Tải bản đầy đủ (.pdf) (1,118 trang)

Solution manual fundamentals of electric circuits

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (19.78 MB, 1,118 trang )


Chapter 1, Solution 1
(a) q = 6.482x1017 x [-1.602x10-19 C] = -0.10384 C
(b) q = 1. 24x1018 x [-1.602x10-19 C] = -0.19865 C
(c) q = 2.46x1019 x [-1.602x10-19 C] = -3.941 C
(d) q = 1.628x1020 x [-1.602x10-19 C] = -26.08 C
Chapter 1, Solution 2
(a)
(b)
(c)
(d)
(e)

i = dq/dt = 3 mA
i = dq/dt = (16t + 4) A
i = dq/dt = (-3e-t + 10e-2t) nA
i=dq/dt = 1200π cos 120π t pA
i =dq/dt = − e −4t (80 cos 50 t + 1000 sin 50 t ) µ A

Chapter 1, Solution 3
(a) q(t) = ∫ i(t)dt + q(0) = (3t + 1) C
(b) q(t) = ∫ (2t + s) dt + q(v) = (t 2 + 5t) mC

(c) q(t) = ∫ 20 cos (10t + π / 6 ) + q(0) = (2sin(10t + π / 6) + 1) µ C

(d)

10e -30t
( −30 sin 40t - 40 cos t)
900 + 1600
= − e - 30t (0.16cos40 t + 0.12 sin 40t) C



q(t) = ∫ 10e -30t sin 40t + q(0) =

Chapter 1, Solution 4

q = ∫ idt = ∫
=

10

−5
5sin 6 π t dt =
cos 6π t

0

5
(1 − cos 0.06π ) = 4.698 mC



Chapter 1, Solution 5

q = ∫ idt = ∫
=

1
e dt mC = - e -2t
2


1
(1 − e 4 ) mC = 490 µC
2

Chapter 1, Solution 6

(a) At t = 1ms, i =

dq 80
=
= 40 mA
dt
2

(b) At t = 6ms, i =

dq
= 0 mA
dt

(c) At t = 10ms, i =

dq 80
=
= - 20 mA
4
dt

Chapter 1, Solution 7
25A,

dq 
i=
= - 25A,
dt 
 25A,

2

-2t

026
which is sketched below:

0


Chapter 1, Solution 8

q = ∫ idt =

10 × 1
+ 10 × 1 = 15 µC
2

Chapter 1, Solution 9
1


(a) q = ∫ idt = ∫ 10 dt = 10 C
0

3
5 ×1

q = ∫ idt = 10 × 1 + 10 −
 + 5 ×1
0
(b)
2 

= 15 + 10 − 25 = 22.5 C

5

(c) q = ∫ idt = 10 + 10 + 10 = 30 C
0

Chapter 1, Solution 10

q = ixt = 8 x10 3 x15 x10 − 6 = 120 µ C

Chapter 1, Solution 11

q = it = 85 x10-3 x 12 x 60 x 60 = 3,672 C
E = pt = ivt = qv = 3672 x1.2 = 4406.4 J

Chapter 1, Solution 12


For 0 < t < 6s, assuming q(0) = 0,
t



t



q (t ) = idt + q (0 ) = 3tdt + 0 = 1.5t 2
0

0

At t=6, q(6) = 1.5(6)2 = 54
For 6 < t < 10s,


t

t





q (t ) = idt + q (6 ) = 18 dt + 54 = 18 t − 54
6

6


At t=10, q(10) = 180 – 54 = 126
For 10t



t



q (t ) = idt + q (10 ) = ( −12)dt + 126 = −12t + 246
10

10

At t=15, q(15) = -12x15 + 246 = 66
For 15t



q (t ) = 0 dt + q (15) =66
15

Thus,

1.5t 2 C, 0 < t < 6s

 18 t − 54 C, 6 < t < 10s

q (t ) = 
−12t + 246 C, 10 < t < 15s

66 C, 15 < t < 20s


The plot of the charge is shown below.
140
120
100

q(t)

80
60
40
20
0

0

5

10
t

15

20



Chapter 1, Solution 13
2

2

w = ∫ vidt = ∫ 1200 cos 2 4 t dt
0

0

2

= 1200 ∫ ( 2 cos 8t - 1)dt (since, cos 2 x = 2 cos 2x - 1)
0

2

2

1

= 1200 sin 8t − t  = 1200 sin 16 − 2 
8
0
4

= - 2.486 kJ

Chapter 1, Solution 14


q = ∫ idt = ∫ 10(1 - e -0.5t )dt = 10(t + 2e -0.5t )
1

(a)

(b)

0

= 10(1 + 2e

-0.5

− 2 ) = 2.131 C

1
0

p(t) = v(t)i(t)
p(1) = 5cos2 ⋅ 10(1- e-0.5) = (-2.081)(3.935)
= -8.188 W

Chapter 1, Solution 15

(a)

q = ∫ idt = ∫

2


0

− 3 2t
3e dt =
e
2

2

-2t

= −1.5(e − 1) = 1.297 C

0

-2

(b)

5di
= −6e 2t ( 5) = −30e -2t
dt
p = vi = − 90 e − 4 t W
v=

3

(c) w = ∫ pdt = -90∫ e -4t dt =
0


3

− 90 -4t
e
= − 22.5 J
−4
0


Chapter 1, Solution 16

0 25t mA
i(t) = 
,
100 - 25t mA 2 < t < 4

1

0< t <1
 10t V

v(t) = 10 V
1< t < 3

40 - 10t V 3 < t < 4
2

3


4

2

3

w = ∫ v(t)i(t)dt = ∫ 10 + (25t)dt + ∫ 10( 25t)dt + ∫ 10(100 − 25t)dt + ∫ ( 40 − 10t)(100 - 25t)mJ
0

1

=

1

3

2

4

250 3
250
t2 
t +
+ 250 4 t -  + ∫ 250( 4 − t) 2 dt
3
2 1
2 2 3

0

4


250 250
9
t2 


2
( 3) + 25012 − − 8 + 2  + 25016 t - 4t + 
=
+
3
2
2
3 3



= 916.7 mJ

Chapter 1, Solution 17

Σ p = 0 → -205 + 60 + 45 + 30 + p3 = 0
p3 = 205 – 135 = 70 W
Thus element 3 receives 70 W.
Chapter 1, Solution 18


p1 = 30(-10) = -300 W
p2 = 10(10) = 100 W
p3 = 20(14) = 280 W
p4 = 8(-4) = -32 W
p5 = 12(-4) = -48 W

Chapter 1, Solution 19

∑p=0


→

−4 I s − 2 x6 − 13 x 2 + 5 x10 = 0


→

Is = 3 A


Chapter 1, Solution 20

Since Σ p = 0
-30×6 + 6×12 + 3V0 + 28 + 28×2 - 3×10 = 0
72 + 84 + 3V0 = 210 or 3V0 = 54
V0 = 18 V

Chapter 1, Solution 21
i=

=

∆q
 photon  1  electron 
= 4 × 1011 
 ⋅ 1. 6 × 1019 ( C / electron)
 ⋅ 
∆t
 sec  8  photon 
4
× 1011 × 1. 6 × 10 −19 C/s = 0.8 × 10 -8 C/s = 8 nA
8

Chapter 1, Solution 22

It should be noted that these are only typical answers.
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

Light bulb
Radio set
TV set
Refrigerator
PC

PC printer
Microwave oven
Blender

60 W, 100 W
4W
110 W
700 W
120 W
18 W
1000 W
350 W

Chapter 1, Solution 23
(a) i =

p 1500
=
= 12.5 W
v 120

(b) w = pt = 1. 5 × 103 × 45 × 60 ⋅ J = 1.5 ×
(c) Cost = 1.125 × 10 = 11.25 cents

45
kWh = 1.125 kWh
60


Chapter 1, Solution 24


p = vi = 110 x 8 = 880 W

Chapter 1, Solution 25

4
Cost = 1.2 kW × hr × 30 × 9 cents/kWh = 21.6 cents
6

Chapter 1, Solution 26

0. 8A ⋅ h
= 80 mA
10h
(b) p = vi = 6 × 0.08 = 0.48 W
(c) w = pt = 0.48 × 10 Wh = 0.0048 kWh
(a) i =

Chapter 1, Solution 27
(a) Let T = 4h = 4 × 36005
T

q = ∫ idt = ∫ 3dt = 3T = 3 × 4 × 3600 = 43.2 kC
0

T
T
0 . 5t 

( b) W = ∫ pdt = ∫ vidt = ∫ ( 3) 10 +

dt
0
0
3600 

4×3600


0. 25t 2 

= 310t +
3600  0

= 475.2 kJ

( c)

= 3[40 × 3600 + 0. 25 × 16 × 3600]

W = 475.2 kWs, (J = Ws)
475.2
Cost =
kWh × 9 cent = 1.188 cents
3600


Chapter 1, Solution 28

(a) i =


P 30
=
= 0.25 A
V 120

( b) W = pt = 30 × 365 × 24 Wh = 262.8 kWh
Cost = $0.12 × 262.8 = $31.54

Chapter 1, Solution 29

(20 + 40 + 15 + 45)
 30 
hr + 1.8 kW  hr
60
 60 
= 2.4 + 0.9 = 3.3 kWh
Cost = 12 cents × 3.3 = 39.6 cents
w = pt = 1. 2kW

Chapter 1, Solution 30

Energy = (52.75 – 5.23)/0.11 = 432 kWh

Chapter 1, Solution 31

Total energy consumed = 365(4 +8) W
Cost = $0.12 x 365 x 12 = $526.60

Chapter 1, Solution 32


(20 + 40 + 15 + 45)
 30 
hr + 1.8 kW  hr
60
 60 
= 2.4 + 0.9 = 3.3 kWh
Cost = 12 cents × 3.3 = 39.6 cents
w = pt = 1. 2kW


Chapter 1, Solution 33
i=

dq
→ q = ∫ idt = 2000 × 3 × 10 3 = 6 C
dt

Chapter 1, Solution 34

(b) Energy =

∑ pt

= 200 x 6 + 800 x 2 + 200 x 10 + 1200 x 4 + 200 x 2

= 10,000 kWh
(c) Average power = 10,000/24 = 416.67 W

Chapter 1, Solution 35


( a) W = ∫ p( t ) dt = 400 × 6 + 1000 × 2 + 200 × 12 × 1200 × 2 + 400 × 2
= 7200 + 2800 = 10.4 kWh
( b)

10.4 kW
= 433.3 W/h
24 h

Chapter 1, Solution 36

160A ⋅ h
=4A
40
160Ah 160, 000h
( b) t =
=
= 6,667 days
0.001A 24h / day
(a)

i=

Chapter 1, Solution 37

q = 5 × 10 20 (− 1. 602 × 10 −19 ) = −80. 1 C
W = qv = −80. 1 × 12 = − 901.2 J


Chapter 1, Solution 38


P = 10 hp = 7460 W
W = pt = 7460 × 30 × 60 J = 13.43 × 106 J

Chapter 1, Solution 39

p = vi → i =

p 2 × 10 3
=
= 16.667 A
v
120


Chapter 2, Solution 1
v = iR

i = v/R = (16/5) mA = 3.2 mA

Chapter 2, Solution 2
p = v2/R →

R = v2/p = 14400/60 = 240 ohms

Chapter 2, Solution 3
R = v/i = 120/(2.5x10-3) = 48k ohms
Chapter 2, Solution 4
(a)
(b)


i = 3/100 = 30 mA
i = 3/150 = 20 mA

Chapter 2, Solution 5
n = 9; l = 7; b = n + l – 1 = 15
Chapter 2, Solution 6
n = 12;

l = 8;

b = n + l –1 = 19

Chapter 2, Solution 7
7 elements or 7 branches and 4 nodes, as indicated.
30 V
1

20 Ω

2

3
++++ -

2A

30 Ω

60 Ω


4

40 Ω

10 Ω


Chapter 2, Solution 8
12 A
a

i1
b

8A

i3

i2

12 A
c
At node a,
At node c,
At node d,

9A d

8 = 12 + i1
9 = 8 + i2

9 = 12 + i3

i1 = - 4A
i2 = 1A
i3 = -3A

Chapter 2, Solution 9
Applying KCL,
i1 + 1 = 10 + 2
1 + i2 = 2 + 3
i2 = i3 + 3

i1 = 11A
i2 = 4A
i3 = 1A

Chapter 2, Solution 10
2

4A
1

-2A
i2

i1

3

3A

At node 1,
At node 3,

4 + 3 = i1
3 + i2 = -2

i1 = 7A
i2 = -5A


Chapter 2, Solution 11
Applying KVL to each loop gives
-8 + v1 + 12 = 0
-12 - v2 + 6 = 0
10 - 6 - v3 = 0
-v4 + 8 - 10 = 0

v1 = 4v
v2 = -6v
v3 = 4v
v4 = -2v

Chapter 2, Solution 12
+ 15v -

loop 2
– 25v +
+
20v
-


+ 10v +
v1
-

loop 1

For loop 1,
For loop 2,
For loop 3,

+ v2 -

loop 3

-20 -25 +10 + v1 = 0
-10 +15 -v2 = 0
-v1 +v2 +v3 = 0

+
v3
-

v1 = 35v
v2 = 5v
v3 = 30v

Chapter 2, Solution 13
2A


1

I2

7A
2

3

I4

4
4A

I1

3A

I3


At node 2,
3 + 7 + I2 = 0


→

I 2 = −10 A

At node 1,

I1 + I 2 = 2


→

I 1 = 2 − I 2 = 12 A

At node 4,
2 = I4 + 4


→

I 4 = 2 − 4 = −2 A

At node 3,
7 + I4 = I3


→

I3 = 7 − 2 = 5 A

Hence,
I 1 = 12 A,

I 2 = −10 A,

I 3 = 5 A,


I 4 = −2 A

Chapter 2, Solution 14
+
3V
-

+
I3

4V

+

V3 -


→

V4 = 7V

For mesh 2,
+4 + V3 + V4 = 0


→

V3 = −4 − 7 = −11V



→

V1 = V3 + 3 = −8V


→

V2 = −V1 − 2 = 6V

For mesh 3,
−3 + V1 − V3 = 0

For mesh 4,
−V1 − V2 − 2 = 0

Thus,
V1 = −8V ,

V2 = 6V ,

+

- V4

For mesh 1,
−V4 + 2 + 5 = 0

V1

V3 = −11V ,


I4
2V -

+

I2

+

-

V4 = 7V

+

V2

+
I1

5V
-


Chapter 2, Solution 15

+
+


+

12V
-

1
- 8V +

v2
-

v1
-

3

+

2
v3

10V
+

-

For loop 1,
8 − 12 + v2 = 0



→

v2 = 4V

For loop 2,
− v3 − 8 − 10 = 0


→

v3 = −18V


→

v1 = −6V

For loop 3,
− v1 + 12 + v3 = 0

Thus,
v1 = −6V ,

v2 = 4V ,

v3 = −18V

Chapter 2, Solution 16

+ v1 -


6V

loop 1

+

-

+-

12V

10V
+-

+
v1
-

loop 2
+ v2 -

Applying KVL around loop 1,
–6 + v1 + v1 – 10 – 12 = 0

v1 = 14V

Applying KVL around loop 2,
12 + 10 – v2 = 0


v2 = 22V


Chapter 2, Solution 17
+ v1 -

24V

+

loop 1

-

+
v3
-

-

v2
+

loop 2
-+
12V
It is evident that v3 = 10V
Applying KVL to loop 2,
v2 + v3 + 12 = 0


v2 = -22V

Applying KVL to loop 1,
-24 + v1 - v2 = 0

v1 = 2V

Thus,
v1 = 2V, v2 = -22V, v3 = 10V
Chapter 2, Solution 18
Applying KVL,
-30 -10 +8 + I(3+5) = 0
8I = 32

I = 4A

-Vab + 5I + 8 = 0

Vab = 28V

+

-

10V


Chapter 2, Solution 19
Applying KVL around the loop, we obtain

-12 + 10 - (-8) + 3i = 0

i = -2A

Power dissipated by the resistor:
p 3Ω = i2R = 4(3) = 12W
Power supplied by the sources:
p12V = 12 (- -2) = 24W
p10V = 10 (-2) = -20W
p8V = (- -2) = -16W
Chapter 2, Solution 20
Applying KVL around the loop,
-36 + 4i0 + 5i0 = 0

i0 = 4A

Chapter 2, Solution 21
Apply KVL to obtain
10 Ω

-45 + 10i - 3V0 + 5i = 0

+ v0 -

But v0 = 10i,
-45 + 15i - 30i = 0
P3 = i2R = 9 x 5 = 45W

i = -3A


45V

+

+

-

5Ω

3v0


Chapter 2, Solution 22
4Ω
+ v0 6Ω

10A

2v0

At the node, KCL requires that
v0
+ 10 + 2 v 0 = 0
4

v0 = –4.444V

The current through the controlled source is
i = 2V0 = -8.888A

and the voltage across it is
v = (6 + 4) i0 = 10

v0
= −11.111
4

Hence,
p2 vi = (-8.888)(-11.111) = 98.75 W
Chapter 2, Solution 23
8//12 = 4.8, 3//6 = 2, (4 + 2)//(1.2 + 4.8) = 6//6 = 3
The circuit is reduced to that shown below.
ix

1Ω
+

6A

2Ω

vx

3Ω


Applying current division,
ix =

2

(6 A) = 2 A,
2 + 1+ 3

v x = 1i x = 2V

The current through the 1.2- Ω resistor is 0.5ix = 1A. The voltage across the 12- Ω
resistor is 1 x 4.8 = 4.8 V. Hence the power is
p=

v 2 4.8 2
=
= 1.92W
12
R

Chapter 2, Solution 24
(a)

I0 =

Vs
R1 + R2

V0 = −α I0 (R3 R4 ) = −

αV0
R1 + R 2




R3 R4
R3 + R4

V0
− αR3 R4
=
Vs (R1 + R2 )(R3 + R4 )
(b)

If R1 = R2 = R3 = R4 = R,
V0
α R α
=
⋅ = = 10
VS
2R 2 4

Chapter 2, Solution 25
V0 = 5 x 10-3 x 10 x 103 = 50V
Using current division,
I20 =

5
(0.01x50) = 0.1 A
5 + 20

V20 = 20 x 0.1 kV = 2 kV
p20 = I20 V20 = 0.2 kW

α = 40



Chapter 2, Solution 26
V0 = 5 x 10-3 x 10 x 103 = 50V
Using current division,
I20 =

5
(0.01x50) = 0.1 A
5 + 20

V20 = 20 x 0.1 kV = 2 kV
p20 = I20 V20 = 0.2 kW
Chapter 2, Solution 27

Using current division,
i1 =

4
(20) = 8 A
4+6

i2 =

6
(20) = 12 A
4+6

Chapter 2, Solution 28


We first combine the two resistors in parallel
15 10 = 6 Ω

We now apply voltage division,
v1 =

14
(40) = 20 V
14 + 6

v2 = v3 =
Hence,

6
(40) = 12 V
14 + 6

v1 = 28 V, v2 = 12 V, vs = 12 V


Chapter 2, Solution 29

The series combination of 6 Ω and 3 Ω resistors is shorted. Hence
i2 = 0 = v2
v1 = 12, i1 =

12
= 3A
4


Hence v1 = 12 V, i1 = 3 A, i2 = 0 = v2
Chapter 2, Solution 30
8Ω
i1

i
9A

By current division, i =

6Ω

+
v
-

4Ω

12
(9) = 6 A
6 + 12

i1 = 9 − 6 = 3A, v = 4i1 = 4 x 3 = 12 V

p6 = 12R = 36 x 6 = 216 W
Chapter 2, Solution 31

The 5 Ω resistor is in series with the combination of 10 (4 + 6) = 5Ω .
Hence by the voltage division principle,
v=


5
(20V) = 10 V
5+5

by ohm's law,
i=

v
10
=
= 1A
4 + 6 4+ 6

pp = i2R = (1)2(4) = 4 W


Chapter 2, Solution 32

We first combine resistors in parallel.
20 30 =

20 x30
= 12 Ω
50

10 40 =

10x 40
= 8Ω

50

Using current division principle,
8
12
i1 + i 2 =
(20) = 8A, i 3 + i 4 =
(20) = 12A
8 + 12
20
i1 =

20
(8) = 3.2 A
50

i2 =

30
(8) = 4.8 A
50

i3 =

10
(12) = 2.4A
50

i4 =


40
(12) = 9.6 A
50

Chapter 2, Solution 33

Combining the conductance leads to the equivalent circuit below
i
+
v
-

9A

1S

i

4S

4S

6x3
= 25 and 25 + 25 = 4 S
9
Using current division,
6 S 3S =

i=


1
1
1+
2

(9) = 6 A, v = 3(1) = 3 V

9A

+
v
-

1S

2S


Chapter 2, Solution 34

By parallel and series combinations, the circuit is reduced to the one below:

Thus i1 =

8Ω

i1

10 x15
= 6Ω

10 ( 2 + 13 ) =
25
15 x15
15 (4 + 6) =
= 6Ω
25
12 (6 + 6) = 6Ω

28V

+
v1
-

+

-

6Ω

28
= 2 A and v1 = 6i1 = 12 V
8+6

We now work backward to get i2 and v2.
i1 = 2A

8Ω

6Ω


1A

1A

28V

+
12V
-

+

-

8Ω

i1 = 2A

6Ω

+
6V
-

12 Ω

6Ω

4Ω


1A

0.6A

1A

28V

Thus, v2 =

+
12V
-

+

-

12 Ω

+
6V
-

+
15 Ω

3.6V


v
13
(3 ⋅ 6) = 3 ⋅ 12, i2 = 2 = 0.24
13
15

p2 = i2R = (0.24)2 (2) = 0.1152 W
i1 = 2 A, i2 = 0.24 A, v1 = 12 V, v2 = 3.12 V, p2 = 0.1152 W
Chapter 2, Solution 35
i
70 Ω
50V

+

-

a

+
V1
i1 -

30 Ω
I0
+

20 Ω
i2


b

V0 5 Ω
-

-

6Ω


×