Tải bản đầy đủ (.pptx) (41 trang)

AAE556 Lecture_3435_pk_flutter

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (276.12 KB, 41 trang )

AAE 556
Aeroelasticity
The P-k flutter solution method
(also known as the “British” method)

Purdue Aeroelasticity

1


The eigenvalue problem from the Lecture 33
 ωh2 

ω 
 2 ÷ 0  h b   1
−
 + 
÷( 1 + ig )  ωθ 

ω 
θ   xθ
2
 0

rθ 

2
θ
2



1  Lh
+ 
µ
 M θ h
 ωθ2 

0

h   ω 2 ÷
  1
Ω 2  b  =  h 
 x


1
 θ   0
 θ

rθ 2  


xθ   h 
b
2
rθ   θ 
 


1
   h 

L

+
a
÷Lh    b  = 0 
 α 2

     

0
  θ   
M θθ


xθ  1  Lh
+
rθ 2  µ 
 M θ h


1
    h 
 Lα −  2 + a ÷Lh     b 

   

   θ 
M θθ

2


Purdue Aeroelasticity


Genealogy of the V-g or “k” method
i

Equations of motion for harmonic response (next slide)




i

Forcing frequency and airspeeds are is known parameters
Reduced frequency k is determined from ω and V
Equations are correct at all values of ω and V.

Take away the harmonic applied forcing function





Equations are only true at the flutter point
We have an eigenvalue problem
Frequency and airspeed are unknowns, but we still need k to define the numbers to compute the
elements of the eigenvalue problem




We invent ed Theodorsen’s method or V-g artificial damping to create an iterative approach to finding
the flutter point

Purdue Aeroelasticity

3


Go back to the original typical section equations of motion, restricted to steady-state
harmonic response


2 AEOM
+ω 
 DEOM

h 
BEOM     F 

b  = 
EEOM     M SC 
θ 

4

Purdue Aeroelasticity


The coefficients for the EOM’s


AEOM

  ω 2 ω 2  L
= − 1 −  h ÷ θ2 ÷− h
  ωθ  ω ÷ µ



BEOM
DEOM

1
1

= − xθ −  Lα − Lh  + a ÷÷
µ
2


1
1

= − xθ −  M h − Lh  + a ÷÷
µ
2


(


EEOM = − rθ2 1 − ωθ2

)

Mh
+
µ

2

1
 M α Lα  1
 Lh  1

+
a

+
+
a

+
a

÷

÷

÷
2

µ
µ
2
µ
2






5

Purdue Aeroelasticity


The eigenvalue problem
2  AEOM
ω 
 DEOM

h 

BEOM   0 
b  =  
EEOM    0 
θ 

 AEOM


 DEOM

h 
BEOM    0 
b  =  
EEOM    0 
θ 

 AEOM
( −µ ) 
 DEOM

h 

BEOM   0 
b  =  
EEOM    0 
θ 

ω
ω2
2

6

Purdue Aeroelasticity


Another version of the eigenvalue problem with different
coefficents


 AEOM
( −µ ) 
 DEOM

h 
h 



BEOM  
A B   0 
b  = 
b  =  
EEOM     D E    0 
θ 
θ 

  ω 2  ω 2  ω 2

A = µ 1 −  h ÷  θ ÷  h ÷ ( 1 + ig ) ÷+ Lh
  ωθ   ω   ωθ 
÷



1

B = µ xθ + Lα − Lh  + a ÷
2


7

Purdue Aeroelasticity


Definitions of terms for alternative set-up of eigenvalue equations for
“k-method”

h 
 A B    0 

b  =  
 D E   θ  0 
 

1

D = µ xθ + M h − Lh  + a ÷
2


2


ω
 θ
1

2

E = µ rθ  1 − 
1
+
ig
÷−
M
+
a
+ Mα
(
)
h
÷
 ω ÷
÷
2




2

1

1

− Lα  + a ÷+ Lh  + a ÷
2

2



8

Purdue Aeroelasticity


Return to the EOM’s before we assumed harmonic motion

Here is what we would like to have

&j } +  K ij  { η j } +  Aij( 1)  { η j } +  Aij( 2)  { η&j } +  Aij( 3)  { η&
&
 M ij  { η&





 j } = { 0}

{η } = {η } e
j

j

Here is the first step in solving the stability problem

pt


p = σ + jω

p 2  M ij  { η j } +  Kij  { η j } +  Aij( 1)  { η j }

2
3
+ p  Aij( )  { η j } + p 2  Aij( )  { η j } = { 0}

9

Purdue Aeroelasticity


The p-k method will use the harmonic aero results to cast the stability
problem in the following form

1


p  M ij  { η } − p  Bij  { η } +   K ij  − ρV 2 Qij ,real   { η } = { 0}
2


2

{η ( t )} = {η} e
…but first, some preliminaries

Purdue Aeroelasticity


10

pt


Revisit the original, harmonic EOM’s where the aero forces were still on the right hand side
of the EOM’s and we hadn’t yet nondimensionalized

  h  
1
   iωt
P = − L = πρ b ω  Lh  ÷+  Lα −  + a ÷Lh  θ  e
2
  
  b  
3

2


1
   h b  iωt
 Lα −  2 + a ÷Lh ÷   e

    θ 



P = πρ b ω ( Lh )


3

2

h

V
airfoil chordline
b

ba

shear center
b

P

P =  A11

h 
A12   b 
 θ 
11

Purdue Aeroelasticity


This lift expression looks strange; where is the dynamic
pressure?


  h  
1
   iωt
P = πρ b ω  Lh  ÷+  Lα −  + a ÷Lh  θ  e
2
  
  b  
3

2

V 2 
h  
  i ωt
1


3 2
P =  2 πρb ω  Lh   +  Lα −  + a  Lh θ e
2
  
V 
 b 

ρV 2
b 2ω 2
P=
b( 2π ) 2
2
V


ωb
k=
V

Purdue Aeroelasticity

12

 h  
1
   i ωt
 Lh   +  Lα −  + a  Lh θ e
2
  
 b 


Writing aero force in different notation
- more term definitions

P =  A11

h  1
 h 
2
A12   b  = ρV Q11 Q12   b 
 θ  2
 θ 


Q11

Q11

2
A
Q12  =
2  11
ρV

2πρ b3ω 2 
Q12  =
( Lh )
2
ρV


A12 


1
 
 Lα −  + a ÷Lh ÷
2
 


The Qij’s are complex numbers
13


Purdue Aeroelasticity


Aero force
in terms of the Qij’s

Q11


Q12  = 2bπ k ( Lh )



1
 
 Lα − Lh  + a ÷÷
2
 


2

(

Q11 = 2π bk 2 Lh = 2π b k 2 − i 2kC ( k )

)


1


Q12 = 2π bk  Lα − Lh  + a ÷÷
2


2

 k2

1

2
Q12 = 2π b   − ik ( 1 + 2C ( k ) ) − 2C ( k ) ÷− k − i 2kC ( k )  + a ÷÷
 2
2
÷




(

)

14

Purdue Aeroelasticity


Q11


Focus first on the term

(

Q11 = 2π b k − i 2kC ( k )
2

(

Q11 = 2π b k 2 − i 2k ( F + iG )

(

)

Q11 = 2π b  k 2 + 2kG  − i [ 2kF ]

)

Q11 = Q11,real + iQ11,imaginary

15

Purdue Aeroelasticity

)


The second term

 k2

1

2
Q12 = 2π b   − ik ( 1 + 2C ( k ) ) − 2C ( k ) ÷− k − i 2kC ( k )  + a ÷÷
 2
2
÷




(

)

 k2

1

2
Q12 = 2π b   − ik ( 1 + 2 ( F + iG ) ) − 2 ( F + iG ) ÷− k − i 2k ( F + iG )  + a ÷÷
 2
2
÷





(

)


3
 
 1

2
Q12 = 2π b   −2 F − k a + 2kG  + a ÷+ i  −k − 2G + 2kF  − + a ÷÷÷÷

2
 
 2
÷



16

Purdue Aeroelasticity


Let’s adopt notation from the controls community to help with our
conversion

(

Q11 = 2π b  k 2 + 2kG  − j [ 2kF ]


)

Q11 = Q11,real + jQ11,imaginary
If we were to assume motion e pt and p ≅ jω
p
then
≅1


Q11 = Q11,real

 p 
+
÷ jQ11,imaginary
 jω 
17

Purdue Aeroelasticity


Continue working on the first term in the aero force expression

 p
Q11 = Q11,real +  ÷Q11,imaginary
ω 
Q11,imaginary
Q11 = Q11,real + p
ω


P =  A11

 h 
A12   b 
 θ 

The expression for A11 reads

2
1
1
ρ
V
A11 = ρV 2Q11,real + p
Q11,imaginary
2
2 ω

18

Purdue Aeroelasticity


The term with the p in it looks like a damping term so let’s work on it

2
1
1
ρ
V

A11 = ρV 2Q11,real + p
Q11,imaginary
2
2 ω

1
ρVb V
2
A11 = ρV Q11, real + p
Q11,imaginary
2
2 bω
1
ρVb Q11,imaginary
2
A11 = ρV Q11,real + p
2
2
k

19

Purdue Aeroelasticity


Finally, the exact expressions for each term are as follows

1
ρVb Q11,imaginary
2

A11 = ρV Q11,real + p
2
2
k

(

Q11 = 2π b  k 2 + 2kG  − j [ 2kF ]

)

1
ρVb
2
2

A11 = ρV 2π b  k + 2kG  − p
[ 2F ]


2
2
Both terms are real numbers, there is no j here.

20

Purdue Aeroelasticity


Aerodynamic moment expression


M aero

Mα =

 1  1
 h
  −  + a ÷Lh ÷
 b
2 2
4 2
= πρ b ω 
2


 +  M α −  Lα + 1 ÷ 1 + a ÷+ Lh  1 + a ÷ ÷θ
÷
 
2
2
2











3 1
−i
8 k

M aero =  A21

h 
A22   b 
 θ 

1 1
 
A21 = πρ b 4ω 2  −  + a ÷Lh ÷
 
2 2
2

1
1
1




 
4 2
A22 = πρ b ω  M α −  Lα + ÷ + a ÷+ Lh  + a ÷ ÷

2  2



2
 ÷

21

Purdue Aeroelasticity


÷
÷
÷
÷
÷



The Qij’s

2
Q21 Q22  =
A
2  21
ρV
Q21,real

 2

= Real 

A
2 21 ÷
 ρV


Q22,real

 2

= Real 
A
2 22 ÷
 ρV


A22 

Q21,imaginary

 2

= Imag 
A
2 21 ÷
 ρV


Q22,imaginary

 2


= Imag 
A
2 22 ÷
 ρV


22

Purdue Aeroelasticity


The p-k process

i

Step 1

i

Choose a value of k and compute all four complex aerodynamic
coefficients

– These are the complex Aij’s with the Theodorsen Circulation function in
them

– These will be a set of complex numbers, not algebraic expressions
i

Choose an air density (altitude) and airspeed (V)


Purdue Aeroelasticity

23


Perform this computation

2
Qij  =
A 
2  ij 
ρV

24

Purdue Aeroelasticity


Compute the aerodynamic damping matrix, defined as

1 Vb
 Bij  = ρ
Qij ,imaginary 
2 k
 Qij ,imaginary 
1
 Bij  = ρVb 

2

k



25

Purdue Aeroelasticity


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×