Tải bản đầy đủ (.doc) (36 trang)

skkn một số phương pháp nâng cao hiệu quả ss phân số cho hs lớp 4 5

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (245.57 KB, 36 trang )

THÔNG TIN CHUNG VỀ SÁNG KIẾN
1. Tên sáng kiến: Một số giải pháp nâng cao hiệu quả trong dạy - học
so sánh phân số cho học sinh khá giỏi lớp 4+5.
2. Lĩnh vực áp dụng sáng kiến: Sáng kiến được áp dụng cho tất cả
giáo viên khi giảng dạy môn Toán ở lớp 4+5 và bồi dưỡng học sinh giỏi; là tài
liệu bồi dưỡng giáo viên, tài liệu tham khảo cho các bậc phụ huynh học sinh
và các em học sinh lớp 4+5 có thể dùng làm tài liệu tự học, tự nghiên cứu.
3. Tác giả:
Họ và tên: Hoàng Xuân Thanh

Nam

Ngày tháng/năm sinh: 09 - 09 - 1970
Trình độ chuyên môn: Đại học Sư phạm
Chức vụ, đơn vị công tác: Giáo viên trường Tiểu học Đông Xuyên
Điện thoại: 0987343823
4. Đồng tác giả: Không có
5. Chủ đầu tư tạo ra sáng kiến: Không có
6. Đơn vị áp dụng sáng kiến lần đầu: Trường Tiểu học Đông Xuyên Xã Đông Xuyên - Huyện Ninh Giang - Tỉnh Hải Dương.
7. Các điều kiện cần thiết để áp dụng sáng kiến: Sự ủng hộ nhiệt tình
của ban giám hiệu nhà trường, các đồng nghiệp, lòng nhiệt tình yêu nghề của
giáo viên, sự học tập tích cực của học sinh.
8. Thời gian áp dụng sáng kiến lần đầu: Từ đầu năm học 2012 - 2013.
TÁC GIẢ

XÁC NHẬN CỦA ĐƠN VỊ ÁP DỤNG
SÁNG KIẾN

Hoàng Xuân Thanh

1




TÓM TẮT SÁNG KIẾN
1. Hoàn cảnh nảy sinh sáng kiến:
- Dạy học so sánh phân số là một nội dung khó đối với bồi dưỡng học
sinh khá giỏi. Qua thực tế nhiều năm dạy bồi dưỡng học sinh giỏi, tôi trăn trở
tìm biện pháp tháo gỡ. Sưu tầm tài liệu, tham khảo các bài viết, các đề tài,
chuyên đề, sáng kiến của các đồng nghiệp trên Internet, tôi nhận thấy là các
đồng nghiệp có đưa ra một số phương pháp so sánh phân số hay nhưng chưa
phân dạng rõ ràng và chưa đưa ra đặc điểm nhận dạng cho từng dạng. Từ thực
tế dạy và học hiện nay cùng với kinh nghiệm nhiều năm giảng dạy ở lớp 4, 5
và hàng chục năm bồi dưỡng đội tuyển học sinh giỏi lớp 5 tham gia dự thi học
sinh giỏi cấp tỉnh, tôi đã tìm hiểu và phát hiệu được các các nguyên nhân dẫn
đến hạn chế của học sinh khi học so sánh phân số, cùng với việc tham khảo ý
kiến đồng nghiệp và áp dụng một số kiến thức từ các nguồn nói trên. Chính vì
thế, tôi tôi bắt đầu nghiên cứu sáng kiến đã từ năm học 2011 - 2012, bổ sung
một số cách so sánh phân số vào hệ thống các phương pháp đã được nêu trong
các tài liệu, hệ thống hóa chúng và đưa vào áp dụng từ năm học 2012 – 2013,
từ đó tổng kết chỉ ra cách nhận dạng cho học sinh từ đó mạnh dạn đưa ra Một
số giải pháp nâng cao hiệu quả trong dạy - học so sánh phân số cho học
sinh khá giỏi lớp 4+5.
2. Điều kiện, thời gian, đối tượng áp dụng sáng kiến:
Nhờ có sự ủng hộ nhiệt tình của ban giám hiệu nhà trường, các đồng
nghiệp, sự học tập tích cực của học sinh, cùng với sự nỗ lực phấn đấu của bản
thân và các nguồn tài liệu dồi dào tôi đã áp dụng thành công sáng kiến này.
Tôi đã bắt tay vào nghiên cứu sáng kiến này từ năm học 2011-2012 và
sáng kiến này tôi đã đưa vào áp dụng chính thức tại trường Tiểu học Đông
Xuyên từ năm học 2012 - 2013 đến nay.
Đối tượng được áp dụng là đội tuyển học sinh giỏi lớp 4, 5 của trường
trong các năm học: 2012-2013; 2013-2014 và 2014-2015.


2


3. Nội dung sáng kiến:
- Từ điều tra thực trạng về việc dạy –học so sánh phân số ở lớp 4, 5 và
đặc biệt trong các đội tuyển học sinh giỏi tôi đã nhận ra các vấn đề tồn tại cần
tháo gỡ.
- Qua nghiên cứu tài liệu, tham vấm đồng nghiệp cùng với thực tế giảng
dạy, tôi đã tìm ra một số nguyên nhân cơ bản dẫn đến những vướng mắc trong
dạy-học phân số và tìm cách tháo gỡ.
- Từ việc nắm chắc các nguyên nhân sai sót và lúng túng của học sinh
khi so sánh phân số tôi đã nghiên cứu tìm ra một số giải pháp khắc phục. Qua
tham vấn đồng nghiệp và các nguồn tài liệu khác tôi nhận thấy: Những giải
pháp dạy học so sánh phân số cho học sinh mà tôi sử dụng trước đo cũng như
các giải pháp mà tôi tham khảo từ các tài liệu từ nhiều nguồn khác nhau tuy
có đưa ra một số phương pháp so sánh phân số hay nhưng chưa phân dạng và
chỉ ra dấu hiệu rõ ràng dẫn đến học sinh còn lúng túng trong vận dụng. Từ
thực tế đó, tôi có sáng kiến bổ sung thêm một số dạng so sánh phân số khác
sau đó hệ thống hóa một cách hợp lí và đưa ra đặc điểm nhận dạng để học
sinh dễ dàng đây là dạng so sánh nào, giải quyết nó ra sao? Và đồng thời
không được coi nhẹ phần cơ bản khi dạy nâng cao.
4. Giá trị, kết quả đạt được của sáng kiến:
Sáng kiến đã đạt được kết quả như mong đợi, ngoài minh chứng bằng
bài kiểm tra thực nghiệm nó còn được minh chứng bằng các kết quả mà đội
tuyển trường Ôlimpic trường Tiểu học Đông Xuyên đã đạt được trong một vài
năm học gần đây.
5. Đề xuất, kiến nghị:
- Phần dạy học so sánh phân số phát huy khả năng sáng tạo, phù
hợp với các đối tượng học sinh là vấn đề khó ở Tiểu học. Vì vậy, để giảng dạy

tốt cần tăng cường chuyên đề các cấp cho giáo viên nắm chắc kiến thức, để việc
dạy “so sánh phân số ” gắn với thực tế hơn.

3


MÔ TẢ SÁNG KIẾN
1. Hoàn cảnh nảy sinh sáng kiến:
Việc dạy so sánh phân số cho học sinh lớp 4+5 là rất quan trọng đặc
biệt là với học sinh giỏi lớp 5. Dạy tốt so sánh phân số giúp học sinh có được
kĩ năng kĩ xảo, rèn luyện cho học sinh vận dụng linh hoạt các kiến thức, các
thủ thuật toán học để làm bài toán so sánh phân số một cách dễ dàng hơn,
tránh mò mẫm; học sinh có thể so sánh phân số một cách nhanh nhất, chính
xác nhất, tiết kiệm thời gian nhất. Đặc biệt là đối với đối tượng học sinh giỏi,
trong các kì thi Ôlimpic cấp tỉnh ở Tiểu học vừa qua và phong trào hoạt động
giao lưu “Toán Tuổi Thơ”, giải toán qua mạng hiện nay thì so sánh phân số
là dạng toán mà học sinh dễ mắc sai lầm. Với mục tiêu bên cạnh coi trọng chất
lượng đại trà song song với việc nâng cao chất lượng mũi nhọn, cần chú ý bồi
dưỡng tới các đối tượng học sinh với các mức độ kiến thức phù hợp, qua tham
khảo các chuyên đề, đề tài, kinh nghiệm, sáng kiến có liên quan và cùng chủ đề
của các đồng nghiệp từ các nguồn khác nhau đặc biệt là Internet, kết hộ với thực
tế nhiều năm bbooif dưỡng đội tuyển học sinh giỏi lớp 4 + 5, tôi thấy cần tìm ra
biện pháp tối ưu để hình thành quy trình chung về hướng dẫn HS vận dụng
dấu hiệu nhận dạng toán so sánh phân số và sở dụng phương pháp giải tối ưu
nhất vào giải bài tập một cách phù hợp, hướng dẫn học sinh học tốt phần so
sánh phân số góp phần vào việc nắm kiến thức, hình thành và phát triển kĩ
năng, kĩ xảo cơ bản để HS học tiếp các phần tiếp theo tốt hơn. (nhất là hoc
sinh khá giỏi –lớp 5) . Vì vậy tôi quyết định chọn viết sáng kiến: “Một số giải
pháp nâng cao hiệu quả trong dạy - học so sánh phân số cho học sinh khá
giỏi lớp 4+5.”

2. Cơ sở lí luận của vấn đề:
Bậc Tiểu học là bậc học đặt nền móng cho việc hình thành nhân cách
của học sinh. Đây là bậc học cung cấp những tri thức khoa học ban đầu về tự
nhiên và xã hội, trang bị các phương pháp và kỹ năng ban đầu về hoạt động
nhận thức và hoạt động thực tiễn, bồi dưỡng và phát huy tình cảm, thói quen
và đức tính tốt đẹp của con người Việt Nam. Các môn học ở Tiểu học đều có
4


mối quan hệ hỗ trợ nhau. Trong 9 môn học, cùng với môn Tiếng Việt, môn Toán
có vị trí đặc biệt quan trọng. Nó giúp học sinh tiểu học phát triển tư duy lô - gíc,
bồi dưỡng và phát triển những thao tác trí tuệ cần thiết để nhận thức thế giới hiện
thực như: trừu tượng hoá, khái quát hoá, so sánh, dự đoán, chứng minh, bác
bỏ... nó rèn luyện phương pháp suy nghĩ, phương pháp suy luận, phương pháp
giải quyết vấn đề, giúp học sinh phát triển trí thông minh, tư duy độc lập linh
hoạt, sáng tạo....Một phần kiến thức mới và vô cùng quan trọng ở lớp 4, 5 là
phần so sánh phân số . Khi học về so sánh phân số học sinh còn cảm thấy bỡ
ngỡ và mới mới mẻ, nhiều khi còn bị lúng túng và hay “máy móc” hoặc làm sai
ở phần này. Vậy nguyên nhân dẫn đến sai sót do đâu? Trong thực tế nhiều năm
giảng dạy đặc biệt là năm học này, tôi nhận thấy: Học sinh học về so sánh phân
số còn tương đối thụ động. Các em chỉ dựa vào những kiến thức về so sánh các
phân số có cùng mẫu số và so sánh phân số với 1. Vì vậy với dạng bài so sánh
hai phân số

11
11
5
5

hoặc và (Bài 2 - trang 7 - SGK Toán 5) thì các em

2
3
9
6

nhiều khó khăn khi quy đồng mẫu số các phân số. Hoặc với dạng bài sắp xếp các
phân số sau theo thứ tự từ bé đến lớn :

6 23 2
; ; (Bài 5a - trang 150 - Sách giáo
11 33 3

khoa (SGK) Toán 5) thì các em tỏ ra lúng túng và sắp xếp sai.
3. Thực trạng của vấn đề:
* Điều tra thực trạng việc học sinh học cách so sánh phân số
Qua kinh nghiệm từ nhiêù năm giảng dạy ở khối lớp 4; 5 tôi nhận thấy:
Khi gặp những dạng bài tập so sánh phân số học sinh thường chỉ dùng
cách duy nhất là đưa về các phân số có cùng mẫu số rồi so sánh. Đây là một
phương pháp phổ biến và khá đơn giản. Nếu như các phân số có tử số giống
nhau hoặc các dạng bài tập bồi dưỡng theo đối tượng thì các em gặp nhiều lúng
túng. Trong Bộ đề dự tuyển Thi giao lưu Toán Tuổi Thơ 1 năm 2006 có bài tập:

5


Không quy đồng mẫu số hoặc tử số, em hãy tìm cách so sánh hai phấn số:


11
52


17
(Toán Tuổi Thơ 1- Số 69-70- Trang 12)
50

Qua thực tế kiểm nghiệm tôi thấy không có học sinh nào làm được dạng
bài này.
Nguyên nhân dẫn đến học sinh không làm được vì học sinh chưa nắm
được một số cách làm như:
So sánh phân số với phân số trung gian, so sánh “phần bù”, “phần thừa”
của các phân số với đơn vị (với 1),....
Để khảo sát thực tế chất lượng học sinh học so sánh phân số. Năm học
2012-2013, tôi đã tiến hành khảo sát sau khi học sinh học xong phần so sánh
phân số.
Bài kiểm tra khảo sát Tiền thực nghiệm (trước khi áp dụng biện pháp)Tháng 4 năm 2013
Câu 1: (4 điểm): So sánh hai phân số không được quy đồng
a)

12
15

7
10

b)

23
115

19

119

c)

3
2

4
5

d)

2
3

5
4

Câu 2: (3 điểm): So sánh hai phân số
a)

11
1735

5
1729

b)

21

212121

80
404040

c)

2006
2007

2007
2008

Câu 3: (3 điểm): Sắp xếp các phân số sau theo thứ tự từ lớn đến bé:
1 2 4 3
; ; ;
3 5 3 4

Sau khi ra đề, tôi tiến hành khảo sát ở đội tuyển học sinh giỏi lớp 4 của
trường Tiểu học Đông Xuyên năm học 2012 – 2013 và thu được kết quả sau:
Đội tuyển gồm 25 học sinh.
Kết quả thu được sau kiểm tra như sau:
Bảng 1
Giỏi

Số
32

SL
2


Khá
%
8

SL
6

Trung bình
SL
%
15
60

%
24
6

Yếu
SL
2

%
8


Sau khi chấm điểm kiểm tra và trao đổi với các đồng nghiệp, tôi đã thống
kê các dạng sai sót của học sinh và tìm ra những nguyên nhân chính sau:
1 - Học sinh so sánh sai do không nắm được các dấu hiệu để phân dạng so
sánh phân số ở bài tập một và không nắm chắc cách giải toán so sánh hai phân

số không được quy đồng nên học sinh lúng túng không làm được.
2 - Học sinh so sánh bằng cách qui đồng mẫu số các phân số ở câu 2, dẫn
đến sai sót vì mẫu số chung quá lớn và phức tạp ;H.S không biết cách so sánh
một cách đơn giản hơn vì không nhận được dạng toán.
3 - Học sinh làm “mò” câu 3 (tức là học sinh xếp theo thứ tự từ lớn đến bé
mà không dựa vào sự so sánh) .
4 - Học sinh vận dụng các cách so sánh phân số chưa linh hoạt, dẫn đến
việc so sánh rồi sắp xếp các phân số ở câu 3 còn gặp nhiều khó khăn .
Với suy nghĩ: Làm thế nào để giúp học sinh có phương pháp, cách thức so
sánh phân số linh hoạt, tránh được những sai sót nhầm lẫn nêu trên, tôi đã tiến
hành nghiên cứu tìm con đường dạy so sánh phân số tốt nhất nhằm phát huy tính
tích cực của học sinh và bồi dưỡng các em học sinh khá giỏi có thể tự làm được
các dạng bài tập mở rộng, nâng cao về so sánh phân số.
4. Một số biện pháp góp phần năng cao chất lượng dạy và học phân
số.
Để dạy cho học sinh khá giỏi lớp 5 về so sánh phân số, ngoài việc khắc
phục những đặc điểm trên tôi đã tiến hành nghiên cứu lí thuyết về phân số.
Cụ thể:
4.1. Nghiên cứu tài liệu:
Tôi đã tiến hành nghiên cứu kiến thức so sánh phân số trong chương trình
SGK Toán 4-5 và các tài liệu có liên quan.
Qua nghiên cứu phần kiến thức về so sánh phân số trong chương trình
Toán 4-5- Chương trình Tiểu học (CTTH) - 2000, tôi nhận thấy, học sinh chủ
yếu gặp hai dạng bài so sánh hai phân số:
Dạng 1: ( >; <; = )
Dạng này thường cho dưới dạng 4 bài tập so sánh hai phân số. Ví dụ:
7


-


15
10

17
17

-

2
3

(khác mẫu số)
3
4

- Bài tập 1, trang 7- SGK Toán 5

-

2
2

5
7

(cùng tử số)

- Bài tập 2, trang 7- SGK Toán 5


-

3
và 1
5

(so sánh với 1)

- Bài tập 1, trang 7- SGK Toán 5

(cùng mẫu số) - Bài tập 1, trang 7- SGK Toán 5

Dạng 2: Viết các phân số sau theo thứ tự từ bé đến lớn (hoặc ngược lại)
8 5 17
9 6 18

Ví dụ: Viết các phân số sau theo thứ tự từ bé đến lớn: ; ;
(Bài tập 2, trang 7- SGK Toán 5 )

Từ hai dạng toán cơ bản này sẽ là cơ sở tiền đề cho việc dạy các dạng bài
còn lại trong Toán nâng cao. Thực ra các đề thi học sinh giỏi Toán 5, đề bài nhìn
chung giống kiến thức SGK, tài liệu nâng cao hoặc biến đổi đi. Ví dụ một số
dạng bài mở rộng:
- So sánh phân số sau mà không cần quy đồng mẫu số:

12
13

48
47


(Thi tú

tài Toán Tuổi Thơ - Toán Tuổi Thơ 1 - Số 10- 11, trang 19)
- Không quy đồng mẫu số hoặc tử số, em hãy tìm cách so sánh hai phấn
số:

11
17

(Toán Tuổi Thơ 1- Số 69-70- Trang 12)
52
50

- So sánh phân số sau bằng cách nhanh nhất:

7777772
88888881

(Toán
7777778
88888889

Tuổi Thơ 1 - Số 4- Trang 5)
- Viết 3 phân số khác nhau có cùng mẫu số mà mỗi phân số đó vừa lớn
hơn

1
1
vừa bé hơn

(Toán Tuổi Thơ 1 - Số 34- Trang 22)
5
4

- Có 6 miếng bìa được ghi số:
30

4

1

9

7

5

Em hãy chọn ra hai mảnh bìa có số thích hợp để tạo thành một phân số
sao cho:
8


499
<
1996

2001)

?
?


<

667
2001

(Đề thi HS giỏi TP Hà Nội - năm 2000 -

- So sánh A và B, biết rằng:
A=

2006
2007
+
;
987654321 246813579

B=

2007
2006
+
987654321 246813579

Như vậy để học sinh học tốt về so sánh phân số thì học sinh cần nắm
vững những vấn đề sau mà SGK đã đưa ra:
1 - Khái niệm về phân số.
2 - Tính chất cơ bản của phân số.
3 - Quy đồng mẫu số các phân số.
4 - Rút gọn phân số

5 - So sánh hai phân số có cùng mẫu số.
6 - So sánh hai phân số khác mẫu số.
7 - So sánh hai phân số có cùng tử số.
8 - So sánh phân số với đơn vị (với 1).
Bên cạnh đó học sinh khá giỏi ngoài việc nắm kiến thức cơ bản cần phải
nắm được một số cách so sánh phân số như so sánh phần bù của hai phân số,
phần thừa của hai phân số, so sánh với phân số trung gian... để giải các dạng bài
mở rộng trên.
4.2. Hệ thống lí thuyết về phân số - so sánh phân số:
-Khái niệm phân số.
-Tính chất cơ bản của phân số.
-Phân số bằng nhau.
-Quan hệ giữa phân số và đơn vị.
-Phân số lớn hơn, nhỏ hơn.
9


-Quan hệ giữa phân số và số thập phân.
-Biểu diễn phân số trên tia số.
4.3. Một số giải pháp nâng cao hiệu quả trong dạy - học so sánh phân
số cho học sinh khá giỏi lớp 4+5:
Để học sinh nắm chắc kiến thức về so sánh phân số, tôi đã tiến hành dạy
đúng theo chương trình SGK và củng cố thật vững các kiến thức về tính chất cơ
bản của phân số, chuyển tải cho học sinh nắm chắc so sánh hai phân số có cùng
mẫu số, so sánh hai phân số có cùng tử số, so sánh phân số với 1 và so sánh hai
phân số khác mẫu số . Bên cạnh đó, tôi tiến hành mở rộng những kiến thức về so
sánh phân số theo nhiều cách với mục đích bồi dưỡng học sinh khá giỏi, giúp
học sinh có cách so sánh phân số linh hoạt hơn, phù hợp với từng dạng bài trong
chương trình Toán 4- 5.
Trước khi dạy học sinh so sánh phân số tôi tiến hành dạy củng cố các

phần kiến thức ( Mục 3.1; 3.2; 3.3; 3.4). Đây là một việc làm rất quan trọng, tạo
điều kiện thuận cho việc dạy so sánh phân số.
4.3.1. Củng cố khái niệm phân số
Tôi đã cho học sinh làm bài tập sau:
Ví dụ 1: Viết phân số chỉ phần tô màu:
a)

....................
b)

..................

10


Ở ví dụ này mục đích là củng cố cho học sinh nắm được ý nghĩa của
phân số. Do đó tôi đã khắc sâu kiến thức về khái niệm phân số cho học sinh
(như SGK Toán 4)
Thực tế nhiều học sinh mắc sai lầm ở phần b, học sinh không hiểu mẫu
số chỉ ra rằng đơn vị được chia ra thành mấy phần bằng nhau nên đã viết kết
7
7
, trong khi đó kết quả đúng ở phần b là: .
8
4

quả là:

Đây là ví dụ tạo điều kiện cho tôi dạy học sinh cách so sánh phân số với
đơn vị; so sánh phần thừa, so sánh phần bù tới đơn vị mà tôi sẽ trình bày trong

phần sau.
4.3.2. Củng cố tính chất cơ bản của phân số ( Dạy như SGKToán 5 Trang5)
4.3.3. Củng cố cách quy đồng mẫu số (Dạy như SGK Toán 4)
4.3.4. Củng cố cách rút gọn phân số
Hướng dẫn học sinh cách rút gọn phân số: Cùng chia cả tử và mẫu cho
một số tự nhiên lớn hơn 1. Nhưng điều quan trọng nhất là phải tìm được số tự
nhiên đó để thực hiện việc rút gọn.
Để tìm ra được số tự nhiên để rút gọn, tôi hướng dẫn học sinh một số cách
như sau:
1- Dựa vào dấu hiệu chia hết:
Ví dụ 2: (Bài 1- trang 6- Toán 5) Rút gọn mỗi phân số:
cho 5);

15
(cùng chia hết
25

18
(cùng chia hết cho 9)
27

2- Chia dần từng bước rồi gộp các bước (theo quy tắc chia một số cho một
tích)
Ví dụ 3: (Bài 1- trang 6- Toán 5) Rút gọn phân số:
Ta có :

36 36 : 2 18 18 18 : 2 9
36 9
=
= ; =

= . Vậy
=
64 64 : 2 32 32 32 : 2 16
64 16

Vì 2 x 2 = 4 nên

36 36 : 4 9
=
=
64 64 : 4 16

11

36
64


3- Dùng cách thử chọn theo các bước:
Ví dụ 4: Rút gọn phân số:

26
65

Bước 1 : 26 : 2 = 13
Bước 2 : 65 : 13 = 5
Bước 3 : Cùng chia 13

26 26 :13 2
=

=
65 65 :13 5

Vậy:

4- Phân số có dạng đặc biệt:
Ví dụ 5: Rút gọn phân số:

1133
1442

Bước 1: 1133 : 11 = 103
Bước 2 : 1442 : 14 = 103
Bước 3 : Cùng chia 13

1133 1133 :103 11
=
=
1442 1442 :103 14

Vậy:

Sau đó tôi cho học sinh làm bài tập củng cố:
Ví dụ 6: Điền dấu vào ô trống:
6
7

66
77


16
18

1616
1818

Qua các dạng bài tập đó, tôi đã củng cố và mở rộng cho học sinh cách tìm
phân số bằng nhau một cách linh hoạt.
4.3.5. Dạy so sánh hai phân số cùng mẫu số và so sánh phân số với 1:
Trước hết tôi bám theo tiến trình bài dạy, củng cố học sinh các kiến thức
cơ bản về so sánh hai phân số cùng mẫu số và so sánh phân số với 1 (như SGK
Toán 5- trang 7). Sau khi luyện tập thực hành kĩ các bài tập thuộc phần kiến
thức, tôi cho học sinh làm bài tập:
Ví dụ 7: So sánh hai phân số sau:

2006
2005

2007
2004

Dưới sự hướng dẫn của tôi, học sinh đã làm dạng bài tập này tương đối
linh hoạt. Qua kiểm tra việc thực hành tôi nhận thấy học sinh so sánh như sau:
Ta có:

2006
<1
2007

Nên :


2006
2005
<
2007
2004

2005
>1
2004

12


Việc nắm bắt yêu cầu như vậy, tôi nhận thấy học sinh đã hình thành
được cách so sánh phân số qua bước trung gian (với 1).
4.3.6. Dạy so sánh phân số khác mẫu số (Dạy như SGK Toán 4)
4.3.7. Dạy học sinh sắp xếp các phân số theo thứ tự.
Với dạng bài này, bài tập đưa ra rất đa dạng nên không có đường lối
chung để giải. Ngoài việc dạy cho học sinh các cách so sánh phân số có trong
SGK giáo viên cần cung cấp một số cách so sánh phân số khác như: So sánh hai
phân số với phân số trung gian, so sánh phần bù, phần thừa của hai phân số (tuỳ
theo đối tượng) để học sinh có thể vận dụng linh hoạt khi sắp xếp các phân số.
Ví dụ 8: Viết các phân số sau theo thứ tự từ lớn đến bé:

8 8 9
; ; (Bài tập
9 11 8

5- trang 150 - Toán 5)

Trước hết tôi cho học sinh tìm ra phân số lớn nhất. Qua thực hành, học
sinh làm như sau:
- Nhận xét:

9
8
8
> 1 ; < 1; < 1
8
9
11

9
là phân số lớn nhất.
8

Vậy

Sau đó tôi cho học sinh so sánh

8
8

để tìm ra phân số nhỏ nhất. Qua
9
11

việc nhận biết hai phân số này có cùng tử số nên học sinh dễ dàng so sánh
. Vậy


8 8
>
9 11

8
là phân số nhỏ nhất.
11

Tiếp theo tôi cho học sinh sắp xếp từ lớn đến bé:

9 8 8
; ; .
8 9 11

4.3.8. So sánh phân số theo nhiều cách
Để kết thúc phần so sánh phân số, trong các tiết Bồi dưỡng và tiết Luyện
tập chung ngoài việc củng cố kiến thức cơ bản về so sánh phân số theo các cách
trên, tôi hướng dẫn học sinh khá giỏi đến một số cách so sánh mới. Những kiến
thức này tôi dạy thông qua các bài tập thực hành và thường cho vào cuối tiết
học và tổ chức theo những hình thức trò chơi học tập, thi đoán nhanh...tạo sự
thoả mái cho các em và đối tượng học sinh khá, giỏi tiếp thu bài học linh hoạt
hơn, không bị gò bó.
13


4.3.8.1. So sánh hai phân số bằng sơ đồ đoạn thẳng:
Ví dụ 9 : So sánh hai phân số sau:

3
2


4
3

Ngoài việc học sinh nghĩ đến cách làm quy đồng tử số, quy đồng mẫu số
hai phân số này rồi so sánh, tôi còn hướng dẫn học sinh dựa vào sơ đồ đoạn
thẳng để so sánh:
- Trước hết vẽ 2 đoạn thẳng bằng nhau
- Biểu diễn lần lượt hai phân số đã cho trên đoạn thẳng
- Từ sơ đồ nhận định so sánh
Giải.

Ta có sơ đồ:

3
4

2

3
2
Từ sơ đồ ta thấy: >
4
3

3

Nhận xét: Cách so sánh này chỉ thuận tiện cho việc so sánh 2 phân số nhỏ hơn
đơn vị và cả tử số và mẫu số của 2 phân số có ít chữ số (thường là 1 chữ số).
Cách này ít vận dụng khi so sánh 2 phân số. Đây cũng là một cách để tôi củng cố

ý nghĩa của phân số cho học sinh trung bình, yếu.
4.3.8.2. Tìm phần bù tới đơn vị của mỗi phân số để so sánh.
Bước 1: Tìm phần bù tới đơn vị của mỗi phân số
Cách tìm: lấy 1 trừ đi phân số đã cho được bao nhiêu (kết quả để ở dạng
phân số) chính là phần thừa.
Chẳng hạn: Phần thừa của phân số
Bước 2: So sánh phần bù của phân số
14

3
1
3 1
là vì : 1 − =
4
4
4 4


Bước 3: So sánh hai phân số đã cho dựa vào nhận xét: Phần bù tới đơn vị của
phân số nào lớn hơn thì phân số đó bé hơn (hoặc ngược lại)
Tôi minh hoạ phần nhận xét như sau:
Cho hai cốc bằng nhau, lượng nước trong cốc như hình vẽ .

- Yêu cầu học sinh quan sát hình vẽ: Hãy viết phân số chỉ lượng nước còn
thiếu trong mỗi cốc, rồi so sánh 2 phân số đó, rút ra nhận xét (như trên) - GV
gợi ý: Lượng nước còn thiếu của mỗi cốc nước chính là phần bù tới đơn vị của
một phân số .
Ví dụ 10: Cho hai phân số:

7777772

88888881

. Hãy so sánh hai phân
7777778
88888889

số đó với nhau bằng cách nhanh nhất rồi điền dấu: >; =; < vào giữa chúng cho
hợp lí.
Tôi cho học sinh nhận xét đặc điểm của 2 phân số, sau đó lựa chọn cách
giải.
* Nhận xét:
- Ở phân số thứ nhất cả tử và mẫu đều có 7 chữ số trong đó có 6 chữ số giống
nhau, chỉ khác hàng đơn vị và phân số nhỏ hơn đơn vị.
- Ở phân số thứ nhất cả tử và mẫu đều có 8 chữ số trong đó có 7 chữ số giống
nhau, chỉ khác hàng đơn vị và phân số cũng nhỏ hơn đơn vị.
* Chọn cách thực hiện:
Để so sánh hai phân số nhỏ hơn đơn vị ta có những cách làm :
1) Quy đồng mẫu số chúng rồi so sánh.
2) Quy đồng tử số chúng rồi so sánh.
3) Tìm phân số thứ ba nhỏ hơn một trong hai phân số nhưng lớn hơn phân số kia
(Trình bày ở mục d)
4) Tìm phần bù tới đơn vị của mỗi phân số để so sánh.

15


5) Dùng cách nhân tử số của phân số này với mẫu số của phân số kia, so sánh 2
tích rút ra kết luận (Trình bày ở mục e)
- Các cách 1, 2 và 5 khó thực hiện vì phải thực hiện phép nhân hai số lớn nên ta
loại.

- Hai phân số đều kém đơn vị một phân số rất nhỏ nên khó tìm phân số trung
gian do đó cách 3 loại.
Ta chọn cách 4:
- Phần bù tới đơn vị của hai phân số đó là:

6
8

. Nếu quy
7777778
88888889

đồng tử số ta vẫn phải nhân với hai số lớn nên ta làm như sau:
6
60
8
8
6
8
=
>
>
nên
>
.
7777778 77777780 77777780 88888889
7777778
88888889

Từ đó:


7777772
88888881
<
7777778
88888889

Lưu ý: Cách giải này chỉ áp dụng khi so sánh các phân số bé hơn đơn vị,
và rất thuận lợi cho việc so sánh hai phân số mà tử và mẫu đều là số lớn (như ví
dụ 10), đặc biệt là so sánh các phân số mà hiệu giữa mẫu số và tử số của các
phân số bằng nhau ta phối hợp với quy tắc so sánh hai phân số có cùng tử số thì
việc so sánh vô cùng đơn giản.
Ví dụ 11: So sánh hai phân số sau:

2005
2006

.
2006
2007

Giải: - Phần bù tới đơn vị của hai phân số đó là:


1
1
>
. Nên
2006
2007


1
1

.
2006
2007

2005
2006
<
(Phần bù tới đơn vị của phân số nào lớn
2006
2007

hơn thì phân số đó bé hơn)
4.3.8.3. Tìm phần thừa tới đơn vị của mỗi phân số để so sánh.
Bước 1: Tìm phần thừa tới đơn vị của mỗi phân số.
Bước 2: So sánh phần thừa của phân số.
Bước 3: So sánh hai phân số đã cho dựa vào nhận xét: Phần thừa tới đơn vị của
phân số nào lớn hơn thì phân số đó lớn hơn (hoặc ngược lại).

16


Tương tự cách hướng dẫn phần b, ở phần này tôi cho học sinh làm ví dụ
cụ thể và rút ra những điểm cần lưu ý khi vận dụng cách làm.
Ví dụ 12: So sánh hai phân số sau:

2006

2007

.
2004
2005

Giải: - Phần thừa tới đơn vị của hai phân số đó là:


2
2

.
2004
2005

2
2
2006 2007
>
. Nên
>
(Phần thừa tới đơn vị của phân số nào lớn
2004
2005
2004 2005

hơn thì phân số đó bé hơn)
Lưu ý: Cách giải này chỉ áp dụng khi so sánh các phân số lớn hơn đơn vị,
và rất thuận lợi cho việc so sánh hai phân số mà tử và mẫu đều là số lớn, đặc biệt

là so sánh các phân số mà thương và số dư trong phép chia tử số cho mẫu số của
các phân số bằng nhau. (2006: 2004 = 1 dư 2; 2007: 2005 = 1 dư 2 nên ta sử
dụng cách tìm phần thừa tới đơn vị của mỗi phân số để so sánh).
4.2.8.4. Tìm phân số thứ ba nhỏ hơn một trong hai phân số nhưng lớn
hơn phân số kia (so sánh dựa vào phân số trung gian)
Bước 1: Lựa chọn phân số trung gian (tìm phân số thứ ba nhỏ hơn một trong hai
phân số nhưng lớn hơn phân số kia)
Bước 2: So sánh các phân số đã cho với phân số trung gian
Bước 3: Kết luận
3
4
và .
8
7

Ví dụ 13: So sánh hai phân số sau:
- Ta chọn phân số trung gian là:
- Ta so sánh như sau: Vì
Hoặc : vì

3
4
hoặc
7
8

3 3 4
3
4
< < nên < .

8 7 7
8
7
3 4 4
3
4
< < nên < .
8 8 7
8
7

Ví dụ 14: - Không quy đồng mẫu số hoặc tử số, em hãy tìm cách so
sánh hai phấn số:

11
17

(Toán Tuổi Thơ- Số 69-70- Trang 12)
52
50

- Ta chọn phân số trung gian là

11
17

50
52

17



- Ta so sánh như sau: Vì

11
11
17
<
<
52
50
50

Hoặc: Vì

nên

11
17
<
52
50

11 17
17
11
17
<
<
nên

<
52 52
50
52
50

Nhận xét: Cách giải này là cách tương đối tổng hợp, học sinh phải vận
dụng thành thạo cách so sánh hai phân số có cùng mẫu số, hai phân số có
cùng tử số và điều quan trọng hơn học sinh phải biết lựa chọn được phân số
trung gian để so sánh: Có trường hợp lấy tử số của phân số tử số của phân thứ
nhất (hoặc tử số của phân thứ hai) làm tử số của phân số trung gian, lấy mẫu
số của phân số thứ hai làm mẫu số của phân số trung gian (hoặc lấy mẫu số
của phân số thứ nhất ) làm mẫu số của phân số trung gian (Như ở ví dụ 13;
14). Có trường hợp phải vận dụng tính chất cơ bản của phân số, rút gọn phân
số...
Ví dụ 15: So sánh hai phân số sau:
a)

2
5
và .
5
9

b)

3
6
và .
10

17

Nhận xét trường hợp (a):
- Xét phân số

2
: Nếu bớt ở mẫu số đi 1 đơn vị ta được phân số rút gọn là
5

- Xét phân số

5
: Nếu thêm ở mẫu số đi 1 đơn vị ta được phân số rút gọn
9

1
.
2



1
2

Ta thấy

2
5
1
1

và gần với phân số . Chọn là phân số trung gian
5
9
2
2

Giải:
1 2 2
= >
2 4 5
Ta có:
1 5 5
= <
2 10 9

nên

2 1 5
2 5
< < . Vậy < .
5 2 9
5 9

18


Tương tự cho học sinh nhận xét trường hợp (b), học sinh sẽ tìm được
phân số

1

là phân số trung gian.
3

Giải:
1 3 3
= >
3 9 10
Ta có:
1 6
6
= <
3 18 17

nên

3
1
6
3
6
< < . Vậy
< .
10 3 17
10 17

Ví dụ 16: Có 6 miếng bìa được ghi số:
30

4


1

9

7

5

Em hãy chọn ra hai mảnh bìa có số thích hợp để tạo thành một phân số
sao cho:
?
499
<
1996

667
2001

<
?

2001

(Đề thi HS giỏi TP Hà Nội - năm 2000 -

Giải:
Ta có:

?
499

1
9
667
1
9
499
= = ;
= =
. Do đó
<
1996 4 36 2001 3 27
1996

viết lại thành :

<
?

667
2001

?
9
<
36

chọn

<
?


9
27

.



9
9
9
<
<
nên 2 miếng bìa cần
36
30
27



9

Lưu ý: Sau khi rút gọn hai phân số đã cho về



30

1
1

và , học sinh có thể
4
3

tìm lần lượt các phân số bằng nhau bằng cách nhân cả tử số và mẫu số của hai
19


phân số đó với các số có một chữ số ghi trên tấm bìa sao cho thoả mãn yêu cầu
bài toán, cuối cùng ta chọn được 1 trường hợp nhân cả tử số và mẫu số của hai
phân số đó với 9 (như trên).
4.3.8.5. Dùng cách nhân tử số của phân số này với mẫu số của phân
số kia, so sánh 2 tích rút ra kết luận.
Bản chất của cách làm này là tìm thương hai phân số đã cho rồi so sánh
thương đó với 1. Nếu thương lớn hơn 1 thì Số bị chia lớn hơn số chia, nếu
thương bé hơn 1 thì số bị chia bé hơn số chia. Tôi hướng dẫn như sau:
Bước 1: Thực hiện phép chia hai phân số đã cho (thương tìm được viết
dưới dạng phân số).
Bước 2: So sánh thương với 1.
Bước 3: Kết luận.
Ví dụ 16: Không quy đồng mẫu số hoặc tử số, em hãy tìm cánh so sánh
hai phân số

11
17

(Đề giao lưu Toán tuổi thơ- TP Đà Nẵng)
52
60


Giải:
Ta thấy:


11 17 11
60 660
:
=
x
=
52 60 52
17 884

660
11
17
< 1 nên
<
884
52
60

Nhận xét cách làm này dựa vào “mối liên quan” giữa phân số với phép
chia số tự nhiên và có thể áp dụng để so sánh với bất kì hai phân số nào. Tuy
nhiên với một số bài mà cả tử số và mẫu số là những số có nhiều chữ số, tôi
hướng dẫn học sinh dựa và các tính chất cơ bản của phân số, tính chất giao hoán,
tính chất kết hợp của số tự nhiên.
Suy cho cùng mục đích của việc vận dụng các tính chất là để so sánh
thương của hai phân số với 1.
Ví dụ 19: So sánh hai phân số sau:

Giảỉ:

20

20052006
20062007

20052005
20062006


- Ta thấy:

20052006 20062007 20052006
20062006
:
=
x
=
20052005 20062006 20052005
20062007

( 20052005 + 1 ) × 20062006
20052005 × ( 20062006 + 1)
=

20052005 × 20062006 + 20062006 TS
=
20052005 × 20062006 + 20052005 MS


- So sánh TS và MS
- Ta có: 20052005 x 20062006 + 20062006 > 20052005 x 20062006 +
20052005 (Vì hai tổng có số hạng thứ nhất giống nhau, và 20062006 >
20052005).
Nên TS > MS . Do đó

TS
20052006
20062007
> 1. Vậy
>
.
MS
20052005
20062006

Sau khi cung cấp cho học sinh những kiến thức cơ bản về so sánh phân
số, tôi nhận thấy học sinh yếu và học sinh trung bình đã có biểu hiện tích cực
hơn. Các em chủ động nắm kiến thức. Đặc biệt việc mở rộng một số kiến thức
về so sánh phân số nhằm bồi dưỡng, phát huy tính tích cực của học sinh giúp học
sinh khá giỏi có kiến thức sâu hơn, vận dụng cách giải linh hoạt hơn, các em có
thể giải và nắm được một số dạng bài mở rộng về so sánh phân số trong chương
trình, và trong các liệu tài tham khảo khác.
4.3.9. Nhận dạng và tiến hành so sánh phân số sau khi đã xác định
đúng dạng.
-Sau khi học sinh đã nắm chắc cách giải và quen với các dạng toán ta tiến
hành hướng dẫn H.S nhận biết các dấu hiệu để phân dạng toán một cách chính
xác hơn.
-Ta phải hướng dẫn học sinh nhận dạng ngay từ khi hướng dẫn H.S giải
toán nhưng bây giờ ta hướng dẫn một cách có hệ thống hơn.

*Ta nhận dạng thông qua sự Quan sát sự tương quan giữa tử số và mẫu
số của một phân số hoặc với phân số khác.
- Nếu hai phân số có mẫu số bằng nhau phân số nào cố tử số lớn hơn thì
phân số đó lớn hơn.

21


- Nếu hai phân số có tử số bằng nhau phân số nào cố mẫu số lớn hơn thì
phân số đó bé hơn.
- Nếu hai phân số có tử số khác nhau và mẫu số khác nhau thì ta có thể
quy đồng mẫu số hoặc tử số để so sánh. Tuy nhiên,có trường hợp quy đồng sẽ
không thuận tiện do số quá to ,…Ta tiến hành quan sát để tìm dạng toán và giải
bằng phương pháp khác.
+ Nếu 1 phân số có tử số bé hơn mẫu số còn phân số kia có tử số lớn hơn mẫu
số

ta

dùng

phương

pháp

so

sánh

từng


phân

số

với

1.

+ Nếu hai phân số cùng có tử số lớn hơn mẫu số ta đổi ra hỗn số rồi so sánh
phần nguyên, phân số nào có phần nguyên lớn hơn thì phân số đó lớn hơn. Nếu
phần nguyên bằng nhau, ta đi so sánh phần phân số (là phần hơn so với đơn vị
trong trường hợp phần nguyên là 1)
Cũng có trường hợp phần hơn so sánh được ngay, cũng có trường hợp so sánh
phần

hơn

lại



một

bài

toán

so


sánh

phân

số

phức

tạp.

+Nếu hai phân số cùng có tử nhỏ hơn mẫu số thì:
Nếu hiệu của mẫu số và tử của hai phân số bằng nhau, ta dùng phương pháp
phần bù tới đơn vị.
.Nếu phân số này có tử số nhỏ hơn tử số của phân số kia còn mẫu số lại lớn
hơn mẫu số của phân số kia,ta sử dụng phương pháp so sánh với phân số trung
gian (Lấy tử số của phân số này và mẫu số của phân số kia làm phân số trung
gian)
- Ngoài ra còn có những phương pháp rút gọn (khi thấy cả tử và mẫu số
của phân số cùng chia hết cho 1 số tự nhiên) hoặc nhận xem hai phân số so sánh
có giá trị gần với phân số nào thì ta sử dụng phân số đó làm phân số trung gian.
-Ta còn sử dụng phương pháp so sánh trên tia số; phương pháp đổi ra số
thập phân để so sánh… tuy nhiên những phương pháp này không thuận lợi.
-Ta còn có một phương pháp mà có thể áp dụng cho mọi trường hợp; có
những trường hợp sử dụng phương pháp này rất thuận tiện: Phương pháp “Tìm
thương của hai phân số” rồi so sánh thương này với 1.

22


-Ngoài ra còn có những dạng bài tổng hợp có liên quan đến so sánh phân

số. Lưu ý học sinh cách liên hệ và loại bỏ những dấu hiệu không bản chất của đề
để hiểu đề và quy bài toán hay một phần bài toán về dạng so sánh phân số. Có đề
toán phải dùng phương pháp so sánh phân số để giải, có đề toán so sánh phân số
ta phải làm những loại toán khác trước khi so sánh.
-So sánh dãy phân số yêu cầu học sinh phải xác định xem dãy phân số
là giảm dần hay tăng dần. Có thể đưa về dãy phân số cùng tử hoặc cùng mẫu, khi
đó chỉ so sánh tử số hoặc mẫu số như đối với số tự nhiên. Trong một số trường
hợp có thể so sánh ,sắp xếp phần bù (hoặc phần hơn) rồi từ đó suy ra cách sắp
xếp dãy phân số. Có thể phân nhóm để so sánh.
4.4. Thực nghiệm sư phạm:
4.4.1. Mục đích thực nghiệm:
-Sau khi làm bài kiểm tra khảo sát tiền thực nghiệm kết hợp với nghiên cứu
lí luận và thực tiễn dạy và học so sánh phân số cùng với việc hỏi ý kiến chuyên
gia và tham khảo ý kiến đồng nghiệp, tôi đã tìm ra một số vướng mắc thường
gặp phảI trong việc dạy và học so sánh phân số ở Tiểu học nhất là những vấn đề
nâng cao và đề ra một số giải pháp sử lí, tôi tiến hành thực nghiệm tác động sư
phạm lên lớp B nhằm mục đích góp phần nâng cao hiệu quảvà chất lượng dạyhọc so sánh phân số đặc biệt là với đối tượng học sinh khá giỏi,từ đó đúc rút
kinh nghiệm, rút ra những luận cứ khoa học và có những đề xuất xác thực.
4.4.2. Nội dung thực nghiệm:
4.4.2.1. Các hình thức tiến hành dạy thực nghiệm:
-Dạy những kiến thức cơ bản về phân số
-Nâng cao kiến thức nhưng phải chỉ cho học sinh những móc xích giữa kiến
thức cơ bản và kiến thức nâng cao
-Dạy học sinh trong các buổi bồi dưỡng năng khiếu toán và phân loại theo trình
độ học sinh để dạy thường xuyên ở lớp.
-Dạy học sinh nhận dạng các dạng so sánh phân số cơ bản và phương pháp giải
từng dạng. Từ dạng cơ bản phức tạp hóa dần để dấu hiệu xa dần với dạng cơ bản

23



nhưng luôn cho học sinh thấy mối liên hệ với dạng cơ bản; giúp học sinh có kĩ
năng nhận dạng và đưa về dạng cơ bản tốt hơn.
-Sau khi dạy kiến thức cơ bản, tổ chức dạy theo từng chuyên đề, mỗi chuyên đề
là 1 dạng so sánh phân số. Cuối chuyên đề dạy móc xích giữa các dạng đã
họcgiúp học sinh giải những bài toán có kiến thứctổng hợp và không quên hay
nhầm lẫn những dạng đã học.
Sau đây là kế hoạch hai tiết dạy của tô ở lớp thực nghiệm (lớp bồi dưỡng học
sinh giỏi lớp 5 tháng 9 năm 2013 (năm học trước: 2013 - 2014) chính là đội
tuyển lớp 4 năm học trước nữa: 2012-2013 mà tôi đã khảo sát. Đây là hai trong
bảy tiết dạy được B.G.H dự giờ và đánh giá.
4.4.2.2.Kế hoạch dạy học (Giáo án):
(Ở phần phụ lục)
4.4.3. Kết quả thực nghiệm:
Khi dạy học sinh về so sánh phân số, nhận thấy lớp đã có sự chuyển biến
tích cực. Tôi đã tiến hành kiểm nghiệm thực tế kết quả của mình bằng cách ra đề
kiểm tra về so sánh phân số. Đây là lớp mà tôi đã nói đến trong phần khảo sát
Tiền thực nghiệm. Đề kiểm tra có dạng tương tự nhưng nâng cao hơn đề kiểm tra
khảo sát Tiền thực nghiệm.
Đề kiểm tra khảo sát Hậu thực nghiệm (Sau khi áp dụng biện pháp
mới) - Đầu cuối học: 2013 – 2014 tôi đã khảo sát đội tuyển vói đề hậu thực
nghiệm.
Câu 1 (3 điểm): So sánh hai phân số
a)

22
151515

12
101010


b)

29
13579873

13
13579837

c)

3
18

4
45

Câu 2 (3 điểm): So sánh hai phân số không được quy đồng
a)

11
10

2
3

b)

23
25


80
40

c)

1000
1000

1000
10000

Câu 3 (2 điểm): Sắp xếp các phân số sau theo thứ tự từ lớn đến bé:
24


1 2 4 3 2008 9999
; ; ; ;
;
3 5 3 4 2007 10000

Câu 4 (1 điểm) So sánh 2 phân số sau:

2006
20072007

2007
20082008

Câu 5 (1điểm) So sánh A và B biết:

2 2
2
2
2
+
+
+
+ ……+
3 15 35 63
1004003

A=
B=

2008
2007

Sau khi hai lớp làm bài, kết quả thu được như sau:
Bảng 2
Giỏi

Số
25

SL
%
SL
10
40
12

* So sánh đối chứng

Khá

Trung bình
SL
%
3
12

%
48

Yếu
SL
0

%
0

Qua việc thống kê và so sánh kết quả bài kiểm tra, cách làm bài giữa hai lần tôi
nhận thấy:
Chất lượng bài kiểm tra hậu thực nghiệm tốt hơn, học sinh so sánh phân
số linh hoạt hơn, trình bày ngắn gọn hơn. Cụ thể:
a) Học sinh nhận dạng và phân dạng tốt từ đó có phương pháp so sánh
đúng cách, trình bày ngắn gọn dễ hiểu và so sánh nhanh hơn trước rất nhiều. Hầu
hết học sinh nắm được các dấu hiệu chia hết để rút gọn các phân số ở câu 1, đưa
về dạng cơ bản để so sánh. Còn một số em khi đi so sánh phần bù còn nhầm lẫn
khi cho rằng: phân số nào có phần bù lớn hơn thì phân số đó lớn hơn.
b) Đại đa số các em học sinh không còn sắp xếp “làm mò” câu 3 mà các

em đã biết cách làm rất linh hoạt. Đặc biệt có học sinh đã làm như sau:
- Vì
So sánh

4
2008
2 1 3
4 2008 2 1 3
; >1; mà ; ; < 1 nên phân số ;
> 1 và
> ; ; .
3
2007
5 3 4
3 2007 5 3 4

1
2
1 2
2
2
1
2
2
3
2
với thấy = mà < nên < . So sánh với ta thấy =
3
5
3 6

6
5
3
5
5
4
5

8 3 15
; =
20 4 20

25


×