CHUaNG 2
NGHlltM TUAN HoAN CUA PHUONG TRINH
VI PHAN TmJONG
2.1. Dfnh ly chinh :
La"y 1=[0, 1], va f: I x RD~ RD,
thoa nhii'ng di~u ki~n caratheodory, va ky hi~u x la chu§:nEuclide cua
I
I
x E RD,va (x, y) la tich va htidng cua x va y.
Trong chtiang nay, chung ta se chung minh st! t6n tC;iinghi~m cho bai
tmin.
(2.1)
x1(t)= f(t,x(t))
, tEl
{ x(o) = x (1)
nhii'ng nghi~m nay se dtiqc gQila 1 tu~n hoan.
Chung ta ky hi~u X la khang gian con cua C (1, RD)ma nhung ph~n
tll'cua no thoa di~u ki~n thu hai trong (2.1) vdi chu§:nd~u thtiong dung la
Ixl
0
= maxlx(t)\
tEl
'
Z =L 1 (I, RD),vdi chu§:nthtiong dung la
IIxiiI
= fixet)ldt
I
va domL la khang gian con cua X, ma nhung ph~n tii' cua no la lien t\lC
tuy~t dot
Anh x~ L va N l~n ltiqt dtiQCxac dinh tren domL va X, bdi
(L.x)(t)
= x'(t),
(Nx) (t)
=f(t, x(t))
Vdi tEl, thl L va N la'ynhung gia tri trong Z, va bai loan (2.1) ttiang
duang vdi vi~c giai phuong trlnh thu gQn
Lx = Nx
25
ngoai fa, tll slj ma ta trong chuang 1,
= {x E dam
KerL
IrnL
d
= {z EZ
day Px
L : xCi) = x(o), Vt E I}
: fZ(I)dl
= x(o),
Qx
= ImP
=o} = KerQ
= fz(t)dt
I
VI the'L la anh x']. Fredholm vdi chi sO'zero va do tinh chat 1.5, ta co
N la L - hoan loan lien tl;lCtrong X.
Ta c~n m(>tb6 d€ d€ chung minh slj t6n t'].inghi~m.
B6 d~ 2.1 :
Cho r > 0 va V E Cl(Rn, R), thoa man
V' (x) * 0, vdi x
I
I
=r
?
d day V' la gradient cua V, va Iffy
G :X
(Gx) (t)
va H
=L -
Z, duQcxac dinh bdi
~
=-
V' (x(t)),
tEl
G, vdi X, Z va L duQCxac dinh nhutren.
Thl H E CL(B(r)) va !DL(H,B(r))! =\Do(V',B(r))\
Chung minh
Ta xet anh x'].
H :XxI~Z
(x, A) H Lx - AGX- (1 - A) QGx
Vdi Q duQc xac dtnh d ireD.
Thl H la L - hoan toaD lien tl;lcireD X x I.
Ne'u (x, A) E X x I, saG cho H (x, A) =0, thl x la lien wc tuy~t d6i 1 - tu~n
hoan va
26
(2.2)x'(t)=-
AV'(X(t))-(l-A)fV'(X(S))ds,
I
'\itEI
Do do x' lien wc tren I va liy tich vo huang hai v~ (2.2) vai x'(t),
tich phan tren I va dung Hnhchit 1 - tu~n ho~mcua x, ta duQc.
fix' (012dt = 0
I
Vi v~y x(t)
x'(o)
=x(o),
'\it E I, bdi vi
= -AV'(x(o))-
(1- A)fV'(x(s))ds
I
Bdi (2.2), x(o) thoa phudng trlnh V'(x(o))
=0
f)i~u nay guy ra ding
\xlo
= Ix(o)\"*
r
Theo tinh chit bit bi~n d6ng luau cua ly thuy~t b~c, ta co :
DL(H,B(r))
= DL(H(.,l),B(r)) = DL(H(.,O), B(r))
= DL(L - QG,B(r))
Nhung QG : X ~ ImQ, vai
z= ImL~ImQ
Vi v~y, bdi tinh chit (1.13), ta co
\DL(L - QG,B(r))1 = \Do(-QGKerL,B(r)nKerL)1
=IDo(V',B(r))!
d
day B(r) duQc ky hi~u qua c~u tam 0, ban kinh r. B6 d~ duQc
chung minh.
Bay giC1ta chung minh dinh ly chinh cua chudng.
Binh Iy 2.2.
Gia sa ding nhung di~u ki~n sail day xay ra
27
(i) co mQt V E C1 (Rn, R+), vdi :
Vex) ~ + 00, ne'u
I
x
I
~
00
va a ELI (I, R+), thoa man
s aCt)
(2.3) (V' (x),f(t,x»)
Vdi mQi x ERn, mQi tEl
(ii) T6n t~i r > 0 va W E C1 (Rn \ B(r), R), sao cho
(V' (x), w' (x» > 0
VdimQix,
Ixl ~r,va
(2.4) f(W'( x(t)),f( t,x(t)))dt
I
s0
Vdi mQi anh x~ lien tl,lctuy~t d6i 1 - tugn hoan
x : I ~ Rll, vdi minlx(t)1~ r
tel
Thl bai toan (2.1) co it nha't IDQtnghi~ID
ChUng mink
.
Ta mu6n ap dl,lngdinh 19 (1.17) vdi
F
=L -
N va H = L - G
nhtt trong b6 d~ (2.1) va tinh cha't cQng tinh, cling vdi V' (x)
x E Rn vdi
I
x ~r
I
"*
0, cho IDQi
.
H eCL(B(p») vdi mQip ~ r
£)gu tien chung ta chI ra ding nhii'ng nghi~m 1 - tugn hoan cua hQ
nhii'ng phu'dng trlnh.
x' (t)
=-
(1 - A) V' (x(t» + Af (t, x(t», tEl,
AE10,1[ la mQt ti~n bi
ch~n.
Ne'u di~u nay kh6ng Kay fa, se co mQt day (An)nEN*vdi An E ]O,l[
28
va mQt day
(xn)n EN*, vdi IXnlo2 n va xn la mQtnghi~m 1 - tu~n hoan cua
(2.5): x~(t)=-(l-An)V'(Xn(t))+Anf(t,xn(t)),
tEl, n EN*
Ngoai fa, vdi m6i tEl, n E N*, dung di~u ki~n (i)
(d/dt) V (Xn(t))=(V'(Xn(t)),X~(t))
= -(1- An).IV'(xn (t))12+ An(V' (Xn(t)), f( t, xn (t))) :s;aCt)
Md fQng Xnva a fa R bdi 1 - tu~n llOan, ta du'Qc vdi m6i T E R va
m6i t E [T, T + 1]
v( xn (t)):S;V(xn (T)) + Jf
r a(s)ds
Do tinh 1 - tu~n hoan cua Xn,di~u nay suy fa ding
(2.6)
max V( Xn(t)) :s;mill V( xn (t)) + Ilal!l
tEl
tEl
Bay giO, n€u tn E I sao cho
\Xn (tn)1 = maxlxn (t)1= \Xnl 2 n
tEl
0
Ta co
max V(Xn(t)) 2 V(xn (tn))
tEl
va bdi di~u ki~n (i)
V(Xn(tn))~oo
n€u n ~oo.
Ngoai fa bdi (2.6)
mill V(xn(t))~
tEl
00 n€u n ~ 00
Hoan loan tu'dng tt,I'suy fa ding
minlxn(t)1 ~ 00ne"u n ~ 00
tEl
29
La'y nl E N* sao cho, voi m6i n ~ nl
minlxn (t)j ~ r
tEl
Bi~u sail duQc suy ra tti' (2.5)
(d / dt)W( xn (t)) = -(1- An)(V'(xn(t)),W'( xn(t))) + An(f( t,xn (t)),W,(xn(t)))
Va VIv~y, bdi tinh 1 - tuftn hoan cua Xn,va voi n ~ nl, ta suy ra tti'
(ii)
0 = -(1- An) f(V'( xn (t)),W'(xn (t)))dt + An J(f(t,xn(t)), W'(xn (t)))dt < 0
I
I
di~u nay mall thu~n.
VI v~y nhG'ng nghi~m cua hQ nhG'ngphuong trlnh 1a ti~n bi ch~n, vOi
ti~n bi ch~n duQc ky hi~u bdi p. Chung ta co th€ chQn p sao chop ~ r.
Bay gio dung b6 d~ (2.1), gia dinh (i) va tinh cha't (1.15), chung ta co
IDL(H,B(p))!
= IDo(V', V(p)~ = 1
Va bdi dinh 1y (1.17), dinh 1y duQc chung minh.
Binb Iy 2.2' :
Gia sa nhG'ng di~u ki~n san day Kay ra
(i') T6n t~i V cl (Rn, Rr), voi
Vex) ~ + 00 ne'u
Va a
I
x
I
~
00
ELl (I, R+) sao cho
(2.3') (V' (x), f(t, x)) ~ -aCt)
voi mQi x ERn, mQi tEl
(ii') T6n t~i r > 0 va W E Cl (Rn\B(r), R), saG cho
.
(V'(x), Wi(x)) > 0-, voi mQi x, Ix! ~rva
30
(2.4')
f(W'(x(t)),f(t,x(t)))dt?::
I
0
Vai mQi X : 1 ~ Rn lien t~c tuy~t d6i 1 - tuftn hO~lllvai minlx(t)l?::r.
tEl
ChUng minh
D6i bi~n, bftng cach d~t t = 1 - T
Vai mQi tEl
co TEL
Luc niiy(2.3')
(2.3 ')
vii (2.4') trd thiinh
(- V'(x(1- T)),f(l- T,x(l- T)))?::-a(l- T)
~
(2.4 )
(V'(x(1- T)),f(l- T,x(l- T))) ~ a(l- T)
SI( -W'(x(1-
T)), f(l- T, x(l- T))) d(1- T) ?::0
Bftng cach d6i bi~n mQt Iftnnua 1 - T = 't
Ta co (2.3') vii (2.4') trd thiinh
(V'(x('t) ),f( 't,x( 't))) ~ a('t)
f(W'(X('t)),f('t,X('t))}t't ~ 0
I
Ap d~ng dinh 19 (2.2), dinh 19 duQc chung minh.
2.2.
Ung
d\lng cua dinh Iy 2.2.
Trong phftn niiy, chung ta se cho mQt viii ung d~ng thu vi cua djnh 19
2.2, vai sl;l'll;l'achQn d~c bi~t. Ung d~ng dftu lien Iii cho phuong trinh vo
huang (n = I).
H~ qua 2.1 :
Gia sa n = 1 vii a.e tEl,
f(t,.) Iii khong tang. Thl biii loan (2.1) co
00
mQt nghi~m n~u vii chi n~u t5n t~i y E L (I, R) sao cho
31
(2.7)
J f( t,y(t) )dt = 0
I
Chung minh
* Di~u kit%nc~n :
Ta Iffy Y Hi mQt nghit%mcua (2.1), suy fa
Jf( t,yet))dt = Jy' (t)dt = y(l) - yea) = 0
I
I
* Di~u kit%ndu :
VI f(t,.) la khong tang nen ta co, voi mQi x E R va a.e tEl,
xf(t,x) ~ x f(t,O) ~ \f(t,O)I.(lxl + 1)
Do do di~u kit%n(i) cua dinh ly (2.2) thoa man voi
V(x)
aCt)= f(t, 0)
I
=G)
(
1
( ul
1-1
+1) du
I.
Bdi VI Vex) ~ +
00
ne'u x
I
I
~
00
Va a ELI (I, R+), saG cho
(V' (x),f(t, x)) = x(\xl + 1)-I.f(t, x)
= (Ix!+ lr1 x f(t,x)
~ (lx\+ lr1\f(t,0)1.(lx\
+ 1)
~ \f(t,o)1 = aCt)
Ta Iffy x E domL la ph~n tii'tily Y saG cho :
minlx(t)1~ Ilyll = f
tel
32
Dung tinh don di~u khong tang cua f(t,.), ta co a.e tEl,
x(t) . f(t, x(t))
s x(t) . f(t, yet))
Suy fa
f X(t).f(x(t)1t, x(t») dt s
I
I
f x(t)
I Ix(t)!
.f( t, yet) )dt
S:I: ff(t,y(t))dt=O
I
2
1 x
Nhu'ng la'y w(x)
= 2 12
--
1
u 2 du
x
W'(x)
=~
Suy fa
WEe
1
(R \B(r), R)
It 1:(°,vdi
.Ix I ~r
Va Jw'(
x( t) );f(t, x(t) )dt = IJ1:~:~l"f(
I
t,x(tJ)dt,;;
V'(x).
W'(x) = (Ixl+
Vdi x : I
~
0
R lien tl;lctuy~t d6i 1 - tu~n ho~m.VI v~y di~u ki~n (ii)
cua dinh ly (2.2) xay fa, theo dinh ly nay, h~ qua du'Qcchang minh.
H~ qua 2.1' :
Gia sa n = 1 va a.e tEl, f (t,.) la khong giam. Thl bai tmln (2.1) co
00
mQt nghi~m ne'u va chI t6n t~i y E L (1, R) sao cho
(2.7')
ff(t,y(t»)dt=O
I
-
33
Chung minh
* Di6u ki~n cftn :
Ta la'y y la mQt nghi~m cua (2.1), suy fa
Jf(t,y(t»)dt=
I
Jy'(t)dt=y(1)-y(O)=O
I
* Di6u ki~n du :
Vi f(t,.) la khong giam, nen ta co, vdi m6i x E R va a.e t E I,
x.f(t,x) ~ x f(t, 0) ~ - \f(t,O)I(lx!+ 1)
Do do di6u ki~n (i') cua dinh ly (2.2') thoa man, vdi
-1
1
Vex)
~2
!
= (2) r l u2 + 1J
Bdi vi Vex) ~ +
00
du. aCt) = !f(t,O)1
ne'u x
I
I
~
00
va a ELI (I, R+)
Sao cho :
(V' (x),f(t,x») = x(lxl+ lr1f(t,x)
= (Ix! + 1)-lXf(t,x) ~ (lxl+ lr1[-\f(t,O)I(lxl + 1)]
~ -\f(t,O)\
= -aCt)
Ta la'y x E domL la phftn tii'tily Y sao cho
Minlx(t)1 ~ Ilylloo= f
Ta dung tinh don di~u khong giam cua f(t,.), a.e t E I,
xCi) . f(t, xCi»~~ xCi) f(t, yet)
34
Suy ra
f(t,y(t))dt
J X(t).f(t,X(t))dt;::: JX(t)
IX(t)1
IX(t)1
I
I
I
;::::tJf(t,y(t))dt=O
I
1 x2
Nhu'ng la'y W(x)
_!
=2 £2 u
W' (x)
2du
= x(t)
IX(t)1
1
Suy ra WEe
V' (X)
Vii
(R\B(r), R)
r
. W' (X) = x(lxl+ 1
11~ > 0, vdi
I
x
I
;?:
r
JW'(x(t)).f(t,x(t))dt
= J1:i:~I.f(t'X(t))dt
z 0,
I
I
-
Vdi x : I
~
R lien t~c tuy<%td6i 1 - tuftn hoan. Do do di~u ki<%n
(ii')
cua dinh ly (2.2') thoa man, ap d~ng dinh ly nay, h<%
qua du'Qcchung minh,
H~ qua 2.2 :
Gia stt t6n t(;l.ir > 0 va a E Ll (1, R+), sao cho
(2,8)
(x, f(t, x)) ~ aCt) (lx12+ 1), a.e t EI
Vdi mQi x E Rll, va
(2.9)
J(X(t),f(t,x(t)))dt~O
I
, vdi mQi x E domL
minlx(t)l;::: r
teI
Thl bai loan (2.1) co it nha't mQt nghi<%m
35
Chung minh
2
1 xl
(u+ 1) 1du,
Lay Vex) = -~:
2t
,.:'
W(x) =-
x
11
2
2
Suy fa
(
2
-1
)
V'(x) = x Ixl + 1
,
Ta ki~m tra di8u ki~n (i) va (ii)
W'(x) = x
cua dinh
(2.2).
1y
Ta c6 V E C1 (Rn, R;.), vdi
Vex) ~ +
(V'(x), f(t, x)) = (x(lxl2
00
ne'u
I
x
I
~
00
+ It,f(I,X))
~ a(t{lxI2 + 1)(lxl2 + 1)-1 = aCt)
Vdi mQi x E Rn, a.e tEL
Do d6 di8u ki~n (i) cua dinh 1y (2.2) thoa man:
M~tkhac
W E C1(Rn\B(r), R)
(V'(x), W'(x)) = (x(JxI2+It,~
>0
V di mQi x, x 12 f , va
I
f(W'( x(t) ),f( t,x(t) ))dt = J(X(t),f( t,x(t) ))dt ~ 0
I
I
V di mQi x E domL
minlx(t)12 r
tel
Do d6 di8u ki~n (ii) cua dinh 1y (2.2) thoa man.
36
V~y bai tmin (2.1) co it nha't mQt nghi~m
H~ qua 2.2' :
Gia su t6n tq.ir > 0 va a ELI (I, R+), sao cho
(2.8') (Xf(t,X))2-a(t)(lxI2
+1), a.et E1, va mQi x ERn, va
(2.9') f(X(t),f(t,x(0))dt20,
I
vdi mQi x E domL
minjx( 012 r
tel
Thl bai tmin (2.1) co it nha't mQt nghi~m
Chung minh
1
,2
, W(x) = ~
2
La'y Vex) = - x (u +1)-ldu
2
i
12
I
Suy ra V' (x) = x(!xj2+ 1)-1 , W'(x)
=x
Ta se ki~m tra di~u ki~n (i') va (ii') cua dinh ly (2.2').
Ta co V E C1(Rn,R+), vdi
Vex) ~ +
00
,
n6u x I ~
I
00
(V'Cx),f(t, x)) = ( x(lxl2 + 0-1 ,fCI,X)) ~ -aCtJ(lxI2 + 1)(jxj2 +
2-
aCt)
a.e t E I va mQix ERn.
Do do di~u ki~n (i') cua dinh 1y (2.2') thoa man.
M~t khac
W E C1 (Rn \ B(r), R)
(V'(x), W'(x» =
(x(lxI2+ It ,X)>0
37
r
Voi mQi x, x 12 r
I
Va f(W'(x(t)),f(t,x(t))}it = f(X(t),f(t,X(t)))dt 2 0
I
I
Voi mQi x E domL, minlx(t)12 r
tel
Do do di~u ki~n (ii') cua dinh 1y (2.2') thoa man.
V~y bai tmin (2.1) co it nha't mQt nghi~m.
H~ qua 2.3:
Gia sa co r > 0 sao cho
(2.10)
Voi x
I
(x, f(t, x)) ~ 0,
a.e tEl
va mQi x E Rn
=r
I
Thl bai tmin (2.1) co it nha't mQt nghi~m
ChUng minh
Ta dinh nghIa
g : 1 x Rn
get, x)
g(t, x)
R 0, bdi
~
= f(t, x)
neu
I
x ~ r,
I
= + -1:1)x+r(t'I:10,
neu
I
x
I
;::
r
Bdi sl,txay dl,tng tren, g cling thoa nhii'ng di~u ki~n caratheodory nhtt
f va trung voi f tren x ~ r.
I
I
Ngoai fa, neu a ELI (I, R+) thoa man.
I
f(t, x) ~ aCt), a.e tEl
I
(x, g(t,x))
va mQi x ERn, ydi x ~ r, thl
I
I
~ aCt) (lxf + 1), vdi mQi x E Ro, a. et E I.
Do do di~u ki~n (2.8) cua h~ qua (2.2) thoa man cho g
38
Neu x E domL thoa man minlx(t)1~ r.
tel
Taco
(2.11)
(x(t),g( t,x(t»))
= -( 1-lx~t)Jlx(tf
~- 1-~
(
Ix(t)!J
+ ( x(t), f( 1, Ix~t)1
X(t)]
J
lx(t)12~O
La'y tich phan tren I, di~u ki~n (2.9) ~ua h~ qua (2.2) thoa man cho g
va bai loan.
(2.12)
x1(t) = g(t,x(t») ,t EI
{ x(o) = x(1)
Co it nha't mQt nghi~m. Ta chung minh nghi~m x nay thoa man
Ix(t)\~ r ,tEl
Neu chung minh duQcdi~u ki~n nay, thl nghi~m cua (2.12) cling la
nghi~m cua (2.1).
.
Neil x la mQtnghi~m cua (2.12), thl bai (2.11)
Ta co a.e tEl sac cho x (t) > r
I
(2.13)
G)(d/
I
dtJlx(tJl2 = (x(tJ,g{ t,x(t)))
~_
(
1- ~
Ix(t)1)
lx(t)12~ 0
Do do nghi~m nay khong th~ la 1 - tuftn bean va thoa man x (t) >
r vdi ffiQitEL Suy ra co mQt t' E I thoa man x (t') ~ r .
I
I
I
I
Neu ba't d£ng thuc tren khong xay ra vdi mQi t' E I, co t" E I, t":;et'
ma Ix (t") I> r.
39
Md fQng x vdi 1 - tugn hO~lllfa mQt anh x~ lien wc tfen R, ta co th€
gilt sli' ding t" E [t', t'+l].
Bdi tinh lien tt;1c,co mQt khoang md ]ti, t2[ c ] t', t' + 1 [ thoa man
t" E ] ti, t2 [, x(t) I> f, vdi t E ] tl, t2[ va I x(tl) I
I
=
I
X(t2)
I
=r
nhung (2.13) suy ra
I
X(tl)
>
I
I
X(t2)
I
mati thu~n
V~y
I
x(t)
I
::; r, mQi t E I, h~ qua duQc chung minh
H~ qua 2.3' :
Gia sli't6n t~i r > 0 sao cho
(2.10')
(x, f(t, x));::: 0
a.e t E I va mQi x E RDvdi
I
x
I
=r
Thl bai loan (2.1) co it nhfft mQtnghi~m
Chung minh
Ta dinh nghla
K: I x RD-+ RD
f(t,x) ,
get, x)
=
~
ne'u Ix!::;r
r
r
ne'u Ixl;:::r
( I-Ix! ) x+f ( t,!x( J ,
Bdi s1;1'xay d1;1'ngnhu tren, g cling thoa man nhii'ng di~u ki~n
Caratheodory nhuf va trung vdi f tren x ::;r
I
Ne'u a E Ll(I, 14) thoa man
I
f(t, x)
I
I
;:::
- aCt)
a.e t E I va mQi x E RD~vdi
I
x I::;r, thl
(x,g(t,x));::: -a(t{lxI2 + 1), vdi mQi x E RD,a.e tEl
40
Do do di~u ki~n (2.8') cua h~ qua (2.3') thoa man cho g. Ne'u
x E domL thoa man
minlx(t)12 r
tel
Ta co
(2.11')
(x(tJ,g( t,x(tJ)) = (1-lx~t)I)X(tJI2 + ( X(tJ,r(
2
(
1-~
x(t) )
t, Ix~tJI X(t))
J
lx(t)1220
La'y tich phan tren I, di~u ki~n (2.9') cua h~ qua (2.3') thoa man cho
g va bai loan.
(2.12')
X'(t) = g(t,x(t))
,tEl
{ x(o) = x(1)
co it nha't mQt nghi~m.
Ta chung minh nghi~m x nay thoa man x(t) ~ r , tEL Ne'u chung
minh dl1qcdi~u nay, thl nghi~m cua (2.12') cling la nghi~m cua (2.1), di~u
nay se k€t thuc dl1qcchung minh.
I
I
Ne'u x Ia mQt nghi~m cua (2.12'), thl bdi (2.11') ta co a.e tEl
cho x(t) > r.
(2.13 ')
G)( d I dt~x(t)12 =(x(t),g(
t,x(t))) ~ (1-lx~t)I)X(t)12
sao
>0
Do do nghi~m tren khong th~ Ia 1 - tu§n hoan va thoa man x(t) I> r
vdi mQitEL Tdi day chung minh hoan loan tu'dngtv nhl1h~ qua (2.3).
I
H~ qua da dl1qcchung minh.
41
2.3 Dng d~ng cho nhilng ham Vectd.
Ta se cho d day mQtung d\lng cua dinh ly (2.3) de'n phudng phap cua
nhung ham co huang.
Gia sa f thoa man nhung di~u kit%nduQcma ta d phgn dinh ly chinh
Binh nghla 2.1.
V E Cl (Rn,R) duQcgQila mQtham huang (ng~t) cho phudng trlnh
(2.14)
x'
=f(t, x)
ne'u t6n t~i r > 0 saD cho a.e t E I va mQi x E Rll vai
(2.15)
I
x ~ r ta co
I
(V' (x), f(t,x)) ~ 0 « 0).
Chung ta se chung to s\!'t6n t~i cua mQtham co huang thoa man mQt
vai di~u kit%nb6 sung, thl suy ra s\!'t6n t~i cua mQtnghit%m1 - tugn hoan
Tinh cha't 2.1:
Gia sa phudng trlnh (2.14) co mQtham co huang V thoa man
V' (x) :f=0 vai
I
x ~r
I
Va
(2. 16)
Vex) ~ +
00
ne'u x
I
I
~
00
thl bai loan (2. 1) co it nha'"tmQt nghit%m
Chung minh
Bdi nhung di~u kit%ncaratheodory va tinh lien t\lC cua V' t6n t~i
a E L 1(1,R+) saD cho a.e t E I va mQi x vai x ~ r
I
I
Ta co
I
V' (x) 1.1 f(t, x) ~ aCt).
~~tkhac,dung(2.15)
Ta co a.e t E I va mQi x E RD
(V' (x), f(t, x» ~ aCt).
Do do di~u kit%n(i) cua dinh ly (2.2) thoa man, vai nhung anh x~
V va a vila duQcxac dinh nhutren.
42
N6u x E domL thoa man mill x(t) 12 r
I
tEl
dung (2. 15), ta co a.e tEl
(V'(x(t)), f(t,x(t))) ~ 0,
Suy ra f(V'X(t)),f(t,X(t)}lt~O,
I
L1y w(x)
= Vex), suy ra
f(W'(x(t)),f(t,x(t)))dt~O
I
va (V'(x),W'(x))>O,
nhu v~y, di~u ki~n (ii) cua dinh ly (2.2) xay fa, vai r duQc giai thi~u trong
dinh nghla. Do do theo bai tmln (2.3), tinh ch1t duQc chung minh.
Tinh cha't 2.1'. Gia sli' ding phudng trlnh (2. 14) co mQt ham co
huang V thoa man.
V' (x) :;to
0 vai
(2.17) Vex)
~
-
n6u x
00
I
I
~
I
x 2r
I
00
thl bai tmln (2.1) co it nha'tmQtnghi~m
ChUng minh
La'y W(x)
=-
Vex), X ERn, thl W'(X)
=-
V'(X) :;to0, cho mQi x E Rn
~.
VOl X >
- r,
I
I
W(x) ~ +
Va
00
n6u
I
x
I
~
00
(W(X), f (t, X))2 0,
a.e tEl
mQi x E Ril
I
x 12 r lam nhu trong chung minh cua tinh
cha't 2.1.
Ta co
(W' (x), f(t,x)) 2 - aCt),
a.e tEl
mQi x E Ril va a ELI (I, R+), va
f(W'(~(t))f( t,x(t) ))dt 2 0,
I
43
Vai mQix E domL, mill x (t) ~ r. Dung dinh 192.2'
I
I
Chung ta co, bai tmin (2.1) co it nhclt m(>tnghi~m
fJtnh nghia 2.2:
V E C1(Rll, R) gQi la m(>tham g~n co huang cho phuong trlnh
(2.18)
x'
=f(t,
x),
neu t6n t~i r > 0 sao cho, a.e t E I va mQi x E Rfivai
I
x ~ r ta co
I
(V' (x), f(t, x))~ O.
(2. 19)
Tinh cha't 2.2 : Gia stYding phuong trlnh (2.18) co m(>tham g6m co
huang V,thoa man
V' (x) :;t0 vai
I
x ~r
I
Va
(2.20)
Vex) ~
+
00
neu x
I
I
~
00
Thl bai tmin (2.1) co it nhclt m(>tnghi~m
Chung minh
Bdi nhung di~u ki~n Caratheodory va tinh lien we cua V' t6n t~i
a ELI (I, R+) sao cho, a.e t E I, mQi x, vai x :::;r chung ta co,
I
I
V' (x)
1.1
I
f (t, x) ~ - aCt),
I
ngoai ra dung (2.19) (V'(x), f(t, x) ~ 0 chung ta co a.e t E I va mQi x E Rll,
(V' (x), f (t, x)) ~ - aCt)
do do di~u ki~n (i') cua dinh 19(2.2') xay fa. Vai nhung anh x~ V va a. vila
xac dinh d tren.
Bay gio, neu x E domL, thoa man mill x(t) ~ r bdi (2.19), chung ta
I
co, a.e t E I,
(V'(x(t, x(t)) ~ 0
Suy ra
J(V'( x(t)),f( t,x(t) ))dt ~ 0,
I
44
I