38
Do m < 1, ta thu du'ejc tli ba"t d~ng thuc nay rang f(xk) :s; f(y*). Dieu nay dfin
dSn
1 1
f(xk) + Akd
VI y* Ia nghi~m duy nha"t nen xk = y* va do B6 de 2.6.2 ta suy ra xk Ia cvc tieu
cua f tren JR!.~.
(ii) Ta ky hi~u i(k) la ChI s61~p ung voi xk du'ejc c~p nh~t, nghla la yi(k} = xk+l.
Ta dinh nghla "yk- ,i(k} E 8'ljJi(k}(xk+l). Ta bitt rang
,k = - :k
Tli nhung ky hi~u tren ta chung minh cac kh~ng dinh sau:
a. {f(xk)} kh6ng tang. VI
f(xk) - f(xk+1) ~ m[J(xk) - 'ljJi(k}(xk+1)] (2.62)
nen theo Chti y 2.6, f(xk) - 'ljJi(k}(xk+l) la ham kh6ng am, do do {f(xk)} cling
kh6ng tang. Do do ta co the gia sa {f(xk)} bi ch~n du'oi (nSu kh6ng thl f(xk) ~
-00 va chung minh xong ).
b. ,k E 8Ekf(xk). Voi
Ek = f(xk) - 'ljJi(k}(xk+l) + :k «p'(xk, xk+1),xk - xk+l).
Tli dinh nghla cua ,k, ta thffy ngay du'ejcrang
Ek = f(xk) - 'ljJi(k}(xk+l) - (,k,xk - xk+l).
M~t khac do f ~ 'ljJi(k}va ,k E 8'ljJi(k}(xk+l) nen
Vy, f(y) ~ 'ljJi(k}(y)~ 'ljJi(k}(xk+l)+ (,k,y - xk+l). (2.63 )
Trang tru'ong hejp d~c bi~t, voi y = xk thl Ek~ O. TIT (2.63) ta co
Vy, f(y) ~ f(xk) + 'ljJi(k}(xk+l) - f(xk) + (rk,y - xk) + (,k,xk - xk+l),
l
nghlala ,k E 8Ekf(xk).
+00 1
c. L {Ek - :\«p' (xk, xk+l), xk - xk+l)} < +00
k=l k
Tli (2.62) ta co
Ek = f(xk) - 'ljJi(k}(xk+l) + lk «p' (xk, xk+l), xk - xk+l)
:s; ~[J(xk) - f(xk+l)] + lk «p' (xk, xk+1), xk - xk+l).
39
Nhu v~y
n n
I) Ek - :k «I>'(xk, xk+l), xk - xk+l)} ~ ~I)f(xk) - f(xk+l)]k=l k=l
- ~[J(xl) - f(xn+l )].
Vi f bi ch~n duoi nen
+00 1
L {Ek - ~«I>' (xk, xk+l), xk - xkH)} < +00.
k=l k
d. f(xk) -+ ! = inf{f(x) Ix 2:O}
Day {f(xk)} khong tang, hQi tl;l de'n f. Gia su phan chung ding! > 1* :=
inf f(x), nghla la t6n t<;liy E IRPva 8> 0 thoa f(y) + 8 < f(xk), Vk dli IOn.
xE!R.P
Vi Ek-lk «I>/(xk,xk+l),xk - xk+l) -+ 0 nen t6n t<;liko d~ voi k 2: ko thl
Ek - ~ « I>/ (xk xk+l ) Xk - k+l )
8
, ' , x <-
/\k 2'
Tu B6 d€ 2.2.2 voi a = xk,b = xkH va c = y, ta co
Ily- xk+1112-Ily - xkl12 ~ -t(y - xk+l, <I>I(xk,xk+l))
= - t (y - xk, <I>I(xk, xk+ 1)) - t (xk - xk+ 1, <I>I(xk , xk+ 1)) .
Tu (2.64), ta co ngay
-t(xk - xk+l,<I>/(xk,xk+l))< ~k(~ - Ek)
M~t khac tu ph~n b va ryk= -lk <I>'(xk, xk+l) E OEkf(xk) ta du<;5c
-t(y - xk, <I>I(xk, xk+l)) = ~k (ryk,Y - xk)
va
f(Xk) - 8 > f(y) 2: f(xk) + (-l, y - xk) - Ek'
Ke't h<;5pvoi (2.67) va (2.68) ta du<;5c
1 k I k k+l Ak
- e (y - x , <I> (x ,x )) < e [-8 + Ek].
Cu<3icling tu (2.65), (2.66) va (2.69) ta du<;5c
k+ 1 2 k 2 Ak 8 k 2 8
lIy - x II < lIy - x II + -[- - Ek - 8 + Ek] = lIy - x II - Ak-'- () 2 2()
(2.64)
(2.65)
(2.66)
(2.67)
(2.68)
(2.69)
40
Liy t6ng bit ding thue tren voi mQi k > ko ta du'Qe
k-l
(y
0 ::; Ilxk - yl12 ::; Ilxko - yl12 - 2() L Ak'
k=ko
+=
Cho k --t +00 thl L Ak ::; 2: Ilxko - yl12 < +00, di€u nay mall thuffn voi gia thie't.
k=ko
Bay giG ta gia sil' f co eve ti€u x tren IR~va {Ad bi eh~n.
e. {xk} bi eh~n
Dung bit ding thue (2.65) voi y = x ta du'Qe
Ilxk+l - xl12::; Ilxk - xl12 - t (x - xk, <1>'(xk, xk+l)) - t (xk - xk+l, <1>'(xk, xk+l )).
Tli dinh nghla eua ryk= -lk <1>'(xk, xk+l) E OEkf(xk), ta co
-b(x - xk, <1>'(xk, xk+l)) = ~k(ryk,x - xk)
::; ~k [f(x) - f(xk) + Ek]::; ~kEk.
Do do
Ilxk+l - x112::;Ilxk- xl12+ ~k[Ek- :k «1>'(xk,xk+l),xk - xk+l)].
Vi {Ak} bi eh~n ( do gia thie't ), ap d1;1ngph~n e ta co
+= A 1
L ()k[Ek - :\«1>'(xk,xk+l),xk - xk+l)] < +00.
k=l k
Dung B6 d€ 2.1 ta suy ra {llxk - xllh hQi t1;1. V~y {xk} bi eh~n.
f. MQi di€m gioi h<;lnx* eua {xk} Ia eve ti€u eua f tren IR~ va xk --t x*
Cho xnk --t x*. VI f lien t1;1enen f(xnk) --t f(x*). Ap d1;1ngph~n d, f(xk) --t J =
inf f(x). Do do f(x*) = j. VI x* E IR~ nen x* la eve ti€u eua ham f tren IR~.
xER~
Tli (2.70) thay x bdi x* ta du'Qe
Ilxk+l - x*112::;Ilxk- x*112+ (yk,
(2.70)
trong do
{y = Ak [E - ~ «
1>' (xk xk+l ) xk - xk+l )]
k () k Ak " .
+=
Vi L (jk < +00 nen ap d1;1ngmQtke't qua eua Correa va Lemareehal ([7], M~nh
k=l
d€ 1.3) thl toan bQ day {xk} hQi t1;1de'n x*. .
41
2.7 Ktt qua tinh toan 86.
f)~ thu~t gi
{
mill 7/Ji(y)+ 1kd
Y E JR~+.
V(ji 7/Ji(y)= max {f(yj) + (s(yj), Y -yj) I j = 0,. . . , i-I}, bai toan tren tu'dngdu'dng
v(ji
(SPh,i
mill v + 1kd
v 2: f(yj) + (s(yj), y - yj) j = 0, . . . , i-I,
Y E JR~+.
Ta tha'y dng ne'u (yi, vi) la nghi~m cua bai toan tren thl
Vi = max{f(yj) + (s(yj),y - yj)}.
Vi r.p(t) = ~(t - 1)2 + p,(t -logt - 1) nen ham ml,lc tieu cua bai toan (SPk,i) "cvc
ky" phi tuye'n va vi~c Hm nghi~m cua bai toan (SPk,i) co th~ ra't kho khan. Tuy
nhien, ne'u
P
d
m=1 m
thl ham ml,lc tieu la tach du'QCva cach gi
ng~u cua no. V(ji mQi m, ta d~t Zm= ;7: va Z = (zm) thl bai toan (SPk,i) co th~Tn
vie't l(,li nhu' sail
(MSPh,i
p
mm v + L amr.p(zm),
m=1
(sj Z) - v < b., - J' j=0,...,i-1,
Z E JR~+,
t d ' - ~ (
k
)2 j - ( j ) k - 1
'
b. - ( ( j ) j ) - f( j ) '-
rang 0 am - Ak xm , sm - S Y xm' m - ,..., p va J - s y ,y y, J -
1,..., i-I. Ham Lagrange tu'dng ling v(ji bai toan (MSP)k,i la
p i-I
L(v, z, p,)= v + L amr.p(Zm) + LP,j [(sj, z) - v - bj]
m=1 j=O
va ham d6i ng~u la
d(p,) = inf{L(v,z,p,) I v E JR,z > O}
!
inf{t amr.p(zm)+ ~p'j[(sj,z) - bj]}- z>o
- m=1 j=O
-00
i-I
ne'u L p,j = 1,
j=1
ngu'Qc l(,li.
42
Do v~y b~titmln d6i ng§:u tu'ong ling Ia
{
max d(~),
L ~j = 1
(D)
~j2::0,j=O"",i-l,
trong do
P i-I
d(~) = L dm(~) - L ~jbj,
m=I j=O
i-I
dm(~) = inf{ G:m<P(Zm)+ L ~jstnzm I Zm > a},
j=O
Hon nua, m6i ham dm la khcl vi va
Vdm(~) = (stnz~ - bj)O~j~i-I'
i-I
trong do z~ = arg min{ G:m
a}.
j=O
Vi (D) Ia bai tmln trail nen ham mvc tieu cua no de u'oc 1u'<;Jng,ta co th~ sa
dvng ba't ky phu'ong phap c6 di~n nao d~ gicli no. GQi ~* la nghit%mcua bai
toan (D) thl z* = (z~) trong do
i-I
z:n = arg mill {G:m
j=O
va
i-I i-I
* -
(~ * j *) ~ *b '
v - ~ ~j s ,Z - ~ ~j J
j=O j=O
la nghit%mcua bai toan (SPk,i). Th~t v~y, do di€u kit%ndQ It%chbli ta co
i-I
L~;[(sj, z*) - v* - bj] = 0,
j=O
i-I
Vi L~; = 1 nen
j=o
i-I i-I i-I
* - ~ * * -
(~ * j *) ~ *b '
v - ~~jV - ~~jS ,Z - ~~j J'
j=o j=o j=o
43
Thi dl;l: f(x) = max{fj(x) = xTQ(j)x + (cj? x,j = 1,..., 5}
yoi
Q~k = etcos(ik)sinj, i < k
Qii = *Isinjl+ L IQikl
i=/=k
cj = e}sin(ij),i=l,...,n.
ChQn:
xQ = (1 1 1 1 1 1 1 1 1 1 )
A = 0.1000
m = 0.4000
Tieu chuffn dung:
Ilxold - xl12~ 0.001000
Gi
Ke't qua:
2 61.74627860 1
3 16.82191257 4
4 7.51790296 2
5 2.74151481 4
6 1.62981397 3
7 0.32026335 4
8 0.02442314 5
9 -0.06580683 6
10 -0.14407693 10
11 -0.16407434 8
12 -0.17470473 9
13 -0.17881529 8
14 -0.18039020 13
15 -0.18219034 10
16 -0.18263927 14
17 -0.17967192 40
18 -0.18234564 13
19 -0.18315244 11
20 -0.18042678 40
Solution:
0.0000 0.0006 0.0121 0.0363 0.0773 0.0000 0.0721 0.0744 0.0459 0.0189
f = -0.18042678