Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG
Facebook: LyHung95
BÀI TOÁN TÌM ĐIỂM TRÊN ĐỒ THỊ
Thầy Đặng Việt Hùng
VIDEO BÀI GIẢNG và LỜI GIẢI CHI TIẾT CÁC BÀI TẬP chỉ có tại website MOON.VN
Kiến thức cơ bản:
1) Khoảng cách giữa hai điểm A, B: AB =
( x B − x A )2 + ( yB − y A )2
2) Khoảng cách từ điểm M ( x0 ; y0 ) đến đường thẳng ∆: ax + by + c = 0 : d ( M , d ) =
Đặc biệt:
ax 0 + by0 + c
a2 + b2
+ Nếu ∆: x = a thì d ( M , ∆) = x0 − a
+ Nếu ∆: y = b thì d ( M , ∆) = y0 − b
+ Tổng các khoảng cách từ M đến các trục toạ độ là: x0 + y0 .
2
1
1
AB. AC.sin A =
AB2 . AC 2 − ( AB. AC )
2
2
x + x = 2 xI
4) Các điểm A, B đối xứng nhau qua điểm I ⇔ IA + IB = 0 ⇔ A B
y A + yB = 2 yI
3) Diện tích tam giác ABC: S =
5) Các điểm A, B đối xứng nhau qua đường thẳng ∆ ⇔ AB ⊥ ∆ (I là trung điểm AB).
I ∈ ∆
Đặc biệt:
x = x
A
+) A, B đối xứng nhau qua trục Ox ⇔ B
yB = − y A
x = x
A
+) A, B đối xứng nhau qua trục Ox ⇔ B
y
=
−
yA
B
6) Khoảng cách giữa đường thẳng ∆ với đường cong (C) bằng khoảng cách nhỏ nhất giữa một điểm M ∈ ∆
và một điểm N ∈ (C).
7) Điểm M ( x; y) được gọi là có toạ độ nguyên nếu x, y đều là số nguyên.
Ví dụ 1: [ĐVH]. Cho hàm số y = − x 3 + 3 x + 2 (C).
Tìm 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua tâm M(–1; 3).
Hướng dẫn giải:
Gọi A ( x0 ; y0 ) , B là điểm đối xứng với A qua điểm M (−1;3) ⇒ B ( −2 − x0 ;6 − y0 )
y = − x 3 + 3 x + 2
0
0
A, B ∈ (C ) ⇔ 0
3
6 − y0 = −(−2 − x 0 ) + 3(−2 − x0 ) + 2
3
⇔ 6 = − x 03 + 3 x0 + 2 − ( −2 − x0 ) + 3 ( −2 − x0 ) + 2 ⇔ 6 x 02 + 12 x0 + 6 = 0 ⇔ x0 = −1 ⇒ y0 = 0
Vậy 2 điểm cần tìm là: (−1; 0) và (−1;6)
Ví dụ 2: [ĐVH]. Cho hàm số y = −
x3
11
+ x 2 + 3x − .
3
3
Tìm trên đồ thị (C) hai điểm phân biệt M, N đối xứng nhau qua trục tung.
Hướng dẫn giải:
x2 = − x1 ≠ 0
y1 = y2
Hai điểm M ( x1; y1 ), N ( x2 ; y2 ) ∈ (C ) đối xứng nhau qua Oy ⇔
x2 = − x1 ≠ 0
x = 3
x = −3
3
⇔ x 3 2
⇔ 1
hoặc 1
x
11
11
3
x2 = −3
x2 = 3
− 1 + x1 + 3 x1 − = − 2 + x2 + 3 x 2 −
3
3
3
3
Chương trình Luyện thi PRO–S: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!
Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG
Facebook: LyHung95
16 16
, N −3; .
3
3
Vậy hai điểm thuộc đồ thị (C) và đối xứng qua Oy là: M 3;
Ví dụ 3: [ĐVH]. Cho hàm số y = − x 3 + 3 x + 2 (C).
Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng d: 2 x − y + 2 = 0 .
Hướng dẫn giải:
Gọi M ( x1; y1 ) ; N ( x2 ; y2 ) thuộc (C) là hai điểm đối xứng qua đường thẳng d
x1 + x2 y1 + y2
;
, ta có I ∈ d
2
2
I là trung điểm của AB nên I
) (
(
)
− x13 + 3 x1 + 2 + − x23 + 3 x2 + 2
y1 + y2
x +x
Ta có
=
= 2. 1 2 + 2
2
2
2
x + x = 0
3
⇒ − ( x1 + x2 ) + 3 x1 x2 ( x1 + x2 ) + 3 ( x1 + x2 ) = 2 ( x1 + x2 ) ⇒ 12 2
2
x1 − x1x2 + x2 = 1
Mặt khác: MN ⊥ d ⇒ ( x2 − x1 ) .1 + ( y2 − y1 ) .2 = 0
)
(
⇒ 7 ( x2 − x1 ) − 2 ( x2 − x1 ) x12 + x1 x2 + x22 = 0 ⇒ x12 + x1 x2 + x22 =
7
2
7
7
; x2 = ∓
2
2
2
9
2
2
x + x22 =
x1 − x1x2 + x2 = 1
1
4 ⇒ vô nghiệm
- Xét 2
7⇔
2
5
x
+
x
x
+
x
=
1
x x =
1 2
2
2
1 2 4
- Xét x1 + x2 = 0 ⇒ x1 = ±
7
1 7 7
1 7
;2 −
; − ;2 +
2
2 2 2
2 2
Vậy 2 điểm cần tìm là:
1
3
5
3
Ví dụ 4: [ĐVH]. Cho hàm số y = x 3 + x 2 − 3 x + .
Gọi A, B là các giao điểm của (C) với trục Ox. Chứng minh rằng trên đồ thị (C) tồn tại hai điểm cùng nhìn
đoạn AB dưới một góc vuông.
Hướng dẫn giải:
PT hoành độ giao điểm của (C) với trục hoành:
1
3
1 3
5
x = 1
x + x 2 − 3x + = 0 ⇔
3
3
x = −5
5
3
⇒ A(−5;0), B(1;0) . Gọi M a; a3 + a2 − 3a + ∈ (C ), M ≠ A, B
1
3
5
3
1
3
5
3
⇒ AM = a + 5; a3 + a2 − 3a + , BM = a − 1; a3 + a2 − 3a +
1
AM ⊥ BM ⇔ AM .BM = 0 ⇔ (a + 5)(a − 1) + (a + 5)2 (a − 1)4 = 0
9
1
⇔ 1 + (a − 1)3 (a + 5) = 0 ⇔ a4 + 2a3 − 12a2 + 14a + 4 = 0 (*)
9
Đặt y = a4 + 2a3 − 12a2 + 14a + 4 = 0 , có tập xác định D = R.
7
2043
y′ = 4a3 + 6a2 − 12a + 14 ; y′ = 0 có 1 nghiệm thực a0 ≈ − ⇒ y0 ≈ −
2
16
Dựa vào BBT ta suy ra (*) luôn có 2 nghiệm khác 1 và –5.
Vậy luôn tồn tại 2 điểm thuộc (C) cùng nhìn đoạn AB dưới một góc vuông.
Ví dụ 5: [ĐVH]. Cho hàm số y = x 4 − 2 x 2 + 1 .
Tìm toạ độ hai điểm P, Q thuộc (C) sao cho đường thẳng PQ song song với trục hoành và khoảng cách từ
điểm cực đại của (C) đến đường thẳng PQ bằng 8.
Hướng dẫn giải:
Chương trình Luyện thi PRO–S: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!
Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG
Facebook: LyHung95
Điểm cực đại của (C) là A(0;1) . PT đường thẳng PQ có dạng: y = m (m ≥ 0) .
Vì d ( A, PQ) = 8 nên m = 9 . Khi đó hoành độ các điểm P, Q là nghiệm của phương trình:
x 4 − 2 x 2 − 8 = 0 ⇔ x = ±2 .
Vậy: P(−2;9), Q(2;9) hoặc P(2;9), Q(−2;9) .
Ví dụ 6: [ĐVH]. Cho hàm số y = x 4 + mx 2 − m − 1 (Cm).
Chứng minh rằng khi m thay đổi thì (Cm) luôn luôn đi qua hai điểm cố định A, B. Tìm m để các tiếp tuyến
tại A và B vuông góc với nhau.
Hướng dẫn giải:
Hai điểm cố định A(1; 0), B(–1; 0). Ta có: y′ = 4 x 3 + 2mx .
3
2
5
2
Các tiếp tuyến tại A và B vuông góc với nhau ⇔ y′ (1).y′ (−1) = −1 ⇔ (4 + 2m)2 = 1 ⇔ m = − ; m = − .
x+2
.
2x −1
Ví dụ 7: [ĐVH]. Cho hàm số y =
Tìm những điểm trên đồ thị (C) cách đều hai điểm A(2; 0) và B(0; 2).
Hướng dẫn giải:
PT đường trung trực đọan AB: y = x .
Những điểm thuộc đồ thị cách đều A và B có hoành độ là nghiệm của PT:
x+2
1− 5
1+ 5
= x ⇔ x2 − x − 1 = 0 ⇔ x =
;x=
2x −1
2
2
1− 5 1− 5 1+ 5 1+ 5
Hai điểm cần tìm là:
,
,
;
2
2
2
2
Ví dụ 8: [ĐVH]. Cho hàm số y =
3x − 4
(C).
x −2
Tìm các điểm thuộc (C) cách đều 2 tiệm cận.
Hướng dẫn giải:
Gọi M ( x; y) ∈ (C) và cách đều 2 tiệm cận x = 2 và y = 3.
Ta có: x − 2 = y − 3 ⇔ x − 2 =
x
x
3x − 4
x = 1
−2 ⇔ x −2 =
⇔
= ±( x − 2) ⇔
x −2
x −2
x −2
x = 4
Vậy có 2 điểm thoả mãn đề bài là : M1( 1; 1) và M2(4; 6)
Ví dụ 9: [ĐVH]. Cho hàm số y =
2x + 1
x +1
(C).
Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất.
Hướng dẫn giải:
Gọi M ( x0 ; y0 ) ∈ (C), ( x0 ≠ −1 ) thì y0 =
2 x0 + 1
1
=2−
x0 + 1
x0 + 1
Gọi A, B lần lượt là hình chiếu của M trên TCĐ và TCN thì: MA = x0 + 1 , MB = y0 − 2 =
Áp dụng BĐT Cô-si ta có: MA + MB ≥ 2 MA.MB = 2 x0 + 1 .
⇒ MA + MB nhỏ nhất bằng 2 khi x0 + 1 =
1
x0 + 1
1
=2
x0 + 1
x = 0
1
⇔ 0
.
x0 + 1
x0 = −2
Vậy ta có hai điểm cần tìm là (0; 1) và (–2; 3).
Ví dụ 10: [ĐVH]. Cho hàm số y =
2x −1
.
x +1
Tìm tọa độ điểm M ∈ (C) sao cho khoảng cách từ điểm I(−1; 2) tới tiếp tuyến của (C) tại M là lớn nhất.
Hướng dẫn giải:
Chương trình Luyện thi PRO–S: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!
Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG
Facebook: LyHung95
3
∈ (C ) . PTTT ∆ của (C) tại M là:
x0 + 1
Giả sử M x0 ; 2 −
3
3
y−2+
=
( x − x0 ) ⇔ 3( x − x0 ) − ( x 0 + 1)2 ( y − 2) − 3( x0 + 1) = 0
x 0 + 1 ( x + 1)2
0
Khoảng cách từ I(−1;2) tới tiếp tuyến ∆ là: d =
Theo BĐT Cô–si:
9
2
( x0 + 1)
3(−1 − x0 ) − 3( x 0 + 1)
9 + ( x 0 + 1)
4
=
6 x0 + 1
9 + ( x0 + 1)4
6
=
9
.
2
( x 0 + 1)2
+ ( x0 + 1)
+ ( x0 + 1)2 ≥ 2 9 = 6 ⇒ d ≤ 6 .
Khoảng cách d lớn nhất bằng
9
6 khi
2
( x0 + 1)
= ( x0 + 1)2 ⇔ ( x0 + 1)2 = 3 ⇔ x 0 = −1 ± 3 .
Vậy có hai điểm cần tìm là: M ( −1 + 3 ;2 − 3 ) hoặc M ( −1 − 3 ;2 + 3 )
Ví dụ 11: [ĐVH]. Cho hàm số y =
2x − 4
.
x +1
Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(–3; 0) và N(–1; –1).
Hướng dẫn giải:
MN = (2; −1) ⇒ Phương trình MN: x + 2 y + 3 = 0 .
Phương trình đường thẳng (d) ⊥ MN có dạng: y = 2 x + m .
Phương trình hoành độ giao điểm của (C) và (d):
2x − 4
= 2 x + m ⇔ 2 x 2 + mx + m + 4 = 0 ( x ≠ −1)
x +1
(1)
(d) cắt (C) tại hai điểm phân biệt A, B ⇔ ∆ = m 2 − 8m − 32 > 0
(2)
Khi đó A( x1;2 x1 + m), B( x2 ;2 x2 + m) với x1, x2 là các nghiệm của (1)
x1 + x2
m m
; x1 + x2 + m ≡ I − ; (theo định lý Vi-et)
2
4 2
A, B đối xứng nhau qua MN ⇔ I ∈ MN ⇔ m = −4
Suy ra (1) ⇔ 2 x 2 − 4 x = 0 ⇔ x = 0 ⇒ A(0; –4), B(2; 0).
x = 2
Trung điểm của AB là I
Ví dụ 12: [ĐVH]. Cho hàm số y =
2x
x −1
.
Tìm trên đồ thị (C) hai điểm B, C thuộc hai nhánh sao cho tam giác ABC vuông cân tại đỉnh A với A(2; 0).
Hướng dẫn giải:
Ta có (C ) : y = 2 +
2
x −1
. Gọi B b;2 +
2
2
, C c;2 +
với b < 1 < c .
b −1
c −1
Gọi H, K lần lượt là hình chiếu của B, C lên trục Ox.
Ta có: AB = AC; BAC = 900 ⇒ CAK + BAH = 900 = CAK + ACK ⇒ BAH = ACK
{
và: BHA = CKA = 90 0 ⇒ ∆ ABH = ∆CAK ⇒ AH = CK
C
HB = AK
2
2 − b = 2 + c − 1
b = −1
⇔
Hay:
.
2
c=3
2+
= c−2
b −1
Vậy B(−1;1), C (3;3)
{
Ví dụ 13: [ĐVH]. Cho hàm số y =
B
H
A
K
x −3
.
x +1
Tìm trên hai nhánh của đồ thị (C) hai điểm A và B sao cho AB ngắn nhất.
Hướng dẫn giải:
Chương trình Luyện thi PRO–S: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!
Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG
Facebook: LyHung95
Tập xác định D = R \ { − 1} . Tiệm cận đứng x = −1 .
4
a
4
b
Giả sử A −1 − a;1 + , B −1 + b;1 − (với a > 0, b > 0 ) là 2 điểm thuộc 2 nhánh của (C)
2
1 1
16
16
64
AB = (a + b) + 16 + = (a + b)2 1 +
≥ 4ab 1 +
= 4ab +
≥ 32
2
2
2
2
ab
a b
a b
a b
2
2
a = b
a = b
⇔a=b=44
16 ⇔ 4
ab
4
=
a
4
=
ab
AB nhỏ nhất ⇔ AB = 4 2 ⇔
Khi đó: A ( −1 − 4 4;1 + 4 64 ) , B ( −1 + 4 4;1 − 4 64 ) .
Ví dụ 14: [ĐVH]. Cho hàm số y =
−x + 1
.
x −2
Tìm trên đồ thị (C), các điểm A, B sao cho độ dài đoạn AB bằng 4 và đường thẳng AB vuông góc với đường
thẳng d : y = x .
Hướng dẫn giải:
PT đường thẳng AB có dạng: y = − x + m . PT hoành độ giao điểm của (C) và AB:
−x + 1
= − x + m ⇔ g( x ) = x 2 − (m + 3) x + 2m + 1 = 0 (1) ( x ≠ 2)
x −2
∆ > 0
Để có 2 điểm A, B thì (1) phải có 2 nghiệm phân biệt khác 2 ⇔ g
g(2) ≠ 0
2
⇔ (m + 3) − 4(2m + 1) > 0 ⇔ ∀m .
4 − (m + 3).2 + 2m + 1 ≠ 0
x + x = m + 3
Ta có: A B
. Mặt khác y A = − x A + m; yB = − xB + m
x A .x B = 2 m + 1
Do đó: AB = 4 ⇔ ( xB − x A )2 + ( yB − y A )2 = 16 ⇔ m 2 − 2m − 3 = 0 ⇔ m = −1 .
m = 3
+ Với m = 3 , thay vào (1) ta được: x 2 − 6 x + 7 = 0 ⇔ x = 3 + 2 ⇒ y = − 2
x = 3 − 2 ⇒ y = 2
⇒ A(3 + 2; − 2), B(3 − 2; 2) hoặc A(3 − 2; 2), B(3 + 2; − 2)
+ Với m = −1 , thay vào (1) ta được: x 2 − 2 x − 1 = 0 ⇔ x = 1 + 2 ⇒ y = −2 − 2
x = 1 − 2 ⇒ y = −2 + 2
⇒ A(1 + 2; −2 − 2); B(1 − 2; −2 + 2) hoặc A(1 − 2; −2 + 2); B(1 + 2; −2 − 2)
Chương trình Luyện thi PRO–S: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!