TRƯỜNG THPT LAM KINH
ĐỀ THI THỬ THPT QUỐC GIA LẦN 1
MÔN: TOÁN. NĂM HỌC 2015 - 2016
Thời gian:180 phút (không kể thời gian phát đề)
2x 1
x 1
a. Khảo sát và vẽ đồ thị (C) của hàm số.
Câu 1 (2 điểm). Cho hàm số y
b. Tìm điểm M trên (C) để khoảng cách từ M đến tiệm cận đứng của đồ thị (C) bằng khoảng
cách từ M đến trục Ox.
Câu 2 (1 điểm).
a. Giải phương trình:
3 sin 2 x cos 2 x 4sin x 1 .
b. Giải bất phương trình: 2log 3 ( x 1) log
3
(2 x 1) 2 .
Câu 3 (0.5 điểm). Tính nguyên hàm sau: I x x 3dx
2
Câu 4 (1.5 điểm).
9
2
3
a. Tìm số hạng chứa x trong khai triển của x 2 .
x
b. Một ngân hàng đề thi gồm 20 câu hỏi. Mỗi đề thi gồm 4 câu được lấy ngẫu nhiên từ 20 câu
hỏi trên. Thí sinh A đã học thuộc 10 câu trong ngân hàng đề thi. Tìm xác suất để thí sinh A
rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc.
Câu 5 (1 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi I là trung điểm AB,
H là giao điểm của BD với IC. Các mặt phẳng (SBD) và (SIC) cùng vuông góc với đáy. Góc giữa
(SAB) và (ABCD) bằng 600 . Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng
SA và IC.
Câu 6 (1 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B, BC 2BA . Gọi E, F
lần lượt là trung điểm của BC, AC. Trên tia đối của tia FE lấy điểm M sao cho FM 3FE . Biết điểm
M có tọa độ 5; 1 , đường thẳng AC có phương trình 2x y 3 0 , điểm A có hoành độ là số
nguyên. Xác định tọa độ các đỉnh của tam giác ABC.
Câu 7 (1 điểm). Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể
tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a.
x 3 xy x y 2 y 5 y 4
Câu 8 (1 điểm). Giải hệ phương trình
4 y 2 x 2 y 1 x 1
Câu 9 (1 điểm). Cho a, b, c là độ dài ba cạnh của một tam giác thỏa mãn 2c b abc. Tìm giá trị
nhỏ nhất của biểu thức S
3
4
5
bca a cb a bc
----Hết----
Họ và tên thí sinh:………………………………………………………………………….Số báo danh:………………………..............
1