Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
2016 y 7 1 9x 2 1 2017 3x 1 y 1 2016 6x
9
3
6x 20 9y
16 2016
y
xy
Biên Soạn: Nguyễn Minh Thành – Nguyễn Tuấn Thành
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
1
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Phương trình – bất phương trình
1) (NMT)
2x 2 3x 1 3 x 3 1 x 1 x 1
7 2x x 2 2
2) (NMT)
1
3) (Mathlinks)
x 8
2
2x 2
4) (NMT)
5) (NMT)
1
1
5x
2
x
x
1
8x 2 1
x
1
3
x2
x 1 3x 9 2x 3 4x 2 10x 4
x 3 6x 2 18x 10 2 x 1 2x 1
4x 2 5x 4 x 1 6x 1 x 3 2x 2 12x 1
6) (NMT)
1 x
7) (Mathlinks)
1 x 1 x 1 x 1
x2 1 2
2
8) (NMT)
6 x 2 5 12 3 x 2 3x 2 3x 2 x 32
9) (NMT)
3x 2 2 2x 2 6x 21 x 6 2 x 2 2x 5
4x 3 1 3x 4 x 2 1 x 2 1
10) (NMT)
x 2 2 x 2x x 4
11) (NMT)
2x 4 x 1 1
12) (NMT)
13) (NMT)
x
3
4 x2
x x 2 1 2 x 2 x x
2
x 3 3x 13 x 1 x 2 2x 3 2x 2 1
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
2
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
14) (NMT)
x 2 x 2 1 x 4 x 2 1 2x 4x 2 2x 1 2x 1
15) (NMT)
x3 x 2 x 2 x3 4 2 x 4
16) (NMT)
6x 2 7x 4 x 2 3x 2 7 x 1 3 3x 2
2x 3 x 2 1 2 x 1 x 2 1. x 2 x
17) (NMT)
18) (NMT)
3 3 2x 2 x 6 4x 5 2x 2 3x 16
2x 4 2x 3 3x 2 1 1 x 4 2x 3
19) (NMT)
x 2x 3 x 2 4x 2 x 2 3x 4
20) (NMT)
2
21) (NMT)
2 9x 2 2x 2 x 3
22) (NMT)
x 1 x 2 2x 1 3 x 3 2x 2 5x 2
23)
24) (NTT)
x2
2 x 4 x 2 1 1
4
x 1
2x 1 1
x 2x 1 2
1
x 1
1 2x x 2 1 2x x 2 2 x 1 2x 2 4x 1
4
Hệ phương trình
1)
2) (NMT)
x 3y xy y 12 1 2 y 2x
2 x y 4 4 2 y 9y 2 16
x 2 xy 7y 2 y 2 xy 7x 2 6 xy
3
3
2
2
18 2 x y 12 3 3 x y x 4x 2 17y 55
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
3
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
3) (NMT)
4)
x 2 y 5 x 2 1 1 y 3
4x 2 1 x 1 y 3
x2 1 y 4
12x 2 y 3xy 3xy3 2y 2
2
y
2
xy xy 3 2x x 2 y 1 2 x
5) (NMT)
x 2y 3
1
1
7xy
x y 2 2
x y 1
y 1
4
xy
x y 4 x 1 y 1 x y x 1 6
6) (NMT)
x y x 2 y 1
y x 2 1
x x
3
3
2
y x 2 2 x 3x 4 3x 2x x
7)
8) (NTT)
9)
y
x
y4
2
x y y x 2 x y2
y x 1 32 x 2y 1 2y 2
y 3 1 y 1 x 5
x 1 x2 y 1 1
y2 x 2 1
x 2 1 y 4 1 2xy 2 y3 1
2
4
4
xy 3xy 2 xy x 2y 1
10) (NMT)
xy 4y 4 4 x y 1 y 1
xy y 1 2 1 x
11) (NMT)
x y 2 5x 4y 13 x 2 2 y 1
3 y 5 y 2 1 x 2
12) (NMT)
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
4
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
2x 3 y x y 3 12 2 x 3 y 1
2
x 1 y 1 y 2 2y 2 x 3 2 x y 1 x y 1
13)
14) (NTT)
x 1 x 1 2y y x 1
2 2
2
2
y x 3x 4 4 xy 3x 4 x 17
4
2 2
2
4
2
4x 4x y 4x 6xy y 5y 4 0
4
2 2
2
4
2
4x 4x y 2x 8xy y 2y 3 0
15) (NMT)
y 1 2 2x 1 x y x y 2
5x 4 2 3x 2 y 1
16) (NMT)
x 2y 2y 1 2
x 2y 1 2 2xy x 4 x 2y 1 8y x 1
17) (NMT)
2
xy2
x 1
x 2x
2
y 1
y2 1
x y 3 y 1 x 4 2 x 3 y 1 2x x 2
18)
xy 2 y x 2 2
2
2
2
y 2 x 1 x 2x 3 2x 4x
19) (NMT)
x y 1 y 1
1
3
3
x 1
x 1 x 1
3
2
3 3
2 x y 1 y 2x 3y x 3x 3y 4
20) (NMT)
x x 2 2 x y xy 2 4x x 1 16
2
x 6x 3y 4 2xy 8 2x 4x 2 y 2 16 2x x y x 1
21) (NMT)
2y 2 x 12 4y x 2 7
1
x y3
2
x
1
y
1
1
x
2
y
7
x
y
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
5
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
22) (NMT)
xy 3 x y 2 x 4 x 3
2 1
1
x 1 xy 1 1
x
x
23)
x 2 y3 y 2 2 3 x 4 3 x 2 2y y 1 x 3 x
3
x 4 x 3 x 2 1 x y 1 1
24)
4 7 x 12 y 2 y 2 1 x 6
2
y 2 3x y 2 2y 3x 1 x 2
25)
4x 2 x 2 1 1 x 2 y3 3y 2
2
x 2 y 2 1 x 2 2y
y 1
26) (NMT)
2016 y 7 1 9x 2 1 2017 3x 1 y 1 2016 6x
9
3
6x 20 9y
16 2016
y
xy
Hình học phẳng Oxy
1) (NMT)
21 13
K ;
10 10
y40
(I;R).
M(0;4)
2x y 8 0 .
B 2; 2
2)
H 1;3 H A
M 2;0
3)
3x y 2 0
x 2y 2 0
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
6
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
4)
D 2;1 , H 1;3
5)
x 1
17 59
I ;
9 9
4x 7y 57 0
yA yD .
D 3;1
6)
N 6; 4
2x y 1 0
x 5y 0
7)
25 19
13 19
E ; HC A 'B', F ; CI AB . M 2;3
7 7
7 7
xA xB .
3x y 3 0 ,
8)
55 24
EC FB I ;
23 23
x 5y 10 0
Bất đẳng thức
1) (NMT)
x, y
P
2) (NMT) Cho x, y
x, y 1;3 .
4 5 x y 1
x
y 1
x 3 x y 2x 3 x 2y 2 y 1 6y 2
25
xy 1 .
x 2y 3 x y
1
P x y 2 2
1
2y 4
y 1
x 1
x y 1
x 1 y 1
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
7
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
x 2 y2 z2 5 .
3) (NMT) Cho x, y, z
P x z
z
3x 2 4y 2 8z 2 8 1
y 1
z
2
2
x y
16z
2
4 8
4z 2 41 9xy(2z 3) .
4) (NMT) Cho x, y, z
P
x
x 2 9yz
y
y 2 9zx
1
(z 2 5)
2 10
x 2 y 2 z 2 2x .
5) (NMT) Cho x, y, z
x 2 y 2 xz
2z x y
x
P
2
15
2
2
2
x 1 y 1 x y xz x y xz 1 x 1
a 2 b 2 bc c 2 .
6) (NMT) Cho a, b, c
P a 2 2a
4c 1 ab 1 abc
a
b
bc ca
bc
x z, y z .
7) Cho x, y, z
P
8) Cho x, y, z
x
y
3 z
z
.
2
yz xz 2 xy
z xy yz xz
x, y, z 1; x 2 y 2 z 2 6xy 2 x y z .
x 1
y 1
xy
P
y z 1 x z 1 z
9) Cho a, b
2
2
a 2 b 2 1 3b .
1 b2
b2
1
P4
a 1 a b 1 a2
2
10) Cho a, b, c 1 .
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
8
Câu Lạc Bộ Yêu Toán Lý
________________________________________________________________________________________________________________________________________________________________________________________________________________________
F
11)
1
2
3
6 1 abc(abc 1)
6
3
1 a 1 b 1 c2
a, b, c sao cho a b c .
3 1
a 2c
2
2
b
c
P 2
2 2 2
2
a b b c
c
2
--- Hết --Link page:
/> />
________________________________________________________________________________________________________________________________________________________________________________________________________________________
Nguyễn Minh Thành – Sư Phạm Toán, Nguyễn Tuấn Thành – CS
9