Tải bản đầy đủ (.pdf) (159 trang)

selberg and ruelle zeta functions on compact hyperbolic odd dimensional manifolds

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1021.46 KB, 159 trang )

s❡❧❜❡r❣ ❛♥❞ r✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥s ♦♥
❝♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧
♠❛♥✐❢♦❧❞s

♣♦❧②①❡♥✐ s♣✐❧✐♦t✐

✷✵✶✺



❙❡❧❜❡r❣ ❛♥❞ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥s ♦♥
❝♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧
♠❛♥✐❢♦❧❞s

❉■❙❙❊❘❚❆❚■❖◆
③✉r

❊r❧❛♥❣✉♥❣ ❞❡s ❉♦❦t♦r❣r❛❞❡s ✭❉r✳ r❡r✳ ♥❛t✳✮
❞❡r

▼❛t❤❡♠❛t✐s❝❤✲◆❛t✉r✇✐ss❡♥s❝❤❛❢t❧✐❝❤❡♥ ❋❛❦✉❧tät
❞❡r

❘❤❡✐♥✐s❝❤❡♥ ❋r✐❡❞r✐❝❤✲❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät ❇♦♥♥

✈♦r❣❡❧❡❣t ✈♦♥

P♦❧②①❡♥✐ ❙♣✐❧✐♦t✐
❛✉s

❆t❤❡♥


❇♦♥♥✱ ▼❛✐ ✷✵✶✺


❆♥❣❡❢❡rt✐❣t ♠✐t ●❡♥❡❤♠✐❣✉♥❣ ❞❡r ▼❛t❤❡♠❛t✐s❝❤✲◆❛t✉r✇✐ss❡♥s❝❤❛❢t❧✐❝❤❡♥
❋❛❦✉❧tät ❞❡r ❘❤❡✐♥✐s❝❤❡♥ ❋r✐❡❞r✐❝❤✲❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät ❇♦♥♥

✶✳ ●✉t❛❝❤t❡r✿

Pr♦❢✳ ❉r✳ ❲❡r♥❡r ▼ü❧❧❡r

✷✳ ●✉t❛❝❤t❡r✿

Pr♦❢✳ ❉r✳ ❲❡r♥❡r ❇❛❧❧♠❛♥♥

❚❛❣ ❞❡r Pr♦♠♦t✐♦♥✿ ✷✻ ❖❦t♦❜❡r ✷✵✶✺
❊rs❝❤❡✐♥✉♥❣s❥❛❤r✿ ✷✵✶✺


❆❜str❛❝t
■♥ t❤✐s t❤❡s✐s ✇❡ st✉❞② t❤❡ ❙❡❧❜❡r❣ ❛♥❞ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥s ♦♥ ❝♦♠♣❛❝t ♦r✐✲
❡♥t❡❞ ❤②♣❡r❜♦❧✐❝ ♠❛♥✐❢♦❧❞s

X

♦❢ ♦❞❞ ❞✐♠❡♥s✐♦♥

d✳

❚❤❡s❡ ❛r❡ ❞②♥❛♠✐❝❛❧ ③❡t❛


❢✉♥❝t✐♦♥s ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ❣❡♦❞❡s✐❝ ✢♦✇ ♦♥ t❤❡ ✉♥✐t❡ s♣❤❡r❡ ❜✉♥❞❧❡ S(X)✳
0
❚❤r♦✉❣❤♦✉t t❤✐s t❤❡s✐s ✇❡ ✐❞❡♥t✐❢② X ✇✐t❤ Γ\G/K ✱ ✇❤❡r❡ G = SO (d, 1)✱ K

SO(d)

❛♥❞

Γ

✐s ❛ ❞✐s❝r❡t❡ t♦rs✐♦♥✲❢r❡❡ ❝♦❝♦♠♣❛❝t s✉❜❣r♦✉♣ ♦❢

❜❡ t❤❡ ■✇❛s❛✇❛ ❞❡❝♦♠♣♦s✐t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦
✐♥

K✳

▲❡t

M

G✳

❜❡ t❤❡

=
G = KAN
❝❡♥tr❛❧✐③❡r ♦❢ A
▲❡t


K✳
❋♦r ❛♥ ✐rr❡❞✉❝✐❜❧❡ r❡♣r❡s❡♥t❛t✐♦♥

χ ♦❢ Γ✱ ✇❡
R(s; σ, χ)✳

σ ♦❢ M

❞❡✜♥❡ t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

❛♥❞ ❛ ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥

Z(s; σ, χ)

❛♥❞ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

❲❡ ♣r♦✈❡ t❤❛t t❤❡② ❝♦♥✈❡r❣❡ ✐♥ s♦♠❡ ❤❛❧❢✲♣❧❛♥❡ ❘❡(s)

❛ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡✳

>c

❛♥❞ ❛❞♠✐t

❲❡ ❛❧s♦ ❞❡s❝r✐❜❡ t❤❡

s✐♥❣✉❧❛r✐t✐❡s ♦❢ t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ✐♥ t❡r♠s ♦❢ t❤❡ ❞✐s❝r❡t❡ s♣❡❝tr✉♠ ♦❢
❝❡rt❛✐♥ ❞✐✛❡r❡♥t✐❛❧ ♦♣❡r❛t♦rs ♦♥
r❡❧❛t✐♥❣ t❤❡✐r ✈❛❧✉❡s ❛t


s

X✳

❋✉rt❤❡r♠♦r❡✱ ✇❡ ♣r♦✈✐❞❡ ❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s

✇✐t❤ t❤♦s❡ ❛t

−s✳

❚❤❡ ♠❛✐♥ t♦♦❧ t❤❛t ✇❡ ✉s❡ ✐s t❤❡

❙❡❧❜❡r❣ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r ♥♦♥✲✉♥✐t❛r② t✇✐sts✳ ❲❡ ❣❡♥❡r❛❧✐③❡ r❡s✉❧ts ♦❢ ❇✉♥❦❡ ❛♥❞
❖❧❜r✐❝❤ t♦ t❤❡ ❝❛s❡ ♦❢ ♥♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥s

χ

♦❢

Γ✳


γυρισ ς και µoυ πες ως τ oν µαρτ η
σ αλλoυς παραλληλoυς θα χ ις µπ ι...


❈♦♥t❡♥ts

■♥tr♦❞✉❝t✐♦♥




✶ Pr❡❧✐♠✐♥❛r✐❡s

✶✾

✶✳✶

❈♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧ ♠❛♥✐❢♦❧❞s

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✾

✶✳✷

❍❛❛r ♠❡❛s✉r❡ ♦♥ ● ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✷✺

✶✳✸

❲♦r❞ ♠❡tr✐❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✷✽

✷ ❉②♥❛♠✐❝❛❧ ③❡t❛ ❢✉♥❝t✐♦♥s

✷✾


✷✳✶

❚✇✐st❡❞ ❘✉❡❧❧❡ ❛♥❞ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✷✾

✷✳✷

❈♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✵

✷✳✸

❚❤❡ ❧♦❣❛r✐t❤♠✐❝ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s

✸✹

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸ ❚❤❡ ❚r❛❝❡ ❢♦r♠✉❧❛

✸✼

✸✳✶

❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✽


✸✳✷

❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r ❛❧❧ ❧♦❝❛❧❧② s②♠♠❡tr✐❝ s♣❛❝❡s ♦❢ r❡❛❧ r❛♥❦ ✶ ✳ ✳

✹✶

✹ ❚❤❡ t✇✐st❡❞ ❇♦❝❤♥❡r✲▲❛♣❧❛❝❡ ♦♣❡r❛t♦r
✹✳✶

◆♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥s ♦❢
●❡♥❡r❛❧ s❡tt✐♥❣

✹✼

Γ✳

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✹✳✷

❚❤❡ ❤❡❛t ❦❡r♥❡❧ ♦♥ t❤❡ ✉♥✐✈❡rs❛❧ ❝♦✈❡r✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✺✶

✹✳✸

❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✺✽


✺ ❚❤❡ t✇✐st❡❞ ❉✐r❛❝ ♦♣❡r❛t♦r



✹✼

✻✸

✺✳✶

❉✐r❛❝ ♦♣❡r❛t♦rs

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✻✸

✺✳✷

❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✻✼

✺✳✸

❚❤❡ ❡t❛ ❢✉♥❝t✐♦♥ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ t✇✐st❡❞ ❉✐r❛❝ ♦♣❡r❛t♦r

✼✶

✳ ✳ ✳ ✳


▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s

✼✼

✻✳✶

❘❡s♦❧✈❡♥t ✐❞❡♥t✐t✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✼✼

✻✳✷

▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ s✉♣❡r ③❡t❛ ❢✉♥❝t✐♦♥

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✼✾

✻✳✸

▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

✳ ✳ ✳ ✳ ✳ ✳ ✳

✽✹




✻✳✹


▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ s②♠♠❡tr✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥

✳ ✳ ✳ ✳

✽✾

✻✳✺

▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✾✸

✼ ❚❤❡ ❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s

✾✼

✼✳✶

❋✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s ❢♦r t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✼✳✷

❋✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s ❢♦r t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

✾✼

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵✺

✽ ❚❤❡ ❞❡t❡r♠✐♥❛♥t ❢♦r♠✉❧❛


✶✶✺

✾ ❉✐s❝✉ss✐♦♥

✶✷✺

✾✳✶

❘❛②✲❙✐♥❣❡r ❛♥❛❧②t✐❝ t♦rs✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷✺

✾✳✷

❘❡✜♥❡❞ ❛♥❛❧②t✐❝ t♦rs✐♦♥

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷✽

❆ ❙♣❡❝tr❛❧ t❤❡♦r②

✶✸✸

❇ ❚❤❡ ❤❡❛t ❡q✉❛t✐♦♥

✶✹✶

❘❡❢❡r❡♥❝❡s

✶✺✸



■♥tr♦❞✉❝t✐♦♥

❚❤✐s t❤❡s✐s ❞❡❛❧s ✇✐t❤ t❤❡ ❞②♥❛♠✐❝❛❧ ③❡t❛ ❢✉♥❝t✐♦♥s ♦❢ ❙❡❧❜❡r❣ ❛♥❞ ❘✉❡❧❧❡✱ ❞❡✜♥❡❞
✐♥ t❡r♠s ♦❢ t❤❡ ❣❡♦❞❡s✐❝ ✢♦✇ ♦♥ t❤❡ ✉♥✐t s♣❤❡r❡ ❜✉♥❞❧❡ ♦❢ ❛ ❝♦♠♣❛❝t ♦r✐❡♥t❡❞
❤②♣❡r❜♦❧✐❝ ♠❛♥✐❢♦❧❞ ♦❢ ♦❞❞ ❞✐♠❡♥s✐♦♥✳ ■♥ ❬●▲P✶✸❪✱ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❤❛s
❜❡❡♥ ❞❡✜♥❡❞ ❢♦r ❛♥ ❆♥♦s♦✈ ✢♦✇ ♦♥ ❛ s♠♦♦t❤ ❝♦♠♣❛❝t r✐❡♠❛♥♥✐❛♥ ♠❛♥✐❢♦❧❞✳
❚❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ❣❡♦❞❡s✐❝ ✢♦✇ ♦♥ t❤❡ ✉♥✐t s♣❤❡r❡
C ω r✐❡♠❛♥♥✐❛♥ ♠❡tr✐❝ ♦❢ ♥❡❣❛t✐✈❡ ❝✉r✈❛t✉r❡ ❤❛s

❜✉♥❞❧❡ ♦❢ ❛ ❝❧♦s❡❞ ♠❛♥✐❢♦❧❞ ✇✐t❤

❜❡❡♥ st✉❞✐❡❞ ❜② ❋r✐❡❞ ✐♥ ❬❋r✐✾✺❪✳ ■t ✐s ❞❡✜♥❡❞ ❜②

(1 − e−sl(γ) ),

R(s) =
γ
✇❤❡r❡

γ

r✉♥s ♦✈❡r ❛❧❧ t❤❡ ♣r✐♠❡ ❝❧♦s❡❞ ❣❡♦❞❡s✐❝s ❛♥❞

l(γ)

❞❡♥♦t❡s t❤❡ ❧❡♥❣t❤ ♦❢

γ✳

❋✉t❤❡r ■♥ ❬❋r✐✾✺✱ ❈♦r♦❧❧❛r②✱ ♣✳✶✽✵❪✱ ✐t ✐s ♣r♦✈❡❞ t❤❛t ✐t ❛❞♠✐ts ❛ ♠❡r♦♠♦r♣❤✐❝

d
❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡✳ ■♥ ♦✉r ❝❛s❡✱ ✇❤❡r❡ X = Γ\H ✱ t❤❡
❞②♥❛♠✐❝❛❧ ③❡t❛ ❢✉♥❝t✐♦♥s ❛r❡ t✇✐st❡❞ ❜② ❛ r❡♣r❡s❡♥t❛t✐♦♥

χ

♦❢

Γ✳

❚❤❡② ❛r❡ ❞❡✜♥❡❞

✐♥ t❡r♠s ♦❢ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ ❝❧♦s❡❞ ❣❡♦❞❡s✐❝s✱ ❛❧s♦ ❝❛❧❧❡❞ ❧❡♥❣t❤ s♣❡❝tr✉♠ ✳
❲❡ ❜❡❣✐♥ ❜② ❣✐✈✐♥❣ ❛ s❤♦rt ✐♥tr♦❞✉❝t✐♦♥ t♦ ♦✉r ❛❧❣❡❜r❛✐❝ ❛♥❞ ❣❡♦♠❡tr✐❝ s❡tt✐♥❣✳
❋♦r ❛❧❧ t❤❡ ❞❡t❛✐❧s✱ ✇❡ r❡❢❡r t♦ ❈❤❛♣t❡r ✶✳

SO0 (d, 1)

❛♥❞

K = SO(d)✳

▲❡t

❋♦r

X = G/K ✳ X

d ∈ N✱ d = 2n + 1✱


❝❛♥ ❜❡ ❡q✉✐♣♣❡❞ ✇✐t❤ ❛

G =
G✲✐♥✈❛r✐❛♥t

✇❡ ❧❡t

♠❡tr✐❝✱ ✇❤✐❝❤ ✐s ✉♥✐q✉❡ ✉♣ t♦ s❝❛❧✐♥❣ ❛♥❞ ✐s ♦❢ ❝♦♥st❛♥t ♥❡❣❛t✐✈❡ ❝✉r✈❛t✉r❡✳ ■❢ ✇❡
♥♦r♠❛❧✐③❡ t❤✐s ♠❡tr✐❝ s✉❝❤ t❤❛t ✐t ❤❛s ❝♦♥st❛♥t ❝✉r✈❛t✉r❡ −1✱ t❤❡♥ X ✱ ❡q✉✐♣♣❡❞
d
✇✐t❤ t❤✐s ♠❡tr✐❝✱ ✐s ✐s♦♠❡tr✐❝ t♦ H ✳ ▲❡t Γ ⊂ G ❜❡ ❛ ❞✐s❝r❡t❡ t♦rs✐♦♥✲❢r❡❡ s✉❜❣r♦✉♣

X ❛♥❞ X = Γ\X ✐s ❛
d✳ ◆♦t❡ t❤❛t G ❤❛s r❡❛❧ r❛♥❦
✶✳ ❚❤✐s ♠❡❛♥s t❤❛t ✐♥ t❤❡ ■✇❛s❛✇❛ ❞❡❝♦♠♣♦s✐t✐♦♥ G = KAN ✱ A ✐s ❛ ♠✉❧t✐♣❧✐❝❛t✐✈❡
t♦r✉s ♦❢ ❞✐♠❡♥s✐♦♥ ✶✱ ✐✳❡✳✱ A ∼
= R+ ✳
❚❤❡ ❘✉❡❧❧❡ ❛♥❞ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥s ❛r❡ ❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✳ ❋♦r ❛ ❣✐✈❡♥ γ ∈ Γ
✇❡ ❞❡♥♦t❡ ❜② [γ] t❤❡ Γ✲❝♦♥❥✉❣❛❝② ❝❧❛ss ♦❢ γ ✳ ❚❤❡ ❝♦♥❥✉❣❛❝② ❝❧❛ss [γ] ✐s ❝❛❧❧❡❞ ♣r✐♠❡
k
✐❢ t❤❡r❡ ❡①✐st ♥♦ k > 1 ❛♥❞ γ0 ∈ Γ s✉❝❤ t❤❛t γ = γ0 ✳ ■❢ γ = e✱ t❤❡♥ t❤❡r❡ ✐s ❛
✉♥✐q✉❡ ❝❧♦s❡❞ ❣❡♦❞❡s✐❝ cγ ❛ss♦❝✐❛t❡❞ ✇✐t❤ [γ]✳ ▲❡t l(γ) ❞❡♥♦t❡ t❤❡ ❧❡♥❣t❤ ♦❢ cγ ✳
❲❡ ❛ss♦❝✐❛t❡ t♦ ❡✈❡r② ♣r✐♠❡ ❝♦♥❥✉❣❛❝② ❝❧❛ss [γ] t❤❡ s♦ ❝❛❧❧❡❞ ♣r✐♠❡ ❣❡♦❞❡s✐❝ ✳ ▲❡t
M ❜❡ t❤❡ ❝❡♥tr❛❧✐③❡r ♦❢ A ✐♥ K ✳ ▲❡t ❛❧s♦ g✱ n ❛♥❞ a ❜❡ t❤❡ ▲✐❡ ❛❧❣❡❜r❛s ♦❢ G✱ N
s✉❝❤ t❤❛t

Γ\G

✐s ❝♦♠♣❛❝t✳ ❚❤❡♥


Γ

❛❝ts ❜② ✐s♦♠❡tr✐❡s ♦♥

❝♦♠♣❛❝t ♦r✐❡♥t❡❞ ❤②♣❡r❜♦❧✐❝ ♠❛♥✐❢♦❧❞ ♦❢ ❞✐♠❡♥s✐♦♥




g = p ⊕ k ❜❡ t❤❡ ❈❛rt❛♥ ❞❡❝♦♠♣♦s✐t✐♦♥ ♦❢ g✳ ❚❤❡r❡
p∼
= TeK X ✳ ❲❡ ❞❡♥♦t❡ ❜② M t❤❡ s❡t ♦❢ ❡q✉✐✈❛❧❡♥❝❡ ❝❧❛ss❡s ♦❢
✐rr❡❞✉❝✐❜❧❡ ✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ M ✳ ▲❡t H ∈ a ❜❡ ♦❢ ♥♦r♠ ✶ ❛♥❞ ♣♦s✐t✐✈❡
✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❝❤♦✐❝❡ ♦❢ N ✳ ❚❤❡♥✱ ❢♦r ❡✈❡r② γ ∈ Γ − {e} t❤❡r❡ ❡①✐st g ∈ G✱
aγ = exp l(γ)H ∈ A✱ ❛♥❞ mγ ∈ M s✉❝❤ t❤❛t gγg −1 = mγ aγ ✱ ✇❤❡r❡ aγ ❞❡♣❡♥❞s
♦♥❧② ♦♥ γ ❛♥❞ mγ ✐s ✉♥✐q✉❡ ✉♣ t♦ ❝♦♥❥✉❣❛t✐♦♥ ✐♥ M ✭❬❲❛❧✼✻✱ ▲❡♠♠❛ ✻✳✻❪✮✳ ❲❡
❞❡✜♥❡ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ❞❡♣❡♥❞✐♥❣ ♦♥ r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ M ❛♥❞ Γ✳

❛♥❞

A

❝♦rr❡s♣♦♥❞✐♥❣❧②✳ ▲❡t

✐s ❛♥ ✐s♦♠♦r♣❤✐s♠

❉❡✜♥✐t✐♦♥ ❆✳
▲❡t

σ ∈ M✳


▲❡t

χ : Γ → GL(Vχ )

❜❡ ❛ ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

❚❤❡♥✱ t❤❡ t✇✐st❡❞ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

Z(s; σ, χ)

Γ✳

✐s ❞❡✜♥❡❞ ❜② t❤❡

✐♥✜♥✐t❡ ♣r♦❞✉❝t


det Id − χ(γ) ⊗ σ(mγ ) ⊗ S k (Ad(mγ aγ )n ) e−(s+|ρ|)l(γ) ,

Z(s; σ, χ) :=
[γ]=e, k=0
[γ] prime

s ∈ C✱ n = θn ✐s t❤❡ s✉♠ ♦❢ t❤❡ ♥❡❣❛t✐✈❡ r♦♦t s♣❛❝❡s ♦❢ a ❛♥❞ S k (Ad(mγ aγ )n )
❞❡♥♦t❡s t❤❡ k ✲t❤ s②♠♠❡tr✐❝ ♣♦✇❡r ♦❢ t❤❡ ❛❞❥♦✐♥t ♠❛♣ Ad(mγ aγ ) r❡str✐❝t❡❞ t♦ n✳

✇❤❡r❡

❉❡✜♥✐t✐♦♥ ❇✳

▲❡t

σ ∈ M✳

▲❡t

χ : Γ → GL(Vχ )

❜❡ ❛ ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

❚❤❡♥✱ t❤❡ t✇✐st❡❞ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

R(s; σ, χ)

Γ✳

✐s ❞❡✜♥❡❞ ❜② t❤❡

✐♥✜♥✐t❡ ♣r♦❞✉❝t
d−1

det(Id −χ(γ) ⊗ σ(mγ )e−sl(γ) )(−1)

R(s; σ, χ) :=

.

[γ]=e
[γ] prime
❋♦r ✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥s


χ

♦❢

Γ✱

t❤❡s❡ ③❡t❛ ❢✉♥❝t✐♦♥s ❤❛✈❡ ❜❡❡♥ st✉❞✐❡❞ ❜②

❋r✐❡❞ ✭❬❋r✐✽✻❪✮ ❛♥❞ ❇✉♥❦❡ ❛♥❞ ❖❧❜r✐❝❤ ✭❬❇❖✾✺❪✮✳ ❍♦✇❡✈❡r✱ ❢♦r t❤❡ ❛♣♣❧✐❝❛t✐♦♥s ✭❝❢✳
❬▼ü❧✶✷❜❪✮✱ ✐t ✐s ✐♠♣♦rt❛♥t t♦ ❤❛✈❡ r❡s✉❧ts ❛✈❛✐❧❛❜❧❡ ❢♦r ❣❡♥❡r❛❧ ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧
r❡♣r❡s❡♥t❛t✐♦♥s✳
■♥ ❋r✐❡❞ ✭❬❋r✐✽✻❪✮ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ❤❛✈❡ ❜❡❡♥ st✉❞✐❡❞ ❡①♣❧✐❝✐t❧② ❢♦r ❛ ❝❧♦s❡❞ ♦r✐✲

X ♦❢ ❞✐♠❡♥s✐♦♥ d✳ ❍❡ ❝♦♥s✐❞❡rs t❤❡ st❛♥❞❛r❞ r❡♣r❡s❡♥✲
j d−1
t❛t✐♦♥ ♦❢ M = SO(d−1) ♦♥ Λ C
❛♥❞ ❛♥ ♦rt❤♦❣♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ρ : Γ → O(m)
−t∆j
♦❢ Γ✳ ❯s✐♥❣ t❤❡ ❙❡❧❜❡r❣ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❤❡❛t ♦♣❡r❛t♦r e
✱ ✇❤❡r❡ ∆j ✐s t❤❡
❍♦❞❣❡ ▲❛♣❧❛❝✐❛♥ ♦♥ j ✲❢♦r♠s ♦♥ X ✱ ❤❡ ♠❛♥❛❣❡❞ t♦ ♣r♦✈❡ t❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✲
✉❛t✐♦♥ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C✱ ❛s ✇❡❧❧ ❛s ❢✉♥❝t✐♦♥❛❧
❡♥t❡❞ ❤②♣❡r❜♦❧✐❝ ♠❛♥✐❢♦❧❞

❡q✉❛t✐♦♥s ❢♦r t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ✭❬❋r✐✽✻✱ ♣✳✺✸✶✲✺✸✷❪✮✳

❍❡ ♣r♦✈❡❞ ❛❧s♦ t❤❡

❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠✱ ✐♥ t❤❡ ❝❛s❡ ♦❢ d = dim(X) ❜❡✐♥❣ ♦❞❞ ❛♥❞


t✇✐st❡❞ ❝♦❤♦♠♦❧♦❣② ❣r♦✉♣s H (X; ρ) ✈❛♥✐s❤ ❢♦r ❛❧❧ j ✳

❚❤❡♦r❡♠ ✭❬❋r✐✽✻✱ ❚❤❡♦r❡♠ ✶❪✮✳
♠❛♥✐❢♦❧❞ ♦❢ ♦❞❞ ❞✐♠❡♥s✐♦♥✳

ρ

❛❝②❝❧✐❝✱ ✐✳❡✳

t❤❡

X = Γ \ Hd ❜❡ ❛ ❝♦♠♣❛❝t ♦r✐❡♥t❡❞ ❤②♣❡r❜♦❧✐❝
❆ss✉♠❡ t❤❛t ρ : Γ → O(m) ✐s ❛❝②❝❧✐❝✳ ❚❤❡♥✱ t❤❡
▲❡t




❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

det(Id −ρ(γ)e−sl(γ) ),

R(s; ρ) =
[γ]=e,
[γ] prime

> d − 1✱ ❛❞♠✐ts
d−1
❢♦r ε = (−1)


✇❤✐❝❤ ❝♦♥✈❡r❣❡s ❢♦r ❘❡(s)
❤♦❧♦♠♦r♣❤✐❝ ❛t

s=0

❛♥❞

❛ ♠❡r♦♠♦r♣❤✐❝ ❡①t❡♥s✐♦♥ t♦

C✳

■t ✐s

|R(0; ρ)ε | = TX (ρ)2 ,
✇❤❡r❡

TX (ρ)

✐s t❤❡ ❘❛②✲❙✐♥❣❡r ❛♥❛❧②t✐❝ t♦rs✐♦♥ ❞❡✜♥❡❞ ✐♥ ❬❘❙✼✶❪✳

❚❤✐s t❤❡♦r❡♠ ✐s ♦❢ ✐♥t❡r❡st✱ s✐♥❝❡ ✐t ❝♦♥♥❡❝ts t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❡✈❛❧✉❛t❡❞
❛t ③❡r♦ ✇✐t❤ t❤❡ ❛♥❛❧②t✐❝ t♦rs✐♦♥ ✉♥❞❡r ❝❡rt❛✐♥ ❛ss✉♠♣t✐♦♥s✳

◗✉❡st✐♦♥ ✶✳ ❍♦✇ ❝❛♥ ♦♥❡ ❣❡♥❡r❛❧✐③❡ t❤❡s❡ r❡s✉❧ts ❢♦r ❛ ♥♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥
♦❢

Γ

✐♥ t❤❡ ❝❛s❡ ♦❢ ❛ ❝♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧ ♠❛♥✐❢♦❧❞❄


❲♦t③❦❡ ❞❡❛❧t ✇✐t❤ t❤✐s ❝♦♥❥❡❝t✉r❡ ✐♥ ❤✐s t❤❡s✐s ✭❬❲♦t✵✽❪✮✳
❤❡ ❝♦♥s✐❞❡r❡❞ ❛ ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ❝♦♠♣❧❡① r❡♣r❡s❡♥t❛t✐♦♥
❛♥❞ ✐ts r❡str✐❝t✐♦♥s

τ |K

τ |Γ

❛♥❞

t♦

K

❛♥❞

Γ✱

▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱

τ : G → GL(V )

♦❢

G

r❡s♣❡❝t✐✈❡❧②✳ ❇② ❬▼▼✻✸✱ Pr♦♣♦s✐t✐♦♥

✸✳✶❪✱ t❤❡r❡ ❡①✐sts ❛♥ ✐s♦♠♦r♣❤✐s♠ ❜❡t✇❡❡♥ t❤❡ ❧♦❝❛❧❧② ❤♦♠♦❣❡♥♦✉s ✈❡❝t♦r ❜✉♥❞❧❡




X ❛ss♦❝✐❛t❡❞
τ |Γ ✱ ✐✳❡✳

♦✈❡r

✇✐t❤

✇✐t❤

τ |K

❛♥❞ t❤❡ ✢❛t ✈❡❝t♦r ❜✉♥❞❧❡

Ef l

♦✈❡r

X

❛ss♦❝✐❛t❡❞

Γ\(G/K × V ) ∼
= (Γ\G × V )/K.

✭✶✮

❚❤❡♥✱ ❜② ❬▼▼✻✸✱ ▲❡♠♠❛ ✸✳✶❪✱ t❤❡r❡ ❡①✐sts ❛ ❤❡r♠✐t✐❛♥ ✐♥♥❡r ♣r♦❞✉❝t ♦♥


V ✱ ✇❤✐❝❤
k✳

✐s ✉♥✐q✉❡ ✉♣ t♦ s❝❛❧✐♥❣ ❛♥❞✱ ✐♥ ♣❛rt✐❝✉❧❛r✱ ✐s s❦❡✇✲s②♠♠❡tr✐❝ ✇✐t❤ r❡s♣❡❝t t♦
❍❡♥❝❡✱ ✐t ❞❡✜♥❡s ❛ ✜❜❡r ♠❡tr✐❝ ✐♥

Ef l ✳

Eτ ✱

✇❤✐❝❤ ❜② ✭✶✮ ❞❡s❝❡♥❞s t♦ ❛ ✜❜❡r ♠❡tr✐❝ ✐♥

❍❡ ❝♦♥s✐❞❡r❡❞ t❤❡ ❍♦❞❣❡✲▲❛♣❧❛❝❡ ♦♣❡r❛t♦r

✇✐t❤ ✈❛❧✉❡s ✐♥

∆r (τ )

❛❝t✐♥❣ ♦♥

r✲❢♦r♠s

♦♥

X

Ef l ✳

❯s✐♥❣ ❛❣❛✐♥ t❤❡ ✐s♦♠♦r♣❤✐s♠ ✭✶✮✱ ❤❡ ❝♦♥s✐❞❡r❡❞ t❤❡ ❍♦❞❣❡✲


p ∗
K
▲❛♣❧❛❝❡ ♦♣❡r❛t♦r ❛❝t✐♥❣ ♦♥ (C (Γ\G) ⊗ Λ p ⊗ V ) ✳ ❍❡ ♣r♦✈❡❞ t❤❡ ♠❡r♦♠♦r♣❤✐❝
❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ✉s✐♥❣ t❤❡ ❙❡❧❜❡r❣ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r t❤❡
d
−t∆r (τ )
r
−t∆r (τ )
)
♦♣❡r❛t♦r e
✭s♣❡❝✐✜❝❛❧❧② ❤❡ ❝♦♥s✐❞❡r❡❞ t❤❡ ❢✉♥❝t✐♦♥
r=0 (−1) r Tr(e
❛♥❞ t❤❡ ❝♦♥♥❡❝t✐♦♥ ♦❢ t❤❡ ❧♦❣❛r✐t❤♠✐❝ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ t♦ t❤❡
❤②♣❡r❜♦❧✐❝ ❝♦♥tr✐❜✉t✐♦♥ ✐♥ t❤❡ tr❛❝❡ ❢♦r♠✉❧❛✳ ❆s ❛ ❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ t❤❡ ❡q✉❛t✐♦♥
✭❘❙✮ ✐♥ ❋r✐❡❞ ✭❬❋r✐✽✻✱ ♣✳✺✸✷❪✮✱ ❤❡ ♣r♦✈❡❞ ❛ ♣r♦❞✉❝t ❢♦r♠✉❧❛✱ ✇❤✐❝❤ ❡①♣r❡ss❡s t❤❡
❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❛s ♣r♦❞✉❝t ♦❢ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥s ✇✐t❤ s❤✐❢t❡❞ ♦r✐❣✐♥s✿

Z(s + λτ (w); ντ (w))(−1)

R(s; τ |Γ ) =

(l(w)+1)

,

✭✷✮

w∈W 1


W1

✐s ❛ s✉❜❣r♦✉♣ ♦❢ t❤❡ ❲❡②❧ ❣r♦✉♣ WG ✱ λτ (w) ✐s ❛ ♥✉♠❜❡r ❞❡✜♥❡❞ ❜② t❤❡
1
❛❝t✐♦♥ ♦❢ t❤❡ ❲❡②❧ ❣r♦✉♣ W ♦♥ t❤❡ ❤✐❣❤❡st ✇❡✐❣❤t ♦❢ τ ❛♥❞ ντ (w) ✐s ❛♥ ✐rr❡❞✉❝✐❜❧❡
✇❤❡r❡




r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

M

τ

❛ss♦❝✐❛t❡❞ ✇✐t❤

✭❝❢✳ ❬❲♦t✵✽✱ ♣✳✹✵❪✮✳ ❍❡♥❝❡✱ ❜② ✭✷✮✱ ❲♦t③❦❡

♦❜t❛✐♥❡❞ t❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥✳ ❋✉rt❤❡r✱ ❛s ❛
❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ ❡q✉❛t✐♦♥ ✭✶✹✮ ✐♥ ❋r✐❡❞ ✭❬❋r✐✽✻✱ ♣✳✺✸✺❪✮✱ ❤❡ ♣r♦✈❡❞ ❛ ❞❡t❡r♠✐♥❛♥t
❢♦r♠✉❧❛ t❤❛t ❝♦♥♥❡❝ts t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ❛♥❞ t❤❡ r❡❣✉❧❛r✐③❡❞ ❞❡t❡r♠✐♥❛♥t
♦❢ ❝❡rt❛✐♥ ▲❛♣❧❛❝❡✲t②♣❡ ♦♣❡r❛t♦rs

∆(w)

❛ss♦❝✐❛t❡❞ t♦ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥

ντ (w)✿


s
2

2

S(s; w) = dets (∆(w) − λτ (w) + s ) exp

− 2π Vol(X)

P (λ; w)dλ ,
0

S(z; w) ❞❡♥♦t❡s t❤❡ s②♠♠❡tr✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥ ✭❝❢✳ ❡q✉❛t✐♦♥ ✭✹✮✮ ❛♥❞
P (λ; w) ❞❡♥♦t❡s t❤❡ P❧❛♥❝❤❡r❡❧ ♣♦❧②♥♦♠✐❛❧✳ ❲✐t❤ t❤❡ ❛❞❞✐t✐♦♥❛❧ ❛ss✉♠♣t✐♦♥ t❤❛t
τ = τθ ✱ ✇❤❡r❡ τθ = τ ◦ θ ❛♥❞ θ ❞❡♥♦t❡s t❤❡ ❈❛rt❛♥ ✐♥✈♦❧✉t✐♦♥ ♦❢ G✱ t❤❡ ❢♦❧❧♦✇✐♥❣
✇❤❡r❡

t❤❡♦r❡♠ ✇❛s ♣r♦✈❡❞✳

❚❤❡♦r❡♠
R(s; τ |Γ )



✭❬❲♦t✵✽✱ ❚❤❡♦r❡♠ ✽✳✶✸❪✮

✐s r❡❣✉❧❛r ❛t

s=0


▲❡t

τ = τθ ✳

❚❤❡♥ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

❛♥❞

|R(0; τ |Γ )| = TX (τ |Γ )2 .

◗✉❡st✐♦♥ ✷✳

❍♦✇ ❝❛♥ ♦♥❡ ❣❡♥❡r❛❧✐③❡ t❤❡s❡ r❡s✉❧ts ❢♦r ❛♥ ❛r❜✐tr❛r② ♥♦♥✲✉♥✐t❛r②

r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

Γ❄

■♥ ♦✉r ❝❛s❡✱ ✇❡ ❝♦♥s✐❞❡r ❛♥ ❛r❜✐tr❛r② ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥

GL(Vχ )

♦❢

Γ✳

χ: Γ →

❖✉r ❛♣♣r♦❛❝❤ t♦ t❤❡ ♣r♦❜❧❡♠ ♦❢ ♣r♦✈✐♥❣ t❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉✲


❛t✐♦♥ ❛♥❞ ❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s ❢♦r ❜♦t❤ t❤❡ ❙❡❧❜❡r❣ ❛♥❞ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥s ✐s
❞✐✛❡r❡♥t ❢r♦♠ t❤❡ ♠❡t❤♦❞ ♦❢ ❲♦t③❦❡✱ s✐♥❝❡ ✇❡ ❝♦♥s✐❞❡r ❛♥ ❛r❜✐tr❛r② r❡♣r❡s❡♥t❛t✐♦♥
♦❢

Γ

❛♥❞ ❝❛♥ ♥♦t ❛♣♣❧② t❤❡ ✐s♦♠♦r♣❤✐s♠ ✭✶✮✳

❖✉r r❡s✉❧ts ❝❛♥ ❜❡ ✈✐❡✇❡❞ ❛s ❛ ❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ t❤❡ r❡s✉❧ts ✐♥ t❤❡ ❜♦♦❦ ♦❢ ❇✉♥❦❡
❛♥❞ ❖❧❜r✐❝❤ ✭❬❇❖✾✺❪✮✳ ❆❣❛✐♥✱ s✐♥❝❡ ✇❡ ❝♦♥s✐❞❡r ❛ ♥♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

Γ

✇❡ ❤❛✈❡ t♦ ❞❡❛❧ ✇✐t❤ s❡✈❡r❛❧ ♣r♦❜❧❡♠s ❛♥❞ ❝♦♥s✐❞❡r ❛❞❞✐t✐♦♥❛❧ t❤❡♦r② t♦ s♦❧✈❡

t❤❡♠✳
❋✐rst✱ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ✐♥ s♦♠❡ ❤❛❧❢ ♣❧❛♥❡ ✐s ♥♦t tr✐✈✐❛❧✳
❲❡ ✉s❡ t❤❡ ✇♦r❞ ♠❡tr✐❝ ♦♥

Pr♦♣♦s✐t✐♦♥ ❈✳

t♦ ♣r♦✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣♦s✐t✐♦♥s✳

χ : Γ → GL(Vχ ) ❜❡ ❛ ✜♥✐t❡
❝♦♥st❛♥t c > 0 s✉❝❤ t❤❛t

▲❡t

❚❤❡♥✱ t❤❡r❡ ❡①✐sts ❛


Γ

❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

Γ✳



det(Id −(χ(γ) ⊗ σ(mγ ) ⊗ S k (Ad(mγ aγ )n ))e−(s+1)l(γ) )

Z(s; σ, χ) :=
[γ]=e, k=0
[γ] prime

❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧② ❛♥❞ ✉♥✐❢♦r♠❧② ♦♥ ❝♦♠♣❛❝t s✉❜s❡ts ♦❢ t❤❡ ❤❛❧❢✲♣❧❛♥❡ ❘❡(s)

> c✳




Pr♦♣♦s✐t✐♦♥ ❉✳

▲❡t

χ : Γ → GL(Vχ ) ❜❡ ❛ ✜♥✐t❡
c > 0 s✉❝❤ t❤❛t

❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢


Γ✳

❚❤❡♥✱ t❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥t

det(Id −χ(γ) ⊗ σ(mγ )e−sl(γ) )(−1)

R(s; σ, χ) :=

d−1

.

[γ]=e
[γ] prime

❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧② ❛♥❞ ✉♥✐❢♦r♠❧② ♦♥ ❝♦♠♣❛❝t s✉❜s❡ts ♦❢ t❤❡ ❤❛❧❢✲♣❧❛♥❡ ❘❡(s)

> c✳

χ ♦❢ Γ✱ t❤❡r❡ ✐s ♥♦ ❤❡r♠✐t✐❛♥
Eχ = X ×χ Vχ → X ✇❤✐❝❤ ✐s ❝♦♠♣❛t✐❜❧❡

❙❡❝♦♥❞❧②✱ ✐❢ ✇❡ ❝♦♥s✐❞❡r ❛♥ ❛r❜✐tr❛r② r❡♣r❡s❡♥t❛t✐♦♥
♠❡tr✐❝ ♦♥ t❤❡ ❛ss♦❝✐❛t❡❞ ✢❛t ✈❡❝t♦r ❜✉♥❞❧❡

✇✐t❤ t❤❡ ✢❛t ❝♦♥♥❡❝t✐♦♥✳ ■♥ ♦r❞❡r t♦ ♦✈❡r❝♦♠❡ t❤✐s ♣r♦❜❧❡♠ ✇❡ ✉s❡ t❤❡ ❝♦♥❝❡♣t ♦❢
t❤❡ ✢❛t ▲❛♣❧❛❝✐❛♥ ✭❝❢✳ ❈❤❛♣t❡r ✹✱ ❙❡❝t✐♦♥s ✹✳✶✱ ❛♥❞ ✹✳✷✮✳ ❚❤✐s ♦♣❡r❛t♦r ✇❛s ✜rst
✐♥tr♦❞✉❝❡❞ ❜② ▼ü❧❧❡r ✐♥ ❬▼ü❧✶✶❪✳ ❲❡ ❣✐✈❡ ❤❡r❡ ❛ s❤♦rt ❞❡s❝r✐♣t✐♦♥ ♦❢ t❤✐s ♦♣❡r❛t♦r✳


τ : K → GL(Vτ ) ❜❡ ❛ ❝♦♠♣❧❡① ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥
♦❢ K ✳ ▲❡t Eτ := G ×τ Vτ → X ❜❡ t❤❡ ❛ss♦❝✐❛t❡❞ ❤♦♠♦❣❡♥♦✉s ✈❡❝t♦r ❜✉♥❞❧❡
♦✈❡r X ✳ ▲❡t Eτ := Γ\(G ×τ Vτ ) → X ❜❡ t❤❡ ❧♦❝❛❧❧② ❤♦♠♦❣❡♥♦✉s ✈❡❝t♦r ❜✉♥❞❧❡
♦✈❡r X ✳ ▲❡t ∆τ ❜❡ t❤❡ ❇♦❝❤♥❡r✲▲❛♣❧❛❝❡ ♦♣❡r❛t♦r ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ❝❛♥♦♥✐❝❛❧
❝♦♥♥❡❝t✐♦♥ ♦♥ Eτ ✭❝❢✳ ❈❤❛♣t❡r ✹✱ ❙❡❝t✐♦♥ ✹✳✷✮✳ ❲❡ ❞❡✜♥❡ t❤❡ ♦♣❡r❛t♦r ∆τ,χ ❛❝t✐♥❣

♦♥ C (X, Eτ ⊗ Eχ ) ❛s ❢♦❧❧♦✇s✳ ▲♦❝❛❧❧②✱ ✇✐t❤ r❡s♣❡❝t t♦ ❛♥② ❜❛s✐s ♦❢ ✢❛t s❡❝t✐♦♥s✱
▲❡t

t❤❡ ♦♣❡r❛t♦r t❛❦❡s t❤❡ ❢♦r♠

∆τ,χ = ∆τ ⊗ IdVχ ,

✭✸✮

∆τ,χ ❛♥❞ ∆τ ❛r❡ t❤❡ ❧✐❢ts t♦ X ♦❢ ∆τ,χ ❛♥❞ ∆τ ✱ r❡s♣❡❝t✐✈❡❧②✳
❈♦♥tr❛r② t♦ t❤❡ s❡tt✐♥❣s ♦❢ ❲♦t③❦❡ ❛♥❞ ❇✉♥❦❡ ❛♥❞ ❖❧❜r✐❝❤✱ ♦✉r ♦♣❡r❛t♦r ✐s

✇❤❡r❡

♥♦t s❡❧❢✲❛❞❥♦✐♥t✳ ❍♦✇❡✈❡r✱ ✐t st✐❧❧ ❤❛s ♥✐❝❡ s♣❡❝tr❛❧ ♣r♦♣❡rt✐❡s✱ ✐✳❡✳✱ t❤❡ s♣❡❝tr✉♠
♦❢

∆τ,χ

✐s ❛ ❞✐s❝r❡t❡ s✉❜s❡t ♦❢ ❛ ♣♦s✐t✐✈❡ ❝♦♥❡ ✐♥

C

✭❛s ✐♥ ❋✐❣✉r❡ ❆✳✶✱ ❆♣♣❡♥❞✐①


❆✮✳ ❲❡ ❝♦♥s✐❞❡r t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❤❡❛t s❡♠✐✲❣r♦✉♣
♦❢ s♠♦♦t❤ s❡❝t✐♦♥s ♦❢ t❤❡ ✈❡❝t♦r ❜✉♥❞❧❡ Eτ ⊗
τ,χ
s♠♦♦t❤ ❦❡r♥❡❧ Ht
∈ C ∞ (X, (Eτ ⊗ Eχ ) ⊗ (Eτ

Htτ,χ (x, y) =

e−t∆τ,χ

❛❝t✐♥❣ ♦♥ t❤❡ s♣❛❝❡

Eχ ✳ ■t ✐s ❛♥ ✐♥t❡❣r❛❧ ♦♣❡r❛t♦r ✇✐t❤
⊗ Eχ )∗ )✱ ✇❤✐❝❤ ❝❛♥ ❜❡ ❡①♣r❡ss❡❞ ❛s

Htτ (x, γy) ⊗ χ(γ) IdVχ ,
γ∈Γ

x, y ❛r❡ ❧✐❢ts ♦❢ x, y t♦ X ✱ r❡s♣❡❝t✐✈❡❧②✱ ❛♥❞ Htτ ✐s t❤❡ ❦❡r♥❡❧ ♦❢ e−t∆τ ✳ ◆♦t❡
τ

Eτ∗ )✳ ❙✐♥❝❡ Htτ (x, y) ✐s G✲✐♥✈❛r✐❛♥t✱
t❤❛t Ht ❜❡❧♦♥❣s t♦ t❤❡ s♣❛❝❡ C (X × X, Eτ
✇❤❡r❡

✐t ❝♦rr❡s♣♦♥❞s t♦ ❛ ❝♦♥✈♦❧✉t✐♦♥ ♦♣❡r❛t♦r✱ ❣✐✈❡♥ ❜② ❛ ❦❡r♥❡❧

Htτ : G → End(Vτ ).
q

K×K
q
❚❤✐s ❦❡r♥❡❧ ❜❡❧♦♥❣s t♦ t❤❡ s♣❛❝❡ (C (G) ⊗ End(Vτ ))
✱ ❢♦r t > 0✱ ✇❤❡r❡ C (G)
q
❞❡♥♦t❡s t❤❡ ❍❛r✐s❤✲❈❤❛♥❞r❛ L ✲❙❝❤✇❛rt③ s♣❛❝❡ ❢♦r ❡✈❡r② q > 0 ✭❝❢✳ ❙❡❝t✐♦♥ ✸✳✷ ❢♦r




t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤✐s s♣❛❝❡✮✳
❍❡♥❝❡✱ ✇❡ ❝❛♥ ❝♦♥s✐❞❡r t❤❡ tr❛❝❡ ♦❢ t❤❡ ♦♣❡r❛t♦r

e−t∆τ,χ

❛♥❞ ❞❡r✐✈❡ ❛ ❝♦rr❡s♣♦♥❞✐♥❣

tr❛❝❡ ❢♦r♠✉❧❛✳ ❇② ❬▼ü❧✶✶✱ Pr♦♣♦s✐t✐♦♥ ✹✳✶❪✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣♦s✐t✐♦♥✳

Pr♦♣♦s✐t✐♦♥ ❊ ✭❙❡❧❜❡r❣ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r ♥♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥s✮✳ ▲❡t Eχ ❜❡
X = Γ\X ✱ ❛ss♦❝✐❛t❡❞ ✇✐t❤
χ : Γ → GL(Vχ ) ♦❢ Γ✳ ▲❡t ∆τ,χ ❜❡

❛❝t✐♥❣ ♦♥ C (X, Eτ ⊗ Eχ )✳ ❚❤❡♥✱

❛ ✢❛t ✈❡❝t♦r ❜✉♥❞❧❡ ♦✈❡r

❛ ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ❝♦♠♣❧❡①

r❡♣r❡s❡♥t❛t✐♦♥


t❤❡ t✇✐st❡❞ ❇♦❝❤♥❡r✲▲❛♣❧❛❝❡

♦♣❡r❛t♦r

Tr(e−t∆τ,χ ) =

tr Htτ (g −1 γg)dg.

tr χ(γ)
γ∈Γ

Γ\G

■♥ ❢❛❝t✱ ✇❡ ✉s❡ s♣❡❝✐✜❝ t✇✐st❡❞ ❇♦❝❤♥❡r✲▲❛♣❧❛❝❡✲t②♣❡ ♦♣❡r❛t♦rs

Aχ (σ)✱ ✐♥❞✉❝❡❞

∆τ,χ ✳ ❚❤❡s❡ ♦♣❡r❛t♦rs ❛r❡ ❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✳ ❲❡ ❛❧r❡❛❞② ❛ss♦❝✐❛t❡❞ t❤❡ ❙❡❧❜❡r❣
❛♥❞ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥s ✇✐t❤ ✐rr❡❞✉❝✐❜❧❡ r❡♣r❡s❡♥t❛t✐♦♥s σ ♦❢ M ✳ ❚❤❡s❡ r❡♣r❡✲
❜②

s❡♥t❛t✐♦♥s ❛r❡ ❝❤♦s❡♥ ♣r❡❝✐s❡❧② t♦ ❜❡ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥s ❛r✐s✐♥❣ ❢r♦♠ r❡str✐❝t✐♦♥s

♦❢ r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ K ✳ ▲❡t i : R(K) → R(M ) ❜❡ t❤❡ ♣✉❧❧❜❛❝❦ ♦❢ t❤❡ ❡♠❜❡❞❞✐♥❣

i : M → K ✱ ✇❤❡r❡ R(K)✱ R(M ) ❞❡♥♦t❡ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ r✐♥❣s ♦✈❡r Z ♦❢ K
❛♥❞ M ✱ r❡s♣❡❝t✐✈❡❧②✳ ❚❤r♦✉❣❤♦✉t t❤✐s t❤❡s✐s✱ ✇❡ ✇✐❧❧ ❞✐st✐♥❣✉✐s❤ t❤❡ ❢♦❧❧♦✇✐♥❣ t✇♦
❝❛s❡s✿




❝❛s❡ ✭❛✮✿ σ



❝❛s❡ ✭❜✮✿ σ

✐s ✐♥✈❛r✐❛♥t ✉♥❞❡r t❤❡ ❛❝t✐♦♥ ♦❢ t❤❡ r❡str✐❝t❡❞ ❲❡②❧ ❣r♦✉♣

WA ✳

✐s ♥♦t ✐♥✈❛r✐❛♥t ✉♥❞❡r t❤❡ ❛❝t✐♦♥ ♦❢ t❤❡ r❡str✐❝t❡❞ ❲❡②❧ ❣r♦✉♣

WA ✳
❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛s✱ t❤❡ r❡s✉❧ts ❝♦♥❝❡r♥✐♥❣ t❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡
③❡t❛ ❢✉♥❝t✐♦♥s ❛♥❞ t❤❡ ❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s ✇✐❧❧ ❜❡ ❞❡r✐✈❡❞ ✉♥❞❡r t❤✐s ❞✐st✐♥❝t✐♦♥✳
■♥ ❝❛s❡ ✭❜✮✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ s②♠♠❡tr✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥

S(s; σ, χ) := Z(s; σ, χ)Z(ws; σ, χ),

✭✹✮

t❤❡ s✉♣❡r ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

Z s (s; σ, χ) :=

Z(s; σ, χ)
,
Z(s; wσ, χ)


❛♥❞ t❤❡ s✉♣❡r ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

Rs (s; σ, χ) :=

WA ✳
■♥ ❜♦t❤ ❝❛s❡s ✇❡ ❝♦♥str✉❝t ❛ ❣r❛❞❡❞ ✈❡❝t♦r ❜✉♥❞❧❡ E(σ) ♦✈❡r X ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣
✇❛②✳ ❇② ❬❇❖✾✺✱ Pr♦♣♦s✐t✐♦♥ ✶✳✶❪✱ ✇❡ ❦♥♦✇ t❤❛t t❤❡r❡ ❡①✐st ✉♥✐q✉❡ ✐♥t❡❣❡rs mτ (σ) ∈
{−1, 0, 1}✱ ✇❤✐❝❤ ❛r❡ ❡q✉❛❧ t♦ ③❡r♦ ❡①❝❡♣t ❢♦r ✜♥✐t❡❧② ♠❛♥② τ ∈ K ✱ s✉❝❤ t❤❛t ❢♦r
✇❤❡r❡

w

R(s; σ, χ)
,
R(s; wσ, χ)

✐s ❛ ♥♦♥✲tr✐✈✐❛❧ ❡❧❡♠❡♥t ♦❢ t❤❡ r❡str✐❝t❡❞ ❲❡②❧ ❣r♦✉♣






❝❛s❡ ✭❛✮
mτ (σ)i∗ (τ );

σ=

✭✺✮


τ ∈K

• case(b)
mτ (σ)i∗ (τ ).

σ + wσ =

✭✻✮

τ ∈K
❚❤❡♥✱ t❤❡ ❧♦❝❛❧❧② ❤♦♠♦❣❡♥❡♦✉s ✈❡❝t♦r ❜✉♥❞❧❡

E(σ) ❛ss♦❝✐❛t❡❞ ✇✐t❤ τ

E(σ) =

✐s ❞❡✜♥❡❞ ❛s

Eτ ,

✭✼✮

τ ∈K
mτ (σ)=0
✐s t❤❡ ❧♦❝❛❧❧② ❤♦♠♦❣❡♥❡♦✉s ✈❡❝t♦r ❜✉♥❞❧❡ ❛ss♦❝✐❛t❡❞ ✇✐t❤ τ ∈ K ✳ ❯s✐♥❣
+

t❤❡ s✐❣♥ ♦❢ mτ (σ)✱ ✇❡ ♦❜t❛✐♥ ❛ ❣r❛❞✐♥❣ E(σ) = E(σ) ⊕ E(σ)
♦♥ t❤❡ ✈❡❝t♦r

✇❤❡r❡



❜✉♥❞❧❡

E(σ)

✭❝❢✳ ❙❡❝t✐♦♥ ✹✳✸ ❢♦r ❢✉rt❤❡r ❞❡t❛✐❧s✮✳

❲❡ ❝♦♥s✐❞❡r t❤❡ ♦♣❡r❛t♦r Aτ := −R(Ω) ♦♥ C (X, Eτ )✱ ✐♥❞✉❝❡❞ ❜② t❤❡ ❈❛s✐♠✐r

❡❧❡♠❡♥t



Aτ,χ ✐♥ ❛ s✐♠✐❧❛r ✇❛② ❛s t❤❡ t✇✐st❡❞ ❇♦❝❤♥❡r✲
✐♥ ✭✸✮✳ ◆❛♠❡❧②✱

✳ ❲❡ ❞❡✜♥❡ t❤❡ ♦♣❡r❛t♦r

▲❛♣❧❛❝❡ ♦♣❡r❛t♦r

∆τ,χ

Aτ,χ = Aτ ⊗ IdVχ ,
Aτ,χ , Aτ ❞❡♥♦t❡ t❤❡ ❧✐❢ts t♦ X ♦❢ Aτ,χ , Aτ ✱ r❡s♣❡❝t✐✈❡❧②✳
Aχ (σ) ❛❝t✐♥❣ ♦♥ s♠♦♦t❤ s❡❝t✐♦♥s ♦❢ E(σ) ⊗ Eχ ❜②

✇❤❡r❡

❛t♦r

Aχ (σ) :=

❲❡ ❞❡✜♥❡ t❤❡ ♦♣❡r✲

Aτ,χ + c(σ),
mτ (σ)=0

✇❤❡r❡

c(σ)

✐s ❛ ♥✉♠❜❡r ❞❡✜♥❡❞ ❜② t❤❡ ❤✐❣❤❡st ✇❡✐❣❤t ♦❢

❚❤❡♦r❡♠ ❋

✭tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ♦♣❡r❛t♦r

e−tAχ (σ) ✮✳

σ✳

❋♦r ❡✈❡r②

σ∈M

• case(a)
2


e−tλ Pσ (iλ)dλ

Tr(e−tAχ (σ) ) = dim(Vχ ) Vol(X)
R

2

+
[γ]=e

e−l(γ) /4t
l(γ)
Lsym (γ; σ)
,
nΓ (γ)
(4πt)1/2

✇❡ ❤❛✈❡


✶✵

• case(b)
2

e−tλ Pσ (iλ)dλ

Tr(e−tAχ (σ) ) =2 dim(Vχ ) Vol(X)
R


2

+
[γ]=e

✇❤❡r❡

Lsym (γ; σ) =

l(γ)
e−l(γ) /4t
Lsym (γ; σ + wσ)
,
nΓ (γ)
(4πt)1/2

tr(σ(mγ ) ⊗ χ(γ))e−|ρ|l(γ)
.
det(Id − Ad(mγ aγ )n)

Dχ (σ) ❛❝t✐♥❣ ♦♥ C ∞ (X, Eτs (σ) ⊗Eχ )✳
❲❡ ❧❡t K = Spin(d)✱ s ❜❡ t❤❡ s♣✐♥ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ K ❛♥❞ τ (σ) ∈ K ✭❝❢✳ ❙❡❝t✐♦♥
✺✳✶✮✳ Eτs (σ) ❞❡♥♦t❡s t❤❡ ❧♦❝❛❧❧② ❤♦♠♦❣❡♥♦✉s ✈❡❝t♦r ❜✉♥❞❧❡ ♦✈❡r X ✱ ❛ss♦❝✐❛t❡❞ ✇✐t❤
τs (σ) := s ⊗ τ (σ)✳ ▲♦❝❛❧❧②✱ ✇✐t❤ r❡s♣❡❝t t♦ ❛♥② ❜❛s✐s ♦❢ ✢❛t s❡❝t✐♦♥s✱ t❤❡ ♦♣❡r❛t♦r
◆❡①t✱ ✇❡ ❞❡✜♥❡ t❤❡ t✇✐st❡❞ ❉✐r❛❝ ♦♣❡r❛t♦r

t❛❦❡s t❤❡ ❢♦r♠

Dχ (σ) = D(σ) ⊗ IdVχ ,
Dχ (σ), D(σ) ❛r❡ t❤❡ ❧✐❢ts t♦ X ♦❢ Dχ (σ)✱ D(σ)✱ r❡s♣❡❝t✐✈❡❧②✱ ❛♥❞ D(σ) ✐s

t❤❡ ❉✐r❛❝ ♦♣❡r❛t♦r ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ τs (σ) ♦❢ K ✳ ❲❡ ❝♦♥s✐❞❡r t❤❡

✇❤❡r❡

Dχ (σ)e−t(Dχ (σ))

tr❛❝❡ ❝❧❛ss ♦♣❡r❛t♦r

❚❤❡♦r❡♠ ●

2

❛♥❞ ❞❡r✐✈❡ ❛ ❝♦rr❡s♣♦♥❞✐♥❣ tr❛❝❡✲❢♦r♠✉❧❛✳

✭tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ♦♣❡r❛t♦r

2

Dχ (σ)e−t(Dχ (σ))





❋♦r ❡✈❡r②

σ∈M

✇❡ ❤❛✈❡
2


Tr(Dχ (σ)e−t(Dχ (σ)) ) =
[γ]=e

−2πi l2 (γ) tr(χ(γ) ⊗ (σ(mγ ) − wσ(mγ )) −l2 (γ)/4t
e
.
(4πt)3/2
nΓ (γ)D(γ)

R(s2i ) := ((✷) + s2i )−1 ✱ si ∈ C − spec(✷)✱ ✇❤❡r❡ ✷ =
N ∈ N✳ ❲❡ ✉s❡ t❤❡ ❣❡♥❡r❛❧✐③❡❞ r❡s♦❧✈❡♥t ✐❞❡♥t✐t② ✭▲❡♠♠❛

❲❡ ❞❡✜♥❡ t❤❡ ♦♣❡r❛t♦rs

Aχ (σ) ♦r Dχ (σ)✳ ▲❡t
✻✳✶✱ ❙❡❝t✐♦♥ ✻✳✶✮✿

N

N

R(s2i )
i=1

=
i=1

N


s2
j=1 j
j=i

1
R(s2i ),
2
− si

❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛s ✐♥ ❚❤❡♦r❡♠ ❋ ❛♥❞ ❚❤❡♦r❡♠ ● t♦❣❡t❤❡r ✇✐t❤ t❤✐s ✐❞❡♥t✐t② ✇✐❧❧
❜❡ t❤❡ ♠❛✐♥ t♦♦❧s t♦ ♣r♦✈❡ ♦✉r r❡s✉❧ts✳ ❚❤❡ ♣r♦♦❢s ♦❢ t❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥
♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ❛r❡ ❜❛s❡❞ ♦♥ t❤❡ ❢❛❝t t❤❛t ✐❢ ✇❡ ✐♥s❡rt t❤❡ r✐❣❤t ❤❛♥❞ s✐❞❡
−tAχ (σ)
−t(Dχ (σ))2
♦❢ t❤❡ tr❛❝❡ ❢♦r♠✉❧❛s ❢♦r t❤❡ ♦♣❡r❛t♦rs Pt = e
♦r Dχ (σ)e
✐♥ t❤❡
✐♥t❡❣r❛❧
N
∞ N
1
−ts2i
e
Tr Pt dt,
2
2
s

s
i

0
j
i=1
j=1
j=i


✶✶

t❤❡♥ t❤❡ ✐♥t❡❣r❛❧ t❤❛t ✐♥❝❧✉❞❡s t❤❡ t❡r♠ ♦❢ t❤❡ ❤②♣❡r❜♦❧✐❝ ❝♦♥tr✐❜✉t✐♦♥✱ ❛r✐s✐♥❣
❢r♦♠ t❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r



❝❛s❡ ✭❛✮



❝❛s❡ ✭❜✮

d
ds

Pt ✱

✐s r❡❧❛t❡❞ t♦

log Z(s; σ, χ)✱

✐❢


Pt = e−tAχ (σ) ✳

d
log S(s; σ, χ)✱ ✐❢
ds
−t(Dχ (σ))2

Dχ (σ)e

❲❡ st❛t❡ ♦✉r ♠❛✐♥ r❡s✉❧ts✳

Pt = e−tAχ (σ)

❛♥❞

d
ds

log Z s (s; σ, χ)✱

✐❢

Pt =

■♥ ❚❤❡♦r❡♠s ❍ ❛♥❞ ■✱ ✇❡ ❝❤♦♦s❡ t❤❡ ❜r❛♥❝❤ ♦❢ t❤❡

sq✉❛r❡ r♦♦ts ♦❢ t❤❡ ❝♦♠♣❧❡① ♥✉♠❜❡rs
♣♦s✐t✐✈❡✳ ■♥ ❛❞❞✐t✐♦♥✱ ✐❢ tk ❛♥❞


µk

tk

❛♥❞

µk ✱

r❡s♣❡❝t✐✈❡❧②✱ ✇❤♦s❡ r❡❛❧ ♣❛rt ✐s

❛r❡ ♥❡❣❛t✐✈❡ r❡❛❧ ♥✉♠❜❡rs✱ ✇❡ ❝❤♦♦s❡ t❤❡ ❜r❛♥❝❤

♦❢ t❤❡ sq✉❛r❡ r♦♦ts✱ ✇❤♦s❡ ✐♠❛❣✐♥❛r② ♣❛rt ✐s ♣♦s✐t✐✈❡✳

▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥


❝❛s❡ ✭❛✮
❚❤❡♦r❡♠ ❍✳

❚❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

Z(s; σ, χ)

❛❞♠✐ts ❛ ♠❡r♦♠♦r♣❤✐❝

❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C✳ ❚❤❡ s❡t ♦❢ t❤❡ s✐♥❣✉❧❛r✐t✐❡s ❡q✉❛❧s

{s±
k = ±i tk : tk ∈ spec(Aχ (σ)), k ∈ N}✳ ❚❤❡ ♦r❞❡rs ♦❢ t❤❡ s✐♥❣✉❧❛r✐t✐❡s ❛r❡


m(tk )✱ ✇❤❡r❡ m(tk ) ∈ N ❞❡♥♦t❡s t❤❡ ❛❧❣❡❜r❛✐❝ ♠✉❧t✐♣❧✐❝✐t② ♦❢ t❤❡
❡✐❣❡♥✈❛❧✉❡ tk ✳ ❋♦r t0 = 0✱ t❤❡ ♦r❞❡r ♦❢ t❤❡ s✐♥❣✉❧❛r✐t② s0 ✐s ❡q✉❛❧ t♦ 2m(0)✳
❡q✉❛❧ t♦



❝❛s❡ ✭❜✮
❚❤❡♦r❡♠ ■✳ ❚❤❡ s②♠♠❡tr✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥ S(s; σ, χ) ❛❞♠✐ts ❛ ♠❡r♦♠♦r♣❤✐❝
❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C✳ ❚❤❡ s❡t ♦❢ t❤❡ s✐♥❣✉❧❛r✐t✐❡s ❡q✉❛❧s

{s±
k = ±i µk : µk ∈ spec(Aχ (σ)), k ∈ N}✳ ❚❤❡ ♦r❞❡rs ♦❢ t❤❡ s✐♥❣✉❧❛r✐t✐❡s
❛r❡ ❡q✉❛❧ t♦ m(µk )✱ ✇❤❡r❡ m(µk ) ∈ N ❞❡♥♦t❡s t❤❡ ❛❧❣❡❜r❛✐❝ ♠✉❧t✐♣❧✐❝✐t② ♦❢ t❤❡
❡✐❣❡♥✈❛❧✉❡

µk ✳

❋♦r

µ0 = 0✱

t❤❡ ♦r❞❡r ♦❢ t❤❡ s✐♥❣✉❧❛r✐t②

❚❤❡♦r❡♠ ❏✳

❚❤❡ s✉♣❡r ③❡t❛ ❢✉♥❝t✐♦♥

❚❤❡♦r❡♠ ❑✳


❚❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

s0

✐s ❡q✉❛❧ t♦

2m(0)✳

Z s (s; σ, χ) ❛❞♠✐ts ❛ ♠❡r♦♠♦r♣❤✐❝
❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C✳ ❚❤❡ s✐♥❣✉❧❛r✐t✐❡s ❛r❡ ❧♦❝❛t❡❞
±
❛t {sk = ±iλk : λk ∈ spec(Dχ (σ)), k ∈ N} ♦❢ ♦r❞❡r ±ms (λk )✱ ✇❤❡r❡
ms (λk ) = m(λk ) − m(−λk ) ∈ N ❛♥❞ m(λk ) ❞❡♥♦t❡s t❤❡ ❛❧❣❡❜r❛✐❝ ♠✉❧t✐♣❧✐❝✐t②
♦❢ t❤❡ ❡✐❣❡♥✈❛❧✉❡ λk ✳
Z(s; σ, χ)

❛❞♠✐ts ❛ ♠❡r♦♠♦r♣❤✐❝

❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C✳ ❚❤❡ s❡t ♦❢ t❤❡ s✐♥❣✉❧❛r✐t✐❡s ❡q✉❛❧s
±
t♦ {sk = ±iλk : λk ∈ spec(Dχ (σ)), k ∈ N}✳ ❚❤❡ ♦r❞❡rs ♦❢ t❤❡ s✐♥❣✉❧❛r✐t✐❡s
1
2
❛r❡ ❡q✉❛❧ t♦ 2 (±ms (λk ) + m(λk ))✳ ❋♦r λ0 = 0✱ t❤❡ ♦r❞❡r ♦❢ t❤❡ s✐♥❣✉❧❛r✐t② ✐s
❡q✉❛❧ t♦

m(0)✳


✶✷


▼❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥
❚❤❡♦r❡♠ ▲✳

❋♦r ❡✈❡r②

σ ∈ M✱

t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥

♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ t♦ t❤❡ ✇❤♦❧❡ ❝♦♠♣❧❡① ♣❧❛♥❡

R(s; σ, χ)

❛❞♠✐ts ❛

C✳

❋✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s


❝❛s❡ ✭❛✮
❚❤❡♦r❡♠ ▼✳

❚❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥

Z(s; σ, χ)

s❛t✐s✜❡s t❤❡ ❢✉♥❝t✐♦♥❛❧


❡q✉❛t✐♦♥

Z(s; σ, χ)
= exp
Z(−s; σ, χ)
✇❤❡r❡





s

− 4π dim(Vχ ) Vol(X)

Pσ (r)dr ,
0

❞❡♥♦t❡s t❤❡ P❧❛♥❝❤❡r❡❧ ♣♦❧②♥♦♠✐❛❧ ❛ss♦❝✐❛t❡❞ ✇✐t❤

σ ∈ M✳

❝❛s❡ ✭❜✮
❚❤❡♦r❡♠ ◆✳

❚❤❡ s②♠♠❡tr✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥

S(s; σ, χ)

s❛t✐s✜❡s t❤❡ ❢✉♥❝✲


t✐♦♥❛❧ ❡q✉❛t✐♦♥

S(s; σ, χ)
= exp
S(−s; σ, χ)
✇❤❡r❡



s

− 8π dim(Vχ ) Vol(X)

Pσ (r)dr ,
0

❞❡♥♦t❡s t❤❡ P❧❛♥❝❤❡r❡❧ ♣♦❧②♥♦♠✐❛❧ ❛ss♦❝✐❛t❡❞ ✇✐t❤

❚❤❡♦r❡♠ ❖✳

❚❤❡ s✉♣❡r ③❡t❛ ❢✉♥❝t✐♦♥

Z s (s, σ, χ)

σ ∈ M✳

s❛t✐s✜❡s t❤❡ ❢✉♥❝t✐♦♥❛❧

❡q✉❛t✐♦♥


Z s (s; σ, χ)Z s (−s; σ, χ) = e2πiη(0,Dχ (σ)) ,
η(0, Dχ (σ)) ❞❡♥♦t❡s
Dχ (σ)✳ ❋✉rt❤❡r♠♦r❡✱

✇❤❡r❡
❛t♦r

t❤❡ ❡t❛ ✐♥✈❛r✐❛♥t ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ❉✐r❛❝ ♦♣❡r✲

Z s (0; σ, χ) = eπiη(0,Dχ (σ)) .

❚❤❡♦r❡♠ P✳

❚❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ s❛t✐s✜❡s t❤❡ ❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥

R(s; σ, χ)
= exp
R(−s; σ, χ)

− 4π(d + 1) dim(Vσ ) dim(Vχ ) Vol(X)s .

✭✽✮


✶✸

❚❤❡♦r❡♠ ◗✳ ❚❤❡ s✉♣❡r ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥✱ ❛ss♦❝✐❛t❡❞ ✇✐t❤ ❛ ♥♦♥✲❲❡②❧ ✐♥✈❛r✐❛♥t
r❡♣r❡s❡♥t❛t✐♦♥


σ ∈ M✱

s❛t✐s✜❡s t❤❡ ❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥

Rs (s; σ, χ)Rs (−s; σ, χ) = e2iπη(Dχ (σ⊗σp )) ,

✭✾✮

σp ❞❡♥♦t❡s t❤❡ p✲t❤ ❡①t❡r✐♦r ♣♦✇❡r ♦❢ t❤❡ st❛♥❞❛r❞ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ M ✱
η(Dχ (σ ⊗ σp )) t❤❡ ❡t❛ ✐♥✈❛r✐❛♥t ♦❢ t❤❡ t✇✐st❡❞ ❉✐r❛❝✲♦♣❡r❛t♦r Dχ (σ ⊗ σp )✳
✇❤❡r❡

❛♥❞

▼♦r❡♦✈❡r✱ t❤❡ ❢♦❧❧♦✇✐♥❣ ❡q✉❛t✐♦♥ ❤♦❧❞s✿

R(s; σ, χ)
= eiπη(Dχ (σ⊗σp )) exp
R(−s; wσ, χ)

− 4π(d + 1) dim(Vσ ) dim(Vχ ) Vol(X)s .

✭✶✵✮

❚❤✐s t❤❡s✐s ✐s ♦r❣❛♥✐③❡❞ ❛s ❢♦❧❧♦✇s✳ ■♥ ❈❤❛♣t❡r ✶✱ ✇❡ ♣r♦✈✐❞❡ t❤❡ ❜❛s✐❝ s❡t ✉♣✱
✇❤✐❝❤ ✐s ♥❡❡❞❡❞✱ ❝♦♥❝❡r♥✐♥❣ t❤❡ ❝♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧ ♠❛♥✐❢♦❧❞s✳
■♥ ❈❤❛♣t❡r ✷✱ ✇❡ ✐♥tr♦❞✉❝❡ t❤❡ t✇✐st❡❞ ❘✉❡❧❧❡ ❛♥❞ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥s ❛ss♦✲
❝✐❛t❡❞ ✇✐t❤ ❛♥ ❛r❜✐tr❛r② ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥

χ


♦❢

Γ

♣r♦✈❡ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ♦♥ s♦♠❡ ❤❛❧❢✲♣❧❛♥❡ ♦❢

❛♥❞

σ ∈ M✳

❲❡

C✳

❈❤❛♣t❡r ✸ ❞❡s❝r✐❜❡s t❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r ✐♥t❡❣r❛❧ ♦♣❡r❛t♦rs ❢♦r ❛❧❧ ❧♦❝❛❧❧② s②♠✲
♠❡tr✐❝ s♣❛❝❡s ♦❢ r❡❛❧ r❛♥❦ ✶✳ ❚❤❡ tr❛❝❡ ❢♦r♠✉❧❛ ✇❤✐❝❤ ✇❡ ✇✐❧❧ ❞❡r✐✈❡ ✐s

Tr RΓ (h) = dim(Vχ ) Vol(X)h(e)+

[γ]=e σ∈M

tr(σ) tr(χ(γ))l(γ0 )
2πD(mγ aγ )

Θσ,λ (h))e−iλl(γ) dλ.

■♥ ❈❤❛♣t❡r ✹✱ ✇❡ st✉❞② t❤❡ t✇✐st❡❞ ❇♦❝❤♥❡r✲▲❛♣❧❛❝❡ ♦♣❡r❛t♦r

τ


t♦ ❛ ❝♦♠♣❧❡① ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥
✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ♥♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥ ♦❢
✐♥❞✉❝❡❞ ❜②

∆τ,χ (σ)✳

✭✶✶✮

R

Γ✳

♦❢

K

∆τ,χ

❛ss♦❝✐❛t❡❞

❛♥❞ ❛ ❝♦♠♣❧❡①

❲❡ ❞❡✜♥❡ t❤❡ ♦♣❡r❛t♦r

Aχ (σ)
χ ✐s

■♥ t❤❡ ♣r♦♦❢ ♦❢ ❚❤❡♦r❡♠ ❋✱ ✇❡ ✉s❡ ❢♦r♠✉❧❛ ✭✶✶✮ ❜✉t ♥♦✇


❛ ♥♦♥✲✉♥✐t❛r② r❡♣r❡s❡♥t❛t✐♦♥ ♦❢

Γ✳

Dχ (σ) ❛ss♦❝✐❛t❡❞ t♦ ❛ r❡♣✲
r❡s❡♥t❛t✐♦♥ τs (σ) ∈ K ❛♥❞ ❛♥ ❛r❜✐tr❛r② r❡♣r❡s❡♥t❛t✐♦♥ χ ♦❢ Γ✳ ❲❡ ❞❡r✐✈❡ t❤❡
−t(Dχ (σ))2
❝♦rr❡s♣♦♥❞✐♥❣ tr❛❝❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ♦♣❡r❛t♦r Dχ (σ)e
✳ ❋✉rt❤❡r♠♦r❡✱ ✇❡
❞❡✜♥❡ t❤❡ ❡t❛ ❢✉♥❝t✐♦♥ η(s, Dχ (σ)) ♦❢ t❤❡ ♦♣❡r❛t♦r Dχ (σ)✱ ❛♥❞ ✇❡ ♣r♦✈❡ t❤❡ ❢♦❧✲
❈❤❛♣t❡r ✺ ❞❡❛❧s ✇✐t❤ t❤❡ t✇✐st❡❞ ❉✐r❛❝ ♦♣❡r❛t♦r

❧♦✇✐♥❣ ❡q✉❛t✐♦♥

η(s, Dχ (σ)) = η0 (s, Dχ (σ)) +



1
Γ( s+1
)
2

2

Tr(Π+ Dχ (σ)e−t(Dχ (σ)) )t

s−1
2


dt,

✭✶✷✮

0

Π+ ✐s t❤❡ ♣r♦❥❡❝t✐♦♥ ♦♥ t❤❡ s♣❛♥ ♦❢ t❤❡ r♦♦t s♣❛❝❡s
2
✈❛❧✉❡s λ ✇✐t❤ ❘❡(λ ) > 0✱ ❛♥❞ η0 (s, Dχ (σ)) ✐s ❞❡✜♥❡❞ ❜②
✇❤❡r❡

λ−s −

η0 (s, Dχ (σ)) :=

❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❡✐❣❡♥✲

λ−s ,

❘❡(λ)>0

❘❡(λ)<0

❘❡(λ2 )≤0

❘❡(λ2 )≤0


✶✹


✭❝❢✳ ▲❡♠♠❛ ✺✳✺✮✳ ❚❤✐s r❡❧❛t✐♦♥ ✐s ♥♦t ❛ tr✐✈✐❛❧ ❢❛❝t✱ s✐♥❝❡ t❤❡ t✇✐st❡❞ ❉✐r❛❝ ♦♣❡r❛t♦r

Dχ (σ)

✐s ♥♦t ❛ s❡❧❢✲❛❞❥♦✐♥t ♦♣❡r❛t♦r✱ ❛♥❞ t❤❡r❡❢♦r❡ ✐ts s♣❡❝tr✉♠ ❞♦❡s ♥♦t ❝♦♥s✐st

♦❢ r❡❛❧ ❡✐❣❡♥✈❛❧✉❡s✳ ❍❡♥❝❡✱ ♦♥❡ ❝❛♥♥♦t ❞✐r❡❝t❧② ❛♣♣❧② t❤❡ ▼❡❧❧✐♥ tr❛♥s❢♦r♠ t♦ t❤❡
−t(Dχ (σ))2
❢✉♥❝t✐♦♥ g(t) := Tr(Dχ (σ)e
)✳ ❲❡ ✇✐❧❧ ✉s❡ ❡q✉❛t✐♦♥ ✭✶✷✮ ✐♥ t❤❡ ♣r♦♦❢ ♦❢ t❤❡
σ
❢✉♥❝t✐♦♥❛❧ ❡q✉❛t✐♦♥s ♦❢ t❤❡ s✉♣❡r ③❡t❛ ❢✉♥❝t✐♦♥ Z (s; σ, χ)✱ ✇❤❡r❡ t❤❡ ❡t❛ ✐♥✈❛r✐❛♥t

η(0, Dχ (σ))

♦❢

Dχ (σ)

♦❝❝✉rs✳

❚❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ③❡t❛ ❢✉♥❝t✐♦♥s ❛♥❞ t❤❡✐r ❢✉♥❝t✐♦♥❛❧ ❡q✉❛✲
t✐♦♥s✱ ❛s t❤❡② ❛r❡ st❛t❡❞ ✐♥ ❚❤❡♦r❡♠s ❍✲◗✱ ❛r❡ t❤❡ ❢♦❝✉s ♦❢ ❈❤❛♣t❡rs ✻ ❛♥❞ ✼✳
■♥ ♦r❞❡r t♦ ♣r♦✈❡ t❤❡ ♠❡r♦♠♦r♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥✱ ✇❡
♣r♦✈❡ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❛s ❛ ♣r♦❞✉❝t ♦❢ ❙❡❧❜❡r❣ ③❡t❛
❢✉♥❝t✐♦♥s ✇✐t❤ t✇✐st❡❞ ♦r✐❣✐♥s ✭❝❢✳ Pr♦♣♦s✐t✐♦♥ ✻✳✶✵✮✳ ❋♦r

σ∈M

✇❡ ❞❡✜♥❡


Z(s + ρ − λ; ψp ⊗ σ, χ).

Zp (s; σ, χ) :=

✭✶✸✮

(ψp ,λ)∈Jp
❚❤❡♥✱

d−1
p

Zp (s; σ, χ)(−1) .

R(s; σ, χ) =

✭✶✹✮

p=0
❚❤✐s ❡①♣r❡ss✐♦♥ ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ✇✐❧❧ ❜❡ ✉s❡❞ t♦ ❞❡r✐✈❡ ❛❧s♦ ✐ts ❢✉♥❝t✐♦♥❛❧
❡q✉❛t✐♦♥s ✭✽✮✱ ✭✾✮✱ ❛♥❞ ✭✶✵✮✳
■♥ ❈❤❛♣t❡r ✽✱ ✇❡ ❞❡✜♥❡ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥
t❤❡ ♦♣❡r❛t♦r

❛ss♦❝✐❛t❡❞ ✇✐t❤

Aχ (σ)✿
1
ζ(z, s; σ) =

Γ(z)

❢♦r ❘❡(s

ζ(z, s; σ)

2

) > 0✱
Aχ (σ) + s2 ✿

❘❡(λi )

> 0✱



2

e−ts Tr e−tAχ (σ) tz−1 dt,
0

❛s ✇❡❧❧ ❛s t❤❡ r❡❣✉❧❛r✐③❡❞ ❞❡t❡r♠✐♥❛♥t ♦❢ t❤❡ ♦♣❡r❛t♦r

det(Aχ (σ) + s2 ) := exp



d
ζ(z, s; σ)

dz

.
z=0

❲❡ ♣r♦✈❡ t❤❡ ❞❡t❡r♠✐♥❛♥t ❢♦r♠✉❧❛✱ ✇❤✐❝❤ r❡❧❛t❡s t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ t♦ t❤❡
2
r❡❣✉❧❛r✐③❡❞ ❞❡t❡r♠✐♥❛♥t ♦❢ t❤❡ ♦♣❡r❛t♦r Aχ (σ) + s ✳

❚❤❡♦r❡♠ ❘✳
♦♣❡r❛t♦r
✶✳

det(Aχ (σ) + s2 )
Aχ (σ) + s2 ✳ ❚❤❡♥

case(a)

▲❡t

❜❡ t❤❡ r❡❣✉❧❛r✐③❡❞ ❞❡t❡r♠✐♥❛♥t ❛ss♦❝✐❛t❡❞ t♦ t❤❡

t❤❡ ❙❡❧❜❡r❣ ③❡t❛ ❢✉♥❝t✐♦♥ ❤❛s t❤❡ r❡♣r❡s❡♥t❛t✐♦♥
s

Z(s; σ, χ) = det(Aχ (σ) + s2 ) exp

− 2π dim(Vχ ) Vol(X)

Pσ (t)dt .

0

✭✶✺✮


✶✺

✷✳

case(b)

t❤❡ s②♠♠❡tr✐③❡❞ ③❡t❛ ❢✉♥❝t✐♦♥ ❤❛s t❤❡ r❡♣r❡s❡♥t❛t✐♦♥
s

S(s; σ, χ) = det(Aχ (σ) + s2 ) exp

− 4π dim(Vχ ) Vol(X)

Pσ (t)dt .

✭✶✻✮

0
❲❡ ❛❧s♦ ❛ ♣r♦✈❡ ❛ ❞❡t❡r♠✐♥❛♥t ❢♦r♠✉❧❛ ❢♦r t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥✳

Pr♦♣♦s✐t✐♦♥ ❙✳


❚❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❤❛s t❤❡ r❡♣r❡s❡♥t❛t✐♦♥


❝❛s❡ ✭❛✮
d

(−1)p

det(Aχ (σp ⊗ σ) + (s + ρ − λ)2 )

R(s; σ, χ) =
p=0

− 2π(d + 1) dim(Vχ ) dim(Vσ ) Vol(X)s .

exp


✭✶✼✮

❝❛s❡ ✭❜✮
d

(−1)p

det(Aχ (σp ⊗ σ) + (s + ρ − λ)2 )

R(s; σ, χ)R(s; wσ, χ) =
p=0

exp

− 4π(d + 1) dim(Vχ ) dim(Vσ ) Vol(X)s .


✭✶✽✮

■♥ ❈❤❛♣t❡r ✾✱ ✇❡ ❞✐s❝✉ss ❤♦✇ ✇❡ ✇❛♥t t♦ ❛♣♣r♦❛❝❤ t❤❡ ❛♥s✇❡r t♦ ◗✉❡st✐♦♥
✷✱ ✐✳❡✳✱ t❤❡ ❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ ❲♦t③❦❡✬s t❤❡♦r❡♠ ❢♦r ❛♥ ❛r❜✐tr❛r② r❡♣r❡s❡♥t❛t✐♦♥
♦❢

Γ✳

❲❡ ❝♦♥s✐❞❡r t❤❡ ✢❛t ▲❛♣❧❛❝✐❛♥

∆χ,p

❛❝t✐♥❣ ♦♥

p✲❞✐✛❡r❡♥t✐❛❧

❢♦r♠s ♦♥

χ
X

✇✐t❤ ✈❛❧✉❡s ✐♥ t❤❡ ✢❛t ✈❡❝t♦r ❜✉♥❞❧❡ Eχ ✳ ❲❡ ❢♦❧❧♦✇ ❬❇❑✵✺❪ t♦ ❞❡✜♥❡ t❤❡ ❝♦♠♣❧❡①
C
✈❛❧✉❡❞ ❛♥❛❧②t✐❝ t♦rs✐♦♥ T (χ; Eχ ) ❛ss♦❝✐❛t❡❞ ✇✐t❤ ∆χ,p ✳ ❲❡ ✇❛♥t t♦ r❡❧❛t❡ t❤❡
C
❛♥❛❧②t✐❝ t♦rs✐♦♥ T (χ; Eχ ) t♦ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❡✈❛❧✉❛t❡❞ ❛t 0✳ ❲❡ ♠❡♥t✐♦♥
t❤❡ ♠❛✐♥ ♣r♦❜❧❡♠s ✐♥ ♣r♦✈✐♥❣ t❤✐s ❝♦♥❥❡❝t✉r❡✳

❙♣❡❝✐✜❝❛❧❧②✱ t❤❡ ✢❛t ▲❛♣❧❛❝✐❛♥


✐s ♥♦t ❛ s❡❧❢✲❛❞❥♦✐♥t ♦♣❡r❛t♦r ❛♥❞ t❤✐s ❝❛✉s❡s s❡✈❡r❛❧ ♣r♦❜❧❡♠s✳
❛❝②❝❧✐❝ r❡♣r❡s❡♥t❛t✐♦♥

χ

t❤❡ ❝♦❤♦♠♦❧♦❣② ❣r♦✉♣s

p = 0. . . . , d✱

❲❡ ❝♦♥s✐❞❡r ❛♥

♦❢ Γ✱ ❜✉t ✇❡ ❝❛♥ ♥♦t ❛♣♣❧② t❤❡ ❍♦❞❣❡ t❤❡♦r② t♦ r❡❧❛t❡
H p (X; Eχ ) t♦ t❤❡ ❦❡r♥❡❧s Hp (X, Eχ ) := ker(∆χ,p )✱ ❢♦r

✐✳❡✳

H p (X; Eχ )

Hp (X, Eχ ).

❍❡♥❝❡✱ t❤❡ r❡❣✉❧❛r✐t② ♦❢ t❤❡ ❘✉❡❧❧❡ ③❡t❛ ❢✉♥❝t✐♦♥ ❛t ③❡r♦ ❝❛♥ ♥♦t ❜❡ ✐♠♣❧✐❡❞✳
▲❛st✱ ✇❡ ✐♥❝❧✉❞❡ t✇♦ ❛♣♣❡♥❞✐❝❡s✳ ■♥ ❆♣♣❡♥❞✐① ❆✱ ✇❡ r❡❝❛❧❧ t❤❡ s♣❡❝tr❛❧ ♣r♦♣❡r✲
t✐❡s ♦❢ ❣❡♥❡r❛❧ ❡❧❧✐♣t✐❝ ❞✐✛❡r❡♥t✐❛❧ ♦♣❡r❛t♦rs ❛♥❞ ❞❡✜♥❡ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ s♣❡❝tr❛❧

ζ ✲❢✉♥❝t✐♦♥s

❛♥❞ r❡❣✉❧❛r✐③❡❞ ❞❡t❡r♠✐♥❛♥ts ❛s ✇❡❧❧✳ ◆❡①t✱ ✇❡ ❞❡✜♥❡ t❤❡ ♦♣❡r❛t♦rs



✶✻

Dχ (σ) ❛♥❞ Aχ (σ) ✐♥ ✈✐❡✇ ♦❢ t❤❡ ♣r❡✈✐♦✉s ❣❡♥❡r❛❧ s❡tt✐♥❣ ❛♥❞ ❡①❛♠✐♥❡ t❤❡✐r s♣❡❝tr❛❧
♣r♦♣❡rt✐❡s✳ ❖✉r ♠❛✐♥ s♦✉r❝❡s ❛r❡ ❬❙❤✉✽✼❪ ❛♥❞ ❬❇❑✵✽❪✳
❆♣♣❡♥❞✐① ❇ ❣✐✈❡s ❛ ♠♦r❡ ❞❡t❛✐❧❡❞ ✐♥tr♦❞✉❝t✐♦♥ ✐♥t♦ t❤❡ ❜❛s✐❝ t❤❡♦r② ❛♥❞ ❝♦♥✲
str✉❝t✐♦♥s✱ ❝♦♥❝❡r♥✐♥❣ t❤❡ ❤❡❛t ❡q✉❛t✐♦♥ ♦♥ ❛ ❝♦♠♣❛❝t r✐❡♠❛♥♥✐❛♥ ♠❛♥✐❢♦❧❞
✭✇✐t❤♦✉t ❜♦✉♥❞❛r②✮✳

X

❆♣♣❡♥❞✐① ❇ ✐s t❛❦❡♥ ❢r♦♠ ❬▼ü❧✶✷❛❪✳ ■t ❝♦♥t❛✐♥s ❞❡t❛✐❧❡❞
−t∆
♣r♦♦❢s ♦❢ t❤❡ ❛♥❛❧②t✐❝ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❤❡❛t ♦♣❡r❛t♦r e
✱ ✐♥❞✉❝❡❞ ❜② ❛♥ ❡❧❧✐♣t✐❝
s❡❧❢✲❛❞❥♦✐♥t ♣♦s✐t✐✈❡ ❞✐✛❡r❡♥t✐❛❧ ♦♣❡r❛t♦r

∆✳


✶✼

❆❝❦♥♦✇❧❡❞❣♠❡♥ts
■ ❛♠ ❣r❛t❡❢✉❧ t♦ ❛❧❧ t❤❡ ♣❡♦♣❧❡ ✇❤♦ ❤❡❧♣❡❞ ♠❡ ✇r✐t❡ t❤✐s t❤❡s✐s✳ ❋✐rst ♦❢ ❛❧❧✱ ■ ✇♦✉❧❞
❧✐❦❡ t♦ t❤❛♥❦ ♠② ❛❞✈✐s♦r Pr♦❢✳ ❉r✳ ❲❡r♥❡r ▼ü❧❧❡r ❢♦r ❤✐s s✉♣♣♦rt ❛♥❞ ❣❡♥❡r♦s✐t②
✇✐t❤ ❤✐s t✐♠❡ ❛♥❞ ❛tt❡♥t✐♦♥✳ ❍❡ ✐♥tr♦❞✉❝❡❞ ♠❡ t♦ ♥❡✇ t♦♣✐❝s ❛♥❞ ♠❛t❤❡♠❛t✐❝❛❧
❛r❡❛s ❛♥❞ ♣r♦✈✐❞❡❞ ❝♦♥st❛♥t❧② ❝❧❛r✐❢②✐♥❣ ❞✐s❝✉ss✐♦♥s ✇❤✐❝❤ ♠♦t✐✈❛t❡❞ ♠❡ t♦ ✇♦r❦
❛♥❞ ♠❛t✉r❡ ❛s ❛ ♠❛t❤❡♠❛t✐❝❛❧ t❤✐♥❦❡r✳
■ t❤❛♥❦ ❛❧❧ ♠② ❝♦❧❧❡❛❣✉❡s ❛t t❤❡ ▼❛t❤❡♠❛t✐❝❛❧ ■♥st✐t✉t❡ ♦❢ t❤❡ ❯♥✐✈❡rs✐t② ♦❢
❇♦♥♥✱ ✇❤❡r❡ ■ ❡♥❥♦②❡❞ ❛ ❝♦♠❢♦rt❛❜❧❡ ❛♥❞ ❢r✐❡♥❞❧② s❝✐❡♥t✐✜❝ ❡♥✈✐r♦♥♠❡♥t✳ ■♥ ♣❛rt✐❝✲
✉❧❛r✱ ■ ✇♦✉❧❞ ❧✐❦❡ t♦ t❤❛♥❦ ▲❡♦♥❛r❞♦ ❈❛♥♦✱ ❏❛♥ ❇üt❤❡✱ ▼✐❝❤❛❡❧ ❍♦✛♠❛♥♥✱ ❆♥t♦♥✐♦

❙❛rt♦r✐✱ ❘♦❜❡rt ❑✉❝❤❛r❝③②❦✱ ❚❤✐❧♦ ❲❡✐♥❡rt ❛♥❞ ❏♦♥❛t❤❛♥ P❢❛✛ ❢♦r s❤❛r✐♥❣ ❞❡s❦s✱
❝♦♠♣✉t❡rs ❛♥❞ ✐❞❡❛s✳
❚❤❡r❡ ❛r❡ ♣❧❡♥t② ♦❢ ❢r✐❡♥❞s ✐♥ t❤❡ ❝✐t② ♦❢ ❇♦♥♥ ❛♥❞ ❆t❤❡♥s ✇❤♦ ❤❛✈❡ ❛❧✇❛②s
❜❡❡♥ t❤❡r❡ t♦ ❧✐st❡♥✱ ❛❞✈✐s❡ ❛♥❞ ❡♥❝♦✉r❛❣❡ ♠❡✱ ✇❤❡♥❡✈❡r ■ ♥❡❡❞❡❞ ✐t ♠♦st✳ ❙♣❡❝✐❛❧
t❤❛♥❦s ❛r❡ ❞✐r❡❝t❡❞ t♦ ❘✉①❛♥❞r❛ ❚❤♦♠❛✱ ❑♦♥st❛♥t✐♥❛ ❚s❡rt♦✉✱ ❑♦♥st❛♥t✐♥❛ P❛✲
♣❛❞♦♣♦✉❧♦✉✱ ■♦❛♥♥✐s ◆❡st♦r❛s✱ ❑♦st❛s ▼❛r❦❛❦✐s✱ ❙♣②r♦s P❛♣❛❣❡♦r❣✐♦✉✱ ❖❧②♠♣✐❛
P❛♣❛♥t♦♥♦♣♦✉❧♦✉✱ ❆♥t♦♥✐s ❑♦t✐❞✐s ❛♥❞ ❉✐♠✐tr✐s ❚③✐♦♥❛s✳
▲❛st ❜✉t ♥♦t ❧❡❛st✱ ■ ♦✇❡ ♠❛♥② t❤❛♥❦s t♦ ♠② ❢❛♠✐❧②✳

▼② ♣❛r❡♥ts ❛♥❞ ♠②

t✇♦ ❜r♦t❤❡rs ✇❡r❡ ❛❧✇❛②s s✉♣♣♦rt✐✈❡ ❛♥❞ ❣❡♥❡r♦✉s✱ ♠❛❦✐♥❣ ♠❡ ❢❡❡❧ str♦♥❣ ❛♥❞
♦♣t✐♠✐st✐❝✳


✶✽


❈❍❆P❚❊❘



Pr❡❧✐♠✐♥❛r✐❡s

✶✳✶ ❈♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧ ♠❛♥✐❢♦❧❞s
■♥ t❤✐s s❡❝t✐♦♥ ✇❡ ✇✐❧❧ ✜① ♥♦t❛t✐♦♥ ❛♥❞ ❣✐✈❡ t❤❡ ❞❡✜♥✐t✐♦♥s✱ ✇❤✐❝❤ ❛r❡ ♥❡❡❞❡❞ t♦
st✉❞② t❤❡ ❝♦♠♣❛❝t ❤②♣❡r❜♦❧✐❝ ♦❞❞ ❞✐♠❡♥s✐♦♥❛❧ ♠❛♥✐❢♦❧❞s✳
0
▲❡t G = Spin(d, 1) ❛♥❞ K = Spin(d) ♦r G = SO (d, 1) ❛♥❞


K = SO(d)✱ ❢♦r
♦❢ G✳ ▲❡t g, k ❜❡

d = 2n + 1✱ n ∈ N✳ ❚❤❡♥✱ K ✐s ❛ ♠❛①✐♠❛❧ ❝♦♠♣❛❝t s✉❜❣r♦✉♣
G ❛♥❞ K ✱ r❡s♣❡❝t✐✈❡❧②✳ ❲❡ ❞❡♥♦t❡ ❜② Θ t❤❡ ❈❛rt❛♥ ✐♥✈♦❧✉t✐♦♥
♦❢ G ❛♥❞ θ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ♦❢ Θ ❛t eG = e✱ t❤❡ ✐❞❡♥t✐t② ❡❧❡♠❡♥t ♦❢ G✳ ■t ❤♦❧❞s
θ2 = Idg ✳ ❍❡♥❝❡✱ t❤❡r❡ ❡①✐st s✉❜s♣❛❝❡s p ❛♥❞ k ♦❢ g✱ s✉❝❤ t❤❛t p ✐s t❤❡ ❡✐❣❡♥s♣❛❝❡
❢♦r t❤❡ (−1)✲❡✐❣❡♥✈❛❧✉❡ ❛♥❞ k ✐s t❤❡ ❡✐❣❡♥s♣❛❝❡ ❢♦r t❤❡ (+1)✲❡✐❣❡♥✈❛❧✉❡ ♦❢ θ ✳ ❚❤❡
❈❛rt❛♥ ❞❡❝♦♠♣♦s✐t✐♦♥ ♦❢ g ✐s ❣✐✈❡♥ ❜②
t❤❡ ▲✐❡ ❛❧❣❡❜r❛s ♦❢

g = k ⊕ p.

✭✶✳✶✮

❲❡ ❤❛✈❡

[k, k] ⊆ k,
▲❡t

a

❜❡ ❛ ❈❛rt❛♥ s✉❜❛❧❣❡❜r❛ ♦❢

[k, p] ⊆ p,
p✱

[p, p] ⊆ k.

✐✳❡✳ ❛ ♠❛①✐♠❛❧ ❛❜❡❧✐❛♥ s✉❜❛❧❣❡❜r❛ ♦❢


K✳

❚❤❡♥✱ ❚❤❡♥

❜❡ ❛ ❈❛rt❛♥

❲❡

A ♦❢ G ✇✐t❤ ▲✐❡ ❛❧❣❡❜r❛ a✳ ▲❡t M ❜❡ t❤❡ ❝❡♥tr❛❧✐③❡r ♦❢ A
M = Spin(d − 1) ♦r SO(d − 1)✳ ▲❡t m ❜❡ ✐ts ▲✐❡ ❛❧❣❡❜r❛✳ ▲❡t b
s✉❜❛❧❣❡❜r❛ ♦❢ m ❛♥❞ h ❛ ❈❛rt❛♥ s✉❜❛❧❣❡❜r❛ ♦❢ g✳

❝♦♥s✐❞❡r t❤❡ s✉❜❣r♦✉♣
✐♥

p✳

❲❡ ❝♦♥s✐❞❡r t❤❡ ❝♦♠♣❧❡①✐✜❝❛t✐♦♥s

gC := g ⊕ ig
hC := h ⊕ ih
mC := m ⊕ im.
✶✾


×