y > X vì vậy .T ^ y. Lấy một điểm bất kì
2 G Ấ có 2 ^ X vì I G

suy m z ^ y là y € IE(A). Do đó,

I E ( A ) = E(A). Ngoài ra, nếu c là nhọn

.T

^ y và y > X chỉ có thể xảy

ra trường hợp X = y. Vậy I E ( A ) là tập một điểm.
Đ ịn h n g h ĩa 1.10. Cho X £ E. Tập
cắt A tại X và kí hiệu A x .



n (x —C) được gọi là một nhát


13

M ệ n h đề 1.5. Cho

X

€ E với A x Ф 0. Ta có :


(a) I E ( A X) Ç I E ( A ) nếu I E ( A ) Ф 0;
(b) E ( A X) Ç E(A) (tương tự cho W E ) .
Chứng minh, (a) Cho y E I E ( A X) và z E I E (A) có АЭ; ç y + с và
Л ç г + ơ . Thì г G i4x và г —y G /(C) suy ra

Do đó y G IE(A).
(b) Giả sử y G E ( A X). Theo Mệnh đề 1.4 có A x п (у — С) с у + / (С) suy
га г/ —С ç X — С псп

А П у — С С А п (у — С) п (х — С) С А х п (у — С) с у + /(С).
Do đó у G E(Ä).
Chứng minh tương tự cho W E .



N hận xét 1.4. Quan hệ P r E ( A x) Ç P r E( A) nói chung không đúng
trừ một số trường hợp đặc biột.

1.4. Sự tồn tại của điểm hữu hiệu.
Đ ịnh nghĩa 1.11. Cho lưới {.Ta : a € 1} từ E được gọi là lưới giảm
( tương ứng với C) nếu x a >c



với OLì ß G /; ß > a.

Đ ịnh nghĩa 1.12. Cho A Ç E được gọi là C- đầy đủ (tương ứng Cđầy đủ mạnh) nếu nó không có phủ dạng {(xa —clCỴ : a G 1 } (tương
ứng {(xa —C Ỵ : a G I}) với {xa } là một lưới giảm trong A.



14

Đ ịn h lý 1.1. Giả sử С là một nón lồi đúng và Ả là một tập khác rỗng
trong E. Thì E ( A , C ) Ф 0 khi và chỉ khi A có một nhát cắt C- đầy đủ
và khác rỗng.
Chứng minh. Nếu E ( A , C ) Ỷ 0 thì mọi điểm của tập này cho ta một
nhát cắt C- đầy đủ vì không tồn tại lưới giảm. Ngược lại, cho A x khác
rỗng là một nhát cắt C- đầy đủ của A. Theo Mệnh đề 1.5 thì ta chỉ
cần chứng minh E ( A Xì С) Ф 0. Xét tập p bao gồm tất cả các lưới giảm
trong A. Vì А Ф 0 suy ra p Ф 0. Với a, b € p ta viết а у b nếu b Ç a.
Rõ ràng (V) là quan hệ thứ tự trong p , và một xích bất kì trong p đều
có cận trcn. T hật vậy, giả sử {ал; Л G Ả} là một xích trong p. Gọi в là
tập tất cả các tập con hữu hạn в của Л được sắp thứ tự bỏi bao hàm,
đặt
aB = u {aa ; a G в } .

C1 0 = u {ciB • В €
Thì a0 là một phần tử của p và a0 >- aa với mọi a G Ả nghĩa là a0 là
một cận trên của xích này. Áp dụng bổ đề Zorn, tồn tại phần tử lớn
nhất của p , kí hiộu là a* = {xa : a € 1} G p. Bây giờ, giả sử ngược lại
E ( A X,C) = 0. Chúng ta sẽ chứng minh {(.Ta —CẤCỴ : a E 1} phủ A x.
Ta chỉ ra với mỗi y G A x сó а E. I mà (xa — c i c y chứa у. Giả sử phản
chứng y € x a — dC, Va G I. Vì E ( A X, C) = 0 có z G A x với y >c z. Do
tính đúng của С ncn

X

— a >c 2, (a 6 /). Thêm г vào lưới a* ta thấy


rằng lưới này không thể lớn nhất, dẫn tới mâu thuẫn. Vậy định lí được
chứng minh.




15

1.5. B ài toán tối ưu vector (V O P ).
Cho X là một tập con khác rỗng của một không gian tôpô và F là một
ánh xạ đa trị từ X vào E , ở đây, E là không gian vector tôpô thực được
sắp thứ tự bởi nón lồi С .

Xct VOP :
m in F (.T )

với ràng buộc X G X.
Diem X G X được gọi là tối ưu (cực tiểu hoặc hữu hiộu) của VOP
nếu F(x) П E ( F ( X ) , С) Ф 0.
ở đây, F ( X ) là hợp của các tập F(x) trên X . Các phần tử của
E ( F ( x ), C) được gọi là giá trị tối ưu của VOP. Tập các điểm hữu hiện của
VOP được kí hiệu là S { X \ F ) . Thay thế I E , P r E , W E cho E ( F ( X ) , с )
chúng ta có các khái niộm I S ( X ] F ), P r S ( X ] F ) và w S ( X \ F).
Quan hệ giữa các điếm hữu hiệu, hữu hiệu thực sự và hữu hiệu yếu
của VOP được trình bày trong mệnh đề sau:
M ệ n h đề 1.6. Cho VOP, chúng ta có các bao hàm thức sau:
PrS(X;F) ç S(X;F) Ç WS(X]F).
Hơn nữa, nếu I S ( X ; F) Ỷ 0 thì I S ( X ; F) = S ( X \ F).
Chứng minh tương tự Mệnh đề 1.4
B ổ đề 1.1. Giả sử С là lồi, X là tập compact khác rỗng và F là С- liên

tục trên trong X với F(x) + с là С- đầy đủ, đóng với mọi X G X thì
F ( X ) là C- đầy đủ.


16

Chứng minh. Giả sử phản chứng rằng F ( X ) không là

с

đầy đủ. Điều

này có nghĩa là có một lưới giảm {aa : a € 1} của F ( X ) sao cho
{{aa - d{ C) ) c : a e 1}
là phủ của F ( X ) . Lấy x a G X với aữ € F ( x a). Không mất tính tổng
quát, giả sử lim xa =

X

G X . Khi đó, với mỗi lân cận V của F(x) trong

E có một chỉ số ß G I sao cho
aa G V + С, Va ^ ß.
Do {ал} là dãy giảm, псп
CLa G ciỹ “Ь О , Vố ^ Oi.

Từ đây suy ra:
aa G cl(F(x) + C) = F(x) + c , \fa.
Dẫn tới mâu thuẫn: F(x) +


с không thể là C-

đầy đủ.




Chương 2
Cấu trúc của tập n ghiệm P areto
yếu của bài toán tối ưu đa m ục tiêu
tu y ến tín h từ ng khúc

2.1. Đ ặt bài toán.
Trong phần này, cho X, Y là các không gian định chuẩn và cho c c Y
là nón lồi với int (C) ^ 0, khi đó xác định một quan hệ thứ tứ trong Y : với 2/1 , 2/2 e Y, y 1 < c
ỉ/2 -

2/1

2/2

^

2/2

- ỉ/i e c . Ijị
2/2


có nghĩa là

£ int (C).

Cho một tập con Ẩ của y , gọi a E i4 là một diem Pareto yếu nếu không
có phần tử y G A sao cho y điểm Pareto yếu của A. Rõ ràng là,
a G W E (A, C) <^> a G A và (a —int (ơ)) n i = 0.
Kí hiện X* là không gian đối ngẫu của X. Một tập con p của X được
G X* và Cl, ...,cn G M sao cho:

gọi là đa diện nếu nó tồn tại
p =

{x E X

: ( #*,

x) < Cị, i —

1,

n} .

Kí hiệu I/ (X, y ) là lớp tất cả các ánh xạ tuyến tính liên tục từ X vào
Y. Một ánh xạ / : X —)■Y được gọi là tuyến tính từng khúc nếu tồn tại
17


18


đa diện Pu ...ì Pm trong X, {T i,...,T m} c L (X, Y) và {^1 , }

c F

sao cho
X = |^J Pị và / (x) = Tị (x) + bị,\fx € Pị, 1 < ỉ < 777.
i=1

(2.1)

Do đó,
Tị (x) + bị = Tj (x) + bj , V.T Rõ ràng rằng, mọi hàm tuyến tính từng khúc có tính licn tục.
Chúng ta nói / là c lồi nếu
/ (tai + (1 - í) z 2) < c t f {xi) + (1 - t) f (x 2), Ví e [0,1] và
Như vậy, / là

c lồi nếu và chỉ nếu e p i c

XI,X2

e X.

(/) là một tập con lồi của I x ĩ ,

trong đó,
epic i f ) := { 0 , y) : X e X và ./ 0 ) < c 2/}
là đồ thị của / đối với nón sinh thứ tự
Cho


c.

€ X* và c i,...,c n € K. Xét bài toán tối ưu đa mục tiêu

tuyến tính từng khúc (không cần lồi) sau đây:

c — min /
(a),x) <

(x)

Cj , j =

Dc thuận tiộn, gọi r là tập chấp nhận được của (2.2), tức là:
r : = { x e X : ( a * , x ) < C j J = 1, . . . , n }

Một vcctor

X

G r được gọi là nghiộm Parcto yếu của (2.2) nếu

/ (.X) e W E ( / ( r ) , C)

(2.2)


19


trong trường hợp này, f (x) được gọi là giá trị Pareto yếu của (2.2). Kí
hiệu Sw và Vw theo thứ tự là tập nghiệm Pareto yếu của (2.2) và tập giá
trị Parcto yếu của (2.2).
Rõ ràng là

sw= r

n /-1 (Vw) và v w = W E ( / ( r ) , C ) .

Trong phần tiếp theo, chúng ta giả sử rằng / : X —>■Y là ánh xạ tuyến
tính từng khúc được định nghĩa trong (2.1). Chúng ta cũng giả thiết
rằng Sw là khác rỗng.
Tiếp theo, ta trình bày một số tính chất cơ bản được sử dụng trong phần
sau:
B ổ đề 2.1. Cho I =

và lo

{i G / : int(Pị) Ỷ 0} 5 trong đó,

777, như trong (2.1). Khi đó X = u e/ Pị
Chứng minh. Gọi ỉ là một phần tử tùy ý trong / \ I0. Khi đó, chú ý
rằng, Pị là đóng, với bất kì a G X và r G (0, +oo) tồn tại ã G B (a,r)

và f E (0, r) sao cho D (ã, r) n Pị — 0, trong đó, D (a, r) là hình cầu mở
với tâm a, bấn kính r. Nó có nghĩa là với bất kì
X e Í5 (x, e) và £ G (0 , 5 ) sao cho I? (£ ,£ ) n

lại rằng, X 7^ U ie / Pi' K h i


X

u e /\/

€ X và £ > 0 tồn tại
Pị = 0- Giả sử ngược

do tính đóng của mỗi Pị, tồn tại x a £ X

và £o > 0 sao cho í? (x0, £0) n UiG/ Pị = 0- Mặt khác, lấy f ỡ G ổ (xỡ, £0)
và ẽo E (0, £0 — ||xơ —x 0\\) sao cho D (x 0ì ể0) n UiG/\/ Pi —
D (x 0ì ể0) n

u*li Pỉ =

Do đó,

Mâu thuẫn với giả thiết của (2.1). Bổ đề được

chứng minh.



B ổ đề 2.2. / là

c

lồi nếu và chỉ nếu

Tị (.t) + bị


(2.3)


20

Chứng minh. • Đ iều kiện đủ:
Dặt ũị := {(.T, 2/) £ X
nghĩa là

epic

X

Y '.Tị

(/) = ní=i

( x)

+ bị


y} . Khi đó, (2.1) và (2.3) có

Do đó, epic (/) là lồi và như vậy / là

c lồi.


• Đ iều kiện cần:
Cho Iơ giống như trong Bổ đề 2.1, Khi đó, X = (JieI Pị. Do đó, chúng
ta chỉ cần chứng minh rằng,
Tị (x) + bị Lấy ỉ G lo và X G X . Cho z G int (Pị). Khi đó, tồn tại t E (0,1) đủ nhỏ
sao cho z + t (x — z) G Pị. Theo tính chất

c - lồi của /

thì

Tị (z + t ( x - z)) + bị = f (z + t ( x - z))
—C

(1 - t ) f { z ) + t f { x )

= (1 - t ) {Ti(z) + bi) + t f 0 ) .
Diều này có nghĩa là Tị (X) + bị


B ổ đề 2.3. Cho A ỉ,à một tẠp con đóng và khác rỗng của Y . Khi đó,
W E (A, C) = A n b d ( A + C),
trong đó, bd(.) là biên hình học tôpô.
Chứng minh. Cho y G w E ( A , C ) . Khi đó, A n (y — ỉnt (C)) = 0. Diồu
này có nghĩa là
(A + C) n (y — int (C)) = 0
( bởi vì int (c ) + c c int (C)). Từ D (y, e) n (y — int (C)) Ỷ 0 V(^i mọi
e > 0, y không là điểm trong cuả A + c . Suy ra y E A n bd, (A + C ) . Vì



21

thế, W E (A , С) С A n bd (А + С).
Dể chứng minh bao hàm thức ngược lại, cho y0 G A \ W E (A,C). Khi
đó, tồn tại z £ А п (уо — int ( С ) ) . Do đó,
Уо Е z + int (С) С А + int (С) С int (А + С)
và như vậy у 0 ị bd (A + С). Diều này cho thấy rằng,
W E ( A , C ) D A n bd (А + C ) .
Bổ đề được chứng minh.



2.2. Cấu trúc của tập nghiệm .
Trong phần tiếp theo, chúng ta nghiên cứu cấu trúc của Sw và Vw. Trước
hết ta nhắc lại một kết quả cơ bản của Arrow, Barankin và Brackwell
Щ:
Đ ịn h lý A B B . Cho X, Y là không gian hữu hạn chiều và nón sinh thứ
tự С là đa diện. Gọi T : X —>• Y là toán tử tuyến tính bị chặn và b G Y.
Giả sử rằng, ánh xọ, m,ục tiêu f ( x ) = T( x) + b với m,ọi X G X và S w là

khác rỗng. Khi đó, Sw là hợp của hữu hạn các đa diện và là liên thông
đường.
Chúng ta sẽ trình bày các mở rộng của Dịnh lí AB в tới các không gian
vô hạn chiồu và trường hợp tuyến tính từng khúc trong hai trường hợp
sau:


×