BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Nguyễn Thành Quốc
PHÁT TRIỂN TƯ DUY HÀM CHO
HỌC SINH THÔNG QUA MÔ HÌNH
HÓA TOÁN HỌC VÀ GIẢI QUYẾT
TÌNH HUỐNG GỢI VẤN ĐỀ
LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC
Thành phố Hồ Chi Minh – 2013
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Nguyễn Thành Quốc
PHÁT TRIỂN TƯ DUY HÀM CHO
HỌC SINH THÔNG QUA MÔ HÌNH
HÓA TOÁN HỌC VÀ GIẢI QUYẾT
TÌNH HUỐNG GỢI VẤN ĐỀ
Chuyên ngành : Lý luận và phương pháp dạy học môn Toán
Mã số
: 60 14 01 11
LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC:
TS. NGUYỄN THỊ NGA
Thành phố Hồ Chí Minh - 2013
LỜI CAM ĐOAN
Tôi xin cam đoan luận văn này là một công trình nghiên cứu độc lập,những
trích dẫn nêu trong luận văn đều chính xác và trung thực.
Nguyễn Thành Quốc
1
LỜI CẢM ƠN
Tôi xin chân thành bày tỏ lòng biết ơn sâu sắc đến TS. Nguyễn Thị Nga, người đã
nhiệt tình hướng dẫn và giúp đỡ tôi hoàn thành luận văn này.
Tôi cũng xin trân trọng cảm ơn PGS.TS. Lê Thị Hoài Châu, PGS.TS. Lê Văn Tiến,
TS. Trần Lương Công Khanh, TS. Lê Thái Bảo Thiên Trung, TS. Vũ Như Thư Hương đã
nhiệt tình giảng dạy cho chúng tôi những kiến thức về didactic toán, cung cấp cho chúng tôi
những công cụ hiệu quả để thực hiện việc nghiên cứu.
Xin được gửi lời cảm ơn chân thành đến tất cả các bạn cùng khóa, những người đã
cùng tôi chia sẻ những khó khăn trong suốt khóa học.
Cuối cùng, tôi xin bày tỏ lòng biết ơn sâu sắc đến vợ và những người thân yêu trong
gia đình đã luôn động viên tôi hoàn thành khóa học.
Nguyễn Thành Quốc
2
MỤC LỤC
LỜI CAM ĐOAN ........................................................................................................ 1
LỜI CẢM ƠN .............................................................................................................. 2
MỤC LỤC .................................................................................................................... 3
DANH MỤC CÁC CHỮ VIẾT TẮT ......................................................................... 5
MỞ ĐẦU....................................................................................................................... 6
1. Những ghi nhận ban đầu và câu hỏi xuất phát ............................................................ 6
2. Câu hỏi nghiên cứu ........................................................................................................ 8
3. Phương pháp nghiên cứu và mục đích nghiên cứu ..................................................... 8
4. Tổ chức của luận văn ...................................................................................................... 9
CHƯƠNG 1: CƠ SỞ LÝ LUẬN .............................................................................. 10
1.1. Đặc trưng khoa học luận của khái niệm hàm số ..................................................... 10
1.2. Tư duy hàm ................................................................................................................ 13
1.3. Quá trình mô hình hóa toán học .............................................................................. 15
1.4. Dạy học đặt và giải quyết vấn đề .............................................................................. 17
1.4.1. Những khái niệm cơ bản ...................................................................................... 17
1.4.2. Dạy học đặt và giải quyết vấn đề ......................................................................... 18
1.5. Phát triển tư duy hàm cho học sinh nhờ vào mô hình hóa và giải quyết các tình
huống gợi vấn đề ............................................................................................................... 19
CHƯƠNG 2: TƯ DUY HÀM TRONG DẠY HỌC TOÁN Ở TRƯỜNG PHỔ
THÔNG ...................................................................................................................... 20
2.1. Giai đoạn hàm số được giảng dạy như đối tượng tiền toán học (tiểu học đến đầu
năm lớp 7) .......................................................................................................................... 20
2.2. Giai đoạn hàm số được giảng dạy như đối tượng toán học (từ lớp 7 trở đi)........ 23
2.2.1. Lớp 7..................................................................................................................... 23
2.2.2. Lớp 9..................................................................................................................... 27
2.2.3. Lớp 10................................................................................................................... 30
2.3. Kết luận ....................................................................................................................... 34
CHƯƠNG 3. THỰC NGHIỆM................................................................................ 36
3.1. Mục đích thực nghiệm ............................................................................................... 36
3.2. Thực nghiệm : Tiểu đồ án didactic .......................................................................... 37
3.2.1. Nội dung thực nghiệm .......................................................................................... 37
3.2.2. Dàn dựng kịch bản................................................................................................ 38
3
3.2.3. Đối tượng thực nghiệm......................................................................................... 39
3.2.4. Phân tích tiên nghiệm ........................................................................................... 39
3.2.5. Phân tích hậu nghiệm ........................................................................................... 45
3.3 Kết luận ........................................................................................................................ 57
KẾT LUẬN ................................................................................................................ 58
TÀI LIỆU THAM KHẢO ........................................................................................ 60
PHỤ LỤC ................................................................................................................... 62
4
DANH MỤC CÁC CHỮ VIẾT TẮT
HS
: Học sinh.
GV
: Giáo viên.
SGK
: Sách giáo khoa.
SGV
: Sách giáo viên.
THCS
: Trung học cơ sở.
THPT
: Trung học phổ thông.
KNV
: Kiểu nhiệm vụ
DHĐ&GQVĐ : Dạy học đặt và giải quyết vấn đề
5
MỞ ĐẦU
1. Những ghi nhận ban đầu và câu hỏi xuất phát
Ghi nhận 1
Hàm số là một trong các khái niệm cơ bản của Toán học, “biểu diễn sự phụ thuộc
của những đại lượng biến thiên này đối với những đại lượng biến thiên khác”. Trong SGK
Toán Việt Nam, khái niệm hàm số được xây dựng từng bước qua nhiều cấp lớp. Khái niệm
hàm số được định nghĩa đầu tiên ở lớp 7. Sau đó được định nghĩa một cách đầy đủ ở lớp 10.
Cụ thể:
Cho một tập hợp khác rỗng D⊂R
Hàm số 𝑓 xác định trên D là một quy tắc đặt tương ứng mỗi số 𝑥 thuộc D với một
và chỉ một số, kí hiệu là f ( x) ; số f ( x) đó gọi là giá trị của hàm số 𝑓 tại x .
Tập D gọi là tập xác định (hay miền xác định), x gọi là biến số hay đối số của hàm
số 𝑓 . (Trích SGK Đại số 10 nâng cao)
Sau khi đưa ra định nghĩa, SGK còn lưu ý “ Trong ký hiệu hàm số y = f ( x) , ta còn
gọi x là biến số độc lập, y là biến số phụ thuộc của hàm số f. Biến số độc lập và biến số phụ
thuộc của một hàm số có thể được kí hiệu bởi hai chữ cái tùy ý khác nhau.”
Định nghĩa này làm nổi bật đặc trưng tương ứng của hàm số. Tuy nhiên, các thuật
ngữ “quy tắc”, “tương ứng”, “biến số”, “ biến số độc lập”, “ biến số phụ thuộc” được coi
là những khái niệm không được định nghĩa. Phải chăng việc chính xác hóa các khái niệm
này là phức tạp và không cần thiết đối với học sinh? Điều này có ảnh hưởng như thế nào
trên việc học tập của học sinh?
Sự ảnh hưởng của định nghĩa khái niệm hàm số này đã được thể hiện trong các luận
văn khoá trước. Cụ thể:
“Đối với học sinh, hàm số luôn gắn liền với một biểu thức giải tích. Vì vậy, họ gặp
nhiều khó khăn khi đối diện với các tình huống trong đó hàm số xuất hiện dưới dạng
bảng hay đồ thị”( Theo Nguyễn Thị Nga- 2003)
“Mối quan hệ cá nhân giữa học sinh và khái niệm hàm số dựa trên cách biểu diễn
hàm số bằng biểu thức giải tích xuất hiện các quy tắc hợp đồng: R1: y kí hiệu dùng để
chỉ biến phụ thuộc, x kí hiệu dùng để chỉ biến độc lập.”( Theo Đỗ Thị Thuý Vân-2010)
“ Hai hệ thống biểu đạt hàm số được đề cập chủ yếu là biểu thức giải tích và đồ thị.
6
Tuy nhiên, biểu thức giải tích vẫn chiếm ưu thế, vai trò công cụ của đồ thị khá mờ
nhạt. Học sinh chưa thực sự thấy được nhu cầu chuyển đổi hệ thống biểu đạt” (Theo
Nguyễn Thị Hồng Duyên-2012)
Dạy học hàm số là giúp học sinh thấy được vai trò của nó trong thực tế và tập cho họ
khả năng sử dụng nó vào giải quyết các vấn đề của thực tế. Để làm được điều này, phải giúp
học sinh nhận thấy rằng: hàm số không chỉ xuất hiện trong toán học mà còn được sử dụng
như công cụ để giải quyết các vấn đề của thực tiễn và của nhiều lĩnh vực khác như vật lí,
kinh tế, trắc địa, tin học, …Trong các giáo trình, sách giáo khoa toán, hàm số thường xuất
hiện trước hết với tư cách là đối tượng nghiên cứu, sau đó với tư cách là một công cụ để giải
quyết nhiều bài toán thuộc những nội dung toán học khác như phương trình, bất phương
trình…Trong chương hàm số bậc nhất và bậc hai, SGK Đại số 10 nâng cao cũng cố gắng
thực hiện mục tiêu này. Tuy nhiên, chúng tôi thống kê được trong chương này chỉ có 4 bài
toán có tính thực tế (bài 25 tr54, bài 37,38 tr61, bài 46 tr64). Trong các bài toán nói trên, các
“ biến số độc lập”, “ biến số phụ thuộc” và mối liên hệ giữa chúng đã được đề cập tường
minh trong đề toán.
Như vậy, câu hỏi đặt ra: khi gặp một bài toán thực tế, học sinh có quan tâm đến mối
liên hệ phụ thuộc lẫn nhau giữa các đại lượng trong sự vận động của chúng hay không? Học
sinh có xác định được đại lượng biến thiên nào là biểu diễn sự phụ thuộc cho đại lượng biến
thiên khác? Nói cách khác, học sinh có thể nhìn bài toán theo quan điểm hàm và sử dụng
các kiến thức về hàm số để giải quyết các vấn đề thực tế hay không?
Ghi nhận 2
Kiến thức hàm số có vai trò quan trọng trong toàn bộ chương trình môn toán phổ
thông. Điều này được khẳng định không chỉ ở nước ta mà còn được đề cập đến trong nhiều
ý kiến của các nhà khoa học nước ngoài. Ta có thể thấy được điều này qua các ý kiến sau
đây:
- Ý kiến của Kơlanh khi khởi xướng phong trào cải cách việc dạy học toán ở trường phổ
thông đầu thế kỉ 20 đã đề nghị: Đưa cái mới vào giáo trình toán phổ thông, lấy tư tưởng hàm
số và biến hình làm tư tưởng quan trọng nhất. Kiến nghi của Hội nghị Quốc tế về giáo dục
họp tại Giơnevơ (tháng 7 năm 1956) gửi các vị Bộ trưởng Giáo dục các nước nêu rõ: Nên
xây dựng chương trình sao cho việc dạy Toán dựa trên các cơ sở hàm số…
- Ở Việt Nam, chương trình Toán trong cải cách giáo dục và các chương trình đổi mới
trong những năm gần đây đều chú trọng đến kiến thức hàm số. Trong tài liệu “Phương pháp
7
dạy học bộ môn Toán”, GS Nguyễn Bá Kim cho rằng “Đảm bảo khái niệm trung tâm của
hàm số” là một trong ”những tư tưởng cơ bản” của chương trình môn Toán bậc THPT. Khi
phân tích tư tưởng này tác giả đã nhấn mạnh:
•
Nghiên cứu hàm số được coi là nhiệm vụ xuyên suốt trong chương trình bậc Phổ thông Trung học.
•
Phần lớn chương trình Đại số và Giải tính dành cho việc trực tiếp nghiên cứu hàm số và công cụ
khảo sát hàm số.
•
Cấp số cộng và cấp số nhân được nghiên cứu như những hàm số đối số tự nhiên.
•
Lượng giác chủ yếu nghiên cứu hàm số lượng giác còn công thức lượng giác được giảm nhẹ.
•
Phương trình và bất phương trình được trình bày liên hệ chặt chẽ với hàm số.
Gắn bó chặt chẽ với khái niệm hàm là tư duy hàm. Phát triển tư duy hàm có ý nghĩa
quan trọng trong dạy học toán, nó vừa là yêu cầu của việc dạy học môn Toán, vừa là điều
kiện để nâng cao chất lượng dạy học nhiều tuyến kiến thức môn Toán. Việc dạy học các
kiến thức môn Toán được trình bày theo tư tưởng hàm số có tác dụng tốt trong việc phát
triển tư duy hàm cho học sinh đồng thời có thể rèn luyện nhiều kỹ năng giải toán và ứng
dụng kiến thức toán cho học sinh trong sự kết hợp phát triển tư duy hàm. Như vậy, có
những hoạt động nào đặc trưng cho tư duy hàm được đề cập trong chương trình và SGK phổ
thông?
2. Câu hỏi nghiên cứu
Từ những ghi nhận trên, chúng tôi đưa một số câu hỏi để định hướng cho nghiên cứu
như sau:
Q1: Trong thể chế dạy học toán ở trường phổ thông, việc phát triển tư duy hàm có
được chú trọng hay không? Hoạt động đặc trưng nào của tư duy hàm được nhấn mạnh? Có
những điều kiện và ràng buộc nào của thể chế trên các kiểu nhiệm vụ gắn với các hoạt động
đặc trưng cho tư duy hàm? Vấn đề dạy học bằng mô hình hóa có được thể chế quan tâm khi
đưa vào các hoạt động phát triển tư duy hàm cho học sinh hay không?
Q2: Liệu có thể tổ chức dạy học nhắm đến việc phát triển tư duy hàm cho học sinh
THPT thông qua mô hình hóa và và giải quyết các tình huống gợi vấn đề trong đó có tính
đến các điều kiện và ràng buộc của thể chế?
3. Phương pháp nghiên cứu và mục đích nghiên cứu
3.1. Nghiên cứu thể chế
Trên cơ sở nghiên cứu các hoạt động đặc trưng của tư duy hàm, chúng tôi sử dụng
8
các khái niệm tổ chức toán học, quan hệ thể chế, quan hệ cá nhân để phân tích chương trình
toán trung học phổ thông để trả lời các câu hỏi Q1.
3.2. Tiểu đồ án dạy học
Dựa trên kết quả nghiên cứu thể chế cho phép chúng tôi dự đoán những khó khăn của
học sinh khi đối diện với một tình huống thực tế. Từ đó, dựa vào khái niệm đồ án dạy học
trong lý thuyết tình huống kết hợp với lý thuyết mô hình hóa chúng tôi sẽ xây dựng các tình
huống dạy học nhằm phát triển tư duy hàm cho học sinh thông qua mô hình hóa và giải
quyết tình huống gợi vấn đề. Các tình huống này được xây dựng theo các ràng buộc thể chế.
4. Tổ chức của luận văn
Luận văn bao gồm phần mở đầu, phần kết luận và các chương sau:
Chương 1: Cơ sở lý luận
1.1. Đặc trưng khoa học luận của khái niệm hàm số
1.2. Tư duy hàm
1.3. Quá trình mô hình hóa toán học
1.4. Dạy học đặt và giải quyết vấn đề
Chương 2: Vấn đề phát triển tư duy hàm trong dạy học toán ở trường phổ thông
2.1. Giai đoạn khái niệm hàm số chưa xuất hiện (tiểu học đến đầu năm lớp 7)
2.2. Giai đoạn khái niệm hàm số đã được định nghĩa tường minh (từ lớp7 trở đi)
2.3. Kết luận
Chương 3: Thực nghiệm (Tiểu đồ án dạy học)
3.1. Mục đích thực nghiệm
3.2. Thực nghiệm : Tiểu đồ án didactic
3.3. Kết luận
9
CHƯƠNG 1: CƠ SỞ LÝ LUẬN
1.1. Đặc trưng khoa học luận của khái niệm hàm số
Chúng tôi sẽ tổng hợp lại các nghiên cứu khoa học luận khái niệm hàm số trong khóa luận
của Nguyễn Thị Nga (2003). Có thể tóm tắt một số điểm chính của luận văn như sau:
Ba đặc trưng cơ bản của hàm số là: tương ứng, phụ thuộc và biến thiên.
Biểu diễn hàm số: Trong lịch sử toán học, người ta sử dụng các phương tiện khác
nhau như bảng số, hình hình học, biểu thức giải tích và đồ thị.
Trong từng thời kỳ khác nhau của lịch sử toán học, khái niệm hàm số cùng ba đặc trưng và
các cách biểu diễn xuất hiện một cách ngầm ẩn hay tường minh. Cụ thể, theo tài liệu của
Nguyễn Thị Nga (2003) chúng tôi có bảng tóm tắt như sau:
GIAI
CƠ CHẾ CỦA
ĐẶC TRƯNG
PHƯƠNG TIỆN
ĐOẠN
KHÁI NIỆM
CỦA KHÁI NIỆM
BIỂU DIỄN
+ chưa có tên
• Phụ thuộc (ngầm ẩn)
+ chưa có định nghĩa
• Biến thiên (ngầm ẩn)
+ công cụ ngầm ẩn
• Tương ứng (ngầm ẩn)
Cổ đại
• Bảng số
• Phụ thuộc (ngầm ẩn)
Trung
đại
+ chưa có tên
• Biến thiên (ngầm ẩn –
+ chưa có định nghĩa
nhưng bước đầu được
+ công cụ ngầm ẩn
quan tâm nghiên cứu)
• Bảng số
• Hình hình học
• Tương ứng (ngầm ẩn)
Thế kỉ
16 -17
+ có tên
+ chưa có định nghĩa
+ công cụ ngầm ẩn
• Phụ thuộc và biến thiên
được đề cập rõ ràng hơn
trong vài nghiên cứu
• Tương ứng (ngầm ẩn)
10
• Bảng số
• Đường cong hình
học
+ có tên
• Phụ thuộc (được đề cập
+ có định nghĩa (hàm
tường minh trong vài
số được đồng nhất với nghiên cứu)
Thế kỉ
một biểu thức giải
• Biến thiên (tường minh)
18
tích)
• Tương ứng (ngầm ẩn)
• Biểu thức giải tích
+ công cụ tường minh
+ đối tượng nghiên
cứu
+ có tên
Nửa đầu
thế kỉ 19
+ có định nghĩa (dựa
• Phụ thuộc (được đề cập
vào khái niệm tương
tường minh trong vài
ứng giữa hai đại
nghiên cứu)
lượng)
• Biến thiên (tường minh)
+ công cụ tường minh
• Tương ứng (tường minh)
• Bảng
• Biểu thức giải tích
• Đồ thị
+ đối tượng nghiên
cứu
+ có tên
+ có định nghĩa
Cuối thế
kỉ 19 Thế kỉ
20
(dựa vào khái niệm
tương ứng hay quan
hệ giữa các phần tử
• Phụ thuộc (ngầm ẩn)
• Biến thiên (ngầm ẩn)
• Tương ứng (tường minh)
• Bảng
• Biểu thức giải tích
• Đồ thị
của hai tập hợp)
• Biểu đồ Ven
+ công cụ tường minh
• Các cặp phần tử
+ đối tượng nghiên
cứu
Từ sự tổng hợp trên, chúng tôi nhận thấy rằng: Qua từng giai đoạn khác nhau của
lịch sử, các cách biễu diễn hàm số có sự thay đổi. Bảng số là phương tiện biểu diễn hàm số
đầu tiên. Cách biểu diễn bằng bảng thường chỉ được áp dụng khi tập xác định của hàm số là
hữu hạn và quy tắc tương ứng khó diễn đạt bằng một biểu thức giải tích. Kể từ thế kỷ 18,
11
cách biểu diễn hình hình học rất ít xuất hiện. Hai cách biểu diễn đồ thị và biểu thức giải tích
vẫn luôn được ưu tiên. Như vậy, trong từng cách biểu diễn thì đặc trưng hàm số được thể
hiện như thế nào?
Để trả lời cho câu hỏi này, chúng tôi sẽ sử dụng lại kết quả nghiên cứu của Nguyễn
Thị Hồng Duyên (2012). Chúng tôi có bảng tóm tắt như sau:
Các hệ thống biểu đạt
Ưu điểm
Nhược điểm
Đại số (biểu thức giải + Cô đọng và chính xác + Không thấy được đặc
tích hay công thức)
mối tương quan hàm
trưng phụ thuộc của hàm
+ Làm nổi bật đặc trưng số
tương ứng của khái niệm
hàm số
+ Dễ tính toán, biến đổi
+ Có thể dùng các công cụ
giải tích để nghiên cứu
tính liên tục, sự biến thiên,
cực trị…
+ Xác định nhanh một số + Không phải hàm số nào
Hình học (đồ thị, biểu tính chất của hàm số
cũng có thể mô tả chính
đồ)
xác bằng đồ thị
+ Tìm được giá trị (đúng + Cơ sở cho việc đọc được
hay gần đúng) của hàm số tính chất của đồ thị là
tại 1 điểm
những chứng minh chặt
chẽ được thực hiện ở hệ
thống biểu đạt đại số
+ Tìm được giá trị của + Tập xác định của hàm
Bảng số
hàm nhanh chóng
số phải hữu hạn
+Công cụ tiện lợi để ghi + Xác định giá trị của hàm
kết quả nghiên cứu thực tại một giá trị ngoài bảng
cũng như muốn biết quy
nghiệm
luật phát triển của chúng
thì cần phải thực hiện sự
12
chuyển đổi
Ngoài 3 hệ thống biểu đạt nêu trên, hàm số còn được biểu đạt bằng lời. Cách biểu đạt
này được đề cập trong
“Tài liệu bồi dưỡng giáo viên Toán trung học phổ thông tỉnh Bình Thuận” của Trần Lương Công
Khanh (2007).
“Ví dụ 1: Xét hàm số f : * → {0,1, 2, ..., 9} ⊂ với f ( n ) là chữ số thập phân thứ n trong cách
viết số π trong hệ thập phân.
Ví dụ 2: Xét hàm số g : * → \ {0,1} với g ( n ) là số nguyên tố thứ n.”
Về tính ưu việt của hệ thống biểu đạt bằng lời, tác giả Trần Lương Công Khanh nói rõ:
“Rõ ràng trong hai ví dụ trên, cách biểu đạt bằng lời là cách biểu đạt tối ưu vì hiện nay toán học chưa
tìm được cách biểu đạt nào khác đối với f và g. Giả sử sẽ tìm được biểu thức giải tích của f và g trong
tương lai, cách biểu đạt bằng lời vẫn là cách biểu đạt gọn nhất. Điều này cũng cho thấy tồn tại những
hàm số mà ta không thể thực hiện sự chuyển đổi hệ thống biểu đạt.” (Theo Nguyễn Thị Hồng Duyên
- 2012).
Từ những nghiên cứu trên, chúng tôi nhận thấy rằng: khái niệm hàm số phát sinh, phát
triển, ngày càng mở rộng chính xác hóa và hoàn thiện do nhu cầu của thực tiễn. Cho nên,
việc dạy học khái niệm hàm số không chỉ nên dừng lại ở việc đưa vào định nghĩa của nó,
mà phải nắm vững các đặc trưng và các hệ thống biểu đạt của nó, cách chuyển đổi giữa các
hệ thống biểu đạt và đặc biệt là áp dụng nó vào việc giải quyết các bài toán của thực tế hay
của khoa học. Bởi vì các vấn đề thực tế sẽ làm nảy sinh nhu cầu sử dụng hàm số và thực
hiện sự chuyển đổi hệ thống biểu đạt.
1.2. Tư duy hàm
Phần này được trích từ tài liệu “Phương pháp dạy học bộ môn Toán” của tác giả Nguyễn
Bá Kim (1996).
Tư duy hàm là các hoạt động trí tuệ liên quan đến sự tương ứng giữa các phần tử của
một, hai, hay nhiều tập hợp, phản ánh các mối liên hệ phụ thuộc lẫn nhau giữa các phần tử
của tập hợp đó trong sự vận động của chúng. Tư duy hàm có vai trò quan trọng trong việc
giáo dục toán học cho học sinh.
Liên quan đến vấn đề phát triển tư duy hàm, tác giả Nguyễn Bá Kim (1996) cho rằng:
“phát triển tư duy hàm là tập luyện cho học sinh phát hiện, thiết lập, nghiên cứu và vận
13
dụng sự tương ứng trong khi và nhằm vào truyền thụ kiến thức và rèn luyện kĩ năng toán
học”. Như vậy, đặc trưng cho tư duy hàm có thể liệt kê các hoạt động sau đây:
• Phát hiện hoặc thiết lập những sự tương ứng
• Nghiên cứu những sự tương ứng
• Vận dụng những sự tương ứng
a) Hoạt động 1
Phát hiện những sự tương ứng tức là nhận ra một mối liên hệ tương ứng tồn tại khách quan,
ví dụ như sự tương ứng giữa độ dài cạnh và diện tích một hình vuông, giữa thời gian đi và
quãng đường đi được, giữa các số hạng và tổng của chúng…
Thiết lập sự tương ứng có nghĩa là tự tạo ra những sự tương ứng theo quy định chủ quan của
mình để thuận lợi cho một mục đích nào đó, chẳng hạn sự tương ứng giữa các số thực và
các điểm trên một đường thẳng, giữa tập con của tập các số tự nhiên và những que đếm…
b) Hoạt động 2
Nghiên cứu những sự tương ứng nhằm phát hiện ra những tính chất của những mối liên hệ
nào đó, ví dụ như diện tích của hình vuông luôn luôn bằng bình phương độ dài của cạnh.
Hoạt động này bao gồm nhiều phương diện khác nhau nhưng có thể cụ thể hoá thành ba tình
huống sau:
Tình huống 1. Xác định giá trị ra khi biết giá trị vào; xác định giá trị vào khi biết giá
trị ra; nhận biết quy tắc tổng quát của một mối liên hệ (trong các trường hợp có thể) khi cho
biết các cặp phần tử tương ứng của mối liên hệ đó (hay khi cho cặp giá trị vào và giá trị ra);
nhận biết tính đơn trị của sự tương ứng.
Tình huống 2. Đánh giá sự biến thiên mong muốn của giá trị ra khi thay đổi giá trị
vào; thực hiện một sự biến thiên mong muốn đối với giá ra bằng cách thay đổi giá trị vào;
dự đoán sự phụ thuộc.
Tình huống 3. Phát triển và nghiên cứu những bất biến; những trường hợp đặc biệt
và những trường hợp suy biến.
c) Hoạt động 3
Vận dụng sự tương ứng: Từ chỗ nghiên cứu nắm được những tính chất của một sự tương
ứng có thể vận dụng sự tương ứng đó vào một hoạt động nào đó, chẳng hạn nhờ mối liên hệ
giữa diện tích hình vuông với độ dài cạnh ta có thể đo diện tích hình vuông bằng cách dùng
thước dài chứ không cần phải dùng chiếc mét vuông mẩu hoặc lưới ô vuông.
14
Ba loại hoạt động này gắn bó chặt chẽ với nhau, hoạt động trước là tiền đề cho hoạt
động sau và hoạt động sau là mục đích, cơ sở hình thành hoạt động trước.
Như vậy, rèn luyện tư duy hàm là rèn luyện cho học sinh những khả năng, những hoạt động
sau:
(1) Có khả năng xem xét, nhìn nhận các đối tượng toán học dưới con mắt động, nhìn
trong sự vận động, biến đổi.
(2) Phát hiện được sự tương ứng hay những mối liên hệ giữa các đối tượng, sự kiện
toán học trong sự vận động và biến đổi của chúng.
(3) Từ việc tìm hiểu rồi nghiên cứu được những tương ứng hay những mối liên hệ
nào đó, ở mức độ cao hơn, có khả năng thể hiện (hay diễn đạt) được nội dung của các đối
tượng, sự kiện toán học bằng ngôn ngữ hàm.
1.3. Quá trình mô hình hóa toán học
Theo Từ điển bách khoa toàn thư, mô hình hóa toán học là sự giải thích toán học cho
một hệ thống toán học hay ngoài toán học nhằm trả lời cho những câu hỏi mà người ta đặt
ra trên hệ thống này.
Quá trình mô hình hóa vấn đề thực tiễn được trình bày theo sơ đồ sau (Theo Nguyễn
Thị Nga (2011)).
15
Sơ đồ này chia quá trình mô hình hóa thành 4 bước: (Tham khảo Nguyễn Thị Nga (2011))
- Bước 1: Chuyển hệ thống ngoài toán học thành một mô hình trung gian. Xây dựng
mô hình định tính của vấn đề, tức là xác định các yếu tố có ý nghĩa quan trọng nhất và xác
lập những quy luật mà chúng phải tuân theo. Mô hình trung gian giữa tình huống ngoài toán
học và mô hình toán học cần xây dựng biểu thị một cấp độ trừu tượng hóa đầu tiên của
“thực tiễn”. Mô hình này tiến triển từ từ qua việc mô hình hóa: một mô hình trung gian có
thể gần về ngữ nghĩa ít hoặc nhiều hơn so với tình huống thực tế được xem xét hoặc so với
mô hình toán học cần xây dựng.
- Bước 2: Chuyển mô hình trung gian thành mô hình toán học, tức là diễn tả lại dưới
dạng ngôn ngữ toán học cho mô hình định tính. Khi có mô hình trung gian ta chọn các biến
đặc trưng cho các yếu tố của tình huống đang xét. Từ đó dẫn đến việc lập mô hình toán học
thiết lập mối quan hệ giữa các biến số và các tham số của tình huống. Như vậy mô hình toán
học là trừu tượng hóa dưới dạng ngôn ngữ toán học của hiện tượng thực tế, cần phải được
xây dựng sao cho việc phân tích nó cho phép ta hiểu được bản chất của hiện tượng.
- Bước 3: Hoạt động toán học trong mô hình toán học. Sử dụng các công cụ toán học
để khảo sát và giải quyết mô hình toán học hình thành ở bước thứ hai. Căn cứ vào mô hình
đã xây dựng cần phải chọn hoặc xây dựng phương pháp giải cho phù hợp.
- Bước 4: Phân tích và kiểm định lại các kết quả thu được trong bước ba. Trở lại tình
huống được nghiên cứu để chuyển câu trả lời của vấn đề toán học thành câu trả lời của
những câu hỏi ban đầu và đối chiếu chúng với thực tiễn được mô hình hóa.
Trong bước này có hai khả năng:
* Khả năng 1: Mô hình và các kết quả tính toán phù hợp với thực tế.
* Khả năng 2: Mô hình và các kết quả tính toán không phù hợp với thực tế. Khi đó cần xem
xét các nguyên nhân sau:
- Tính chính xác của lời giải toán học, thuật toán, quy trình.
- Mô hình định tính đã xây dựng chưa phản ánh đầy đủ vấn đề đang xét.
- Tính thỏa đáng của mô hình toán học đang xây dựng.
- Các số liệu ban đầu không phản ánh đúng thực tế.
Có thể phải thực hiện lại quy trình cho đến khi tìm được mô hình toán học thích hợp cho
tình huống đang xét.
Như thế, mô hình hóa toán học là quá trình cấu trúc lại vấn đề cần giải quyết nhờ
những khái niệm toán học được lựa chọn một cách phù hợp. Quá trình ấy được thực hiện
16
thông qua việc xây dựng mô hình phỏng thực tế bằng cách “cắt tỉa” – hay ngược lại, bổ
sung thông tin - để có thể gắn vấn đề ban đầu với các quy trình toán học. Trong bước tìm
kiếm mô hình phỏng thực tế này người ta thường phải thực hiện những việc như đặt giả
thuyết, tổng quát hóa, hình thức hóa,… Bài toán toán học cuối cùng được xây dựng phải đại
diện trung thực cho bối cảnh thực tế.
(Theo Vũ Như Thư Hương – 2013)
1.4. Dạy học đặt và giải quyết vấn đề
Chúng tôi sẽ trình bày tóm tắt một số nội dung về dạy học đặt và giải quyết vấn đề
trong tài liệu“ Phương pháp dạy học môn toán ở trường phổ thông” của tác giả Lê Văn Tiến
(2005).
1.4.1. Những khái niệm cơ bản
1.4.1.1. Vấn đề
Thuật ngữ Bài toán được hiểu là “tất cả những câu hỏi cần giải đáp về một kết quả
chưa biết cần tìm bắt đầu từ một số dữ liệu, hoặc về phương pháp cần khám phá, mà theo
phương pháp này sẽ đạt được kết quả đã biết” (Từ điển “Petit Robert”).
Xét bài toán T và một chủ thể X có ý thức về T và tiếp nhận T để giải quyết. Khi đó
có hai khả năng xảy ra:
- Chủ thể X có thể giải quyết được bài toán T chỉ nhờ vào việc áp dụng đơn thuần hệ
thống kiến thức đã có của mình mà không có khó khăn gì.
- X không thể giải quyết được T nếu chỉ dựa vào hệ thống kiến thức đã có, hoặc chỉ
giải quyết được T sau một quá trình tích cực suy nghĩ để đồng hóa đối tượng nhận thức vào
mô hình kiến thức cũ của mình, hoặc để điều chỉnh lại kiến thức hay phương pháp hành
động cũ (nghĩa là kiến tạo kiến thức mới).
Nói cách khác bài toán T đặt ra trước chủ thể X những khó khăn nhận thức, những
mâu thuẫn giữa cái đã biết và cái chưa biết, được chủ thể ý thức một cách rõ ràng hay mơ
hồ, nhưng chưa có một phương pháp có tính thuật toán nào để giải quyết. Khi đó ta nói, bài
toán T là một vấn đề đối với chủ thể X.
Cần nhấn mạnh rằng, để bài toán T là một vấn đề đối với chủ thể X, thì trước hết X
phải có ý thức về T và tiếp nhận T để giải quyết (tự nguyện hay bắt buộc).
17
1.4.1.2. Tình huống có vấn đề và tình huống gợi vấn đề
Tình huống có vấn đề là tình huống trong đó tồn tại một vấn đề (theo nghĩa ở trên).
Tình huống gợi vấn đề là tình huống thỏa mãn ba điều kiện sau:
a) Tồn tại một vấn đề.
b) Gợi nhu cầu nhận thức: Nếu tình huống có vấn đề, nhưng vì một lí do nào đó nào
đó mà họ không có hứng thú tìm hiểu, suy nghĩ để tìm cách giải quyết (chẳng hạn vì họ cảm
thấy chẳng có ích gì cho mình, hay vì quá mệt mỏi,...) thì đó cũng không phải là tình huống
gợi vấn đề. Tình huống gợi vấn đề phải là tình huống tao ra cho HS một cảm xúc hứng thú,
mong muốn giải quyết vấn đề.
c) Gây niềm tin ở khả năng: Nếu vấn đề trong tình huống rất hấp dẫn, lôi cuốn và HS
có nhu cầu giải quyết, nhưng nếu họ mau chóng cảm thấy vấn đề là quá khó, vượt quá khả
năng của mình, thì họ cũng không còn hứng thú, không còn sẵn sàng giải quyết vấn đề. Tình
huống gợi vấn đề phải bộc lộ mối quan hệ (có thể khá mờ nhạt) giữa vấn đề cần giải quyết
và vốn kiến thức sẵn có của chủ thể, và tạo ra ở họ niềm tin rằng nếu tích cực suy nghĩ thì sẽ
thấy rõ hơn mối quan hệ này và có nhiều khả năng tìm ra cách giải quyết.
Tóm lại, tình huống gợi vấn đề là tình huống gợi ra cho HS những khó khăn về lí
luận hay thực tiễn mà họ thấy cần thiết và có khả năng vượt qua, nhưng không phải ngay
thức thì nhờ vào một quy tắc có tính thuật toán, mà phải trải qua một quá trình tích cực suy
nghĩ, hoạt động để đồng hóa nó hay điều chỉnh hệ thống kiến thức sẵn có nhằm thích nghi
với điều kiện hành động mới.
1.4.2. Dạy học đặt và giải quyết vấn đề
Dạy học đặt và giải quyết vấn đề ( DHĐ&GQVĐ) là hình thức dạy học trong đó GV
(hay cùng HS) tạo ra một hay nhiều tình huống gợi vấn đề, tổ chức, điều khiển HS trình bày
vấn đề và hoạt động giải quyết các vấn đề, qua đó giúp HS lĩnh hội kiến thức, rèn luyện kĩ
năng, phát triển tư duy và đạt được các mục đích dạy học khác.
Một trong các mục đích chủ yếu của DHĐ&GQVĐ là làm cho HS lĩnh hội được kiến
thức mới như là kết quả của quá trình giải quyết vấn đề. Nói cách khác, kiến thức không
được truyền thụ trực tiếp từ GV, dưới dạng có sẵn, mà được khám phá dần theo quá trình
giải quyết vấn đề.
Một mục đích cốt yếu khác của hình thức dạy học này là giúp HS phát triển các khả
năng khác, như: khả năng phát hiện và trình bày vấn đề, khả năng tìm kiếm cách giải quyết
18