Tải bản đầy đủ (.docx) (17 trang)

Nghiên cứu chiết tách và chuyển hóa sinh khối vi tảo họ Botryococcus thành nhiên liệu sinh học Biodiesel theo phƣơng pháp hai giai đoạn trên xúc tác dị thể

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (90.09 KB, 17 trang )

DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ
1. Nguyễn Khánh Diệu Hồng, Nguyễn Đăng Toàn, Nguyễn Trung Thành, Lê Thị Hồng
Ngân, Đinh Thị Ngọ (2012). Xác định các chỉ tiêu kỹ thuật và phân tích thành phần
hóa học dầu vi tảo họ Botryococcus sp. làm nguyên liệu cho sản xuất biodiesel. Tạp chí
Hóa học số 50(4A), trang 375-378.
2. Đinh Thị Ngọ, Nguyễn Đăng Toàn, Nguyễn Trung Thành, Nguyễn Lệ Tố Nga (2013).
Nghiên cứu chuyển hóa sinh khối vi tảo thành nhiên liệu sinh học biodiesel. Hội nghị
Trí tuệ dầu khí Việt Nam - Hội nhập và phát triển bền vững – Hà Nội Tháng 5/2013,
trang 679-686.
3. Nguyễn Trung Thành, Đinh Thị Ngọ (2013). Nghiên cứu chế tạo xúc tác SO4
2/ZrO2
ứng dụng cho phản ứng este hóa dầu vi tảo. Tạp chí hóa học số 51(4AB), trang 187192.
4. Nguyễn Trung Thành, Lê Quang Diễn, Nguyễn Thế Hào, Đinh Thị Ngọ (2013),
Nghiên cứu chế tạo xúc tác Ca(NO3)2/SiO2, ứng dụng cho phản ứng giai đoạn hai
trong quá trình tổng hợp biodiesel từ nguyên liệu dầu vi tảo. Tạp chí Hóa học số
51(6ABC), trang 399-404.
5. Nguyễn Khánh Diệu Hồng, Nguyễn Đăng Toàn, Nguyễn Trung Thành, Bùi Trọng
Quý, Nguyễn Thị Hà, Vũ Đình Duy (2014). Nghiên cứu sự phụ thuộc hiệu suất tạo
metyl ester vào độ nhớt của hỗ hợp sản phẩm trong phản ứng tổng hợp metyl ester từ
một số loại nguyên liệu điển hình. Tạp chí dầu khí số 4/2014, trang 50-59.
6. Nguyen Dang Toan, Nguyen Khanh Dieu Hong, Nguyen Trung Thanh, Nguyen Thi
Ha (2014). Studying on the Relation Between Conversion and Product Viscosity in
Methanolysis from Various. ISEPD 2014, Hanoi, vietnam, pp. 154-158.
7. Nguyễn Trung Thành, Nguyễn Khánh Diệu Hồng, Đinh Thị Ngọ (2014). Nghiên cứu
tổng hợp biodiesel từ nguyên liệu dầu vi tảo bằng quá trình hai giai đoạn sử dụng hệ


xúc tác axit – bazơ rắn. Tạp chí Hóa học số 52(4), trang 484-489.
8. Nguyễn Trung Thành, Nguyễn Đăng Toàn, Đinh Thị Ngọ (2015). Nghiên cứu chiết
tách dầu từ sinh khối vi tảo họ Botryococcus sp. làm nguyên liệu cho quá trình tổng
hợp Biodiesel. Tạp chí Khoa học và Công nghệ số 53(3), trang 646-653.


107
TÀI LIỆU THAM KHẢO
[1]. Bùi Đình Lãm, Đinh Thị Ngọc Mai, Lê Thị Thơm, Đoàn Lan Phương, Đặng Diễm
Hồng (2013), Sản xuất diesel sinh học từ vi tảo Chloerella sp. bằng phương pháp chuyển
vị
ester tại chỗ. Tạp chí Công nghệ Sinh học, 33(4), pp. 66-71.
[2]. Đặng Diễm Hồng, Hoàng Thị Lan Anh, Nguyễn Thị Minh Thanh (2009), Tách chiết

tinh sạch các acid béo không bão hoà từ sinh khối vi tảo biển dị dưỡng Schizochytrium
mangrrovei PQ6. Tạp chí Công nghệ Sinh học, 7(3), pp. 381-387.
[3] Lê Thị Thơm, Đinh Thị Ngọc Mai, Đinh Đức Hoàng, Bùi Đình Lãm, Nguyễn Cẩm
Hà,
Đặng Diễm Hồng (2012), Nghiên cứu áp dụng phương pháp chuyển vị ester tại chỗ để
sản
xuất diesel sinh học từ vi tảo biển Nannochloropsis oculata. Tạp chí Công nghệ Sinh học,
10 (2), pp. 331-337.
[4]. Ngô Thị Hoài Thu, Nguyễn Thị Minh Thanh, Hoàng Thị Lan Anh, Đinh Thị Thu
Hằng,
Đặng Diễm Hồng (2010), Sàng lọc các loài vi tảo biển quang tự dưỡng làm nguyên liệu
cho
sản xuất diesel sinh học. Tạp chí Khoa học và Công nghệ, 48(4A), pp. 320-325.
[5]. Nguyễn Khánh Diệu Hồng, Đinh Thị Ngọ (2012), Nhiên Liệu sạch và các quá trình
xử
lý trong hóa dầu. Nhà xuất bản Khoa Học và Kĩ Thuật.
[6]. Trương Vĩnh (2011), Nghiên cứu quy trình công nghệ sản xuất biodiesel từ vi tảo của


Việt Nam. Đề tài cấp bộ mã số B2008 – 12 – 66.
[7]. A Catarina Guedes, Helena M Amaro, Catarina R Barbosa, Ricardo D Pereira and F
Xavier Malcata (2011), Fatty acid composition of several wild microalgae and

cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids
for eventual dietary uses. Food research international, 44(9), pp. 2721-2729.
[8]. A. Kumudha C. Dayananda, R. Sarada and G. A. Ravishankar (2010), Isolation,
characterization and outdoor cultivation of green microalgae Botryococcus sp. Scientific
Research and Essays, 7(17), pp. 2497-2505.
[9]. A. L. Ahmad, N. H. Mat Yasin, C. J. C. Derek and J. K. Lim (2011), Microalgae as a
sustainable energy source for biodiesel production: A review. Renewable and Sustainable
Energy Reviews, 15(1), pp. 584-593.
[10]. AK Azad, MG Rasul, Mohammad Masud Kamal Khan and Subhash C Sharma
(2014). Review of biodiesel production from microalgae: a novel source of green energy.
The 9th International Green Energy Conference, Tianjin, China
[11]. Ali Alsalme, Elena F Kozhevnikova and Ivan V Kozhevnikov (2008), Heteropoly
acids as catalysts for liquid-phase esterification and transesterification. Applied Catalysis
A: General, 349(1), pp. 170-176.
108
[12]. Aline Terra Soares, Dayane Cristine da Costa, Bruna Ferreira Silva, Rafael Garcia
Lopes, Roberto Bianchini Derner and Nelson Roberto Antoniosi Filho (2014),
Comparative
analysis of the fatty acid composition of microalgae obtained by different oil extraction
methods and direct biomass transesterification. BioEnergy Research, 7(3), pp. 10351044.
[13]. Anjana Srivastava and Ram Prasad (2000), Triglycerides-based diesel fuels.
Renewable and sustainable energy reviews, 4(2), pp. 111-133.
[14]. Antonio A Teresa and M. Mata (2010), Martins Microalgae for biodiesel production


and other applications: A review. Renewable and Sustainable Energy Reviews, 14, pp.
217232.
[15]. Arumugam Sivasamy, Kien Yoo Cheah, Paolo Fornasiero, Francis Kemausuor,
Sergey Zinoviev and Stanislav Miertus (2009), Catalytic applications in the production of
biodiesel from vegetable oils. ChemSusChem, 2(4), pp. 278-300.

[16]. Ayhan Demirbas (2008), A Realistic Fuel Alternative for Diesel Engines. Springer.
[17]. Ayhan Demirbas (2008), Biofuels sources, biofuel policy, biofuel economy and
global
biofuel projections. Energy conversion and management, 49(8), pp. 2106-2116.
[18]. Ayhan Demirbas and M Fatih Demirbas (2010), Algae energy: algae as a new source
of biodiesel. Springer.
[19]. Benjaram M Reddy, Pavani M Sreekanth and Pandian Lakshmanan (2005), Sulfated
zirconia as an efficient catalyst for organic synthesis and transformation reactions.
Journal
of molecular catalysis A: chemical, 237(1), pp. 93-100.
[20]. Benoit Heinrichs, Stéphanie Lambert, Nathalie Job and Jean-Paul Pirard (2006),
SolGel synthesis of supported metals. Catalyst Preparation: Science and Engineering, ed. J.
Regalbuto, Tayler & Francis (CRC Press), Boca Raton, pp. 163.
[21]. C Dayananda, A Kumudha, R Sarada and GA Ravishankar (2010), Isolation,
characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci Res
Essays, 5(17), pp. 2497-2505.
[22]. Camila Martins Garcia, Sergio Teixeira, Letícia Ledo Marciniuk and Ulf Schuchardt
(2008), Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource
technology, 99(14), pp. 6608-6613.
[23]. Chang-Lin Chen, Tao Li, Soofin Cheng, Hong-Pin Lin, Chetan J Bhongale and
Chung-Yuan Mou (2001), Direct impregnation method for preparing sulfated zirconia


supported on mesoporous silica. Microporous and mesoporous materials, 50(2), pp. 201208.
[24]. Chawalit Ngamcharussrivichai, Sita Benjapornkulaphong and Kunchana Bunyakiat
109
(2009), Al2O3-supported alkali and alkali earth metal oxides for transesterification of
palm
kernel oil and coconut oil. Chemical Engineering Journal, 145(3), pp. 468-474.
[25]. Chiara Samorì, Cristian Torri, Giulia Samorì, Daniele Fabbri, Paola Galletti, Franca

Guerrini, Rossella Pistocchi and Emilio Tagliavini (2010), Extraction of hydrocarbons
from
microalga Botryococcus braunii with switchable solvents. Bioresource technology,
101(9),
pp. 3274-3279.
[26]. D. Farcasu and J. Q. Li (1995), Preparation of sulfated zirconia catalysts with
improved control of sulfur content. Applied Catalysis A: General, 128(1), pp. 97-105.
[27]. Dae-Won Lee, Young-Moo Park and Kwan-Young Lee (2009), Heterogeneous base
catalysts for transesterification in biodiesel synthesis. Catalysis surveys from Asia, 13(2),
pp. 63-77.
[28]. Dang Diem Hong, Dinh Thi Ngoc Mai, Le Thi Thom, Nguyen Cam Ha, Bui Dinh
Lam, Luu Thi Tam, Hoang Thi Lan Anh and Ngo Thi Hoai Thu (2013), Biodiesel
production from Vietnam heterotrophic marine microalga Schizochytrium mangrovei
PQ6.
Journal of Bioscience and Bioengineering, 116(2), pp. 180-185.
[29]. Daniel G Strawn, Hinrich L Bohn and George A O'Connor (2015), Soil Chemistry.
John Wiley & Sons.
[30]. David Adam (2008), World CO2 levels at record high, scientists warm. The
Guardian,
12, pp. 1.


[31]. David M. bagley Jerald A.Lalman (2004), Extracting Long-Chain Fatty Acids from
a
Fermentation Medium. Journal of the American Oil Chemists' Society, 81(2), pp. 105110.
[32]. Demirbas A (2011), Methylation of wood fatty and resin acids for production of
biodiesel. Fuel, 90, pp. 2273–2281.
[33]. Dominik Rutz and Rainer Janssen (2007), Biofuel technology handbook. WIP
Renewable Energies, Sylvensteinstr. 2, Munich, Germany
[34]. E. Sánchez, K. Ojeda, M. El-Halwagi and V. Kafarov (2011), Biodiesel from

microalgae oil production in two sequential esterification/transesterification reactors:
Pinch analysis of heat integration. Chemical Engineering Journal, 176-177, pp. 211-216.
[35]. Edgar Lotero, Yijun Liu, Dora E Lopez, Kaewta Suwannakarn, David A Bruce and
James G Goodwin (2005), Synthesis of biodiesel via acid catalysis. Industrial &
engineering
chemistry research, 44(14), pp. 5353-5363.
[36]. Ela Eroglu and Anastasios Melis (2010), Extracellular terpenoid hydrocarbon
extraction and quantitation from the green microalgae Botryococcus braunii var. Showa.
Bioresource technology, 101(7), pp. 2359-2366.
110
[37]. Folasegun A Dawodu, Olubunmi Ayodele, Jiayu Xin, Suojiang Zhang and Dongxia
Yan (2014), Effective conversion of non-edible oil with high free fatty acid into biodiesel
by
sulphonated carbon catalyst. Applied Energy, 114, pp. 819-826.
[38]. Fred R Wolf, Arthur M Nonomura and James A Bassham (1985), Growth and
branched hydrocarbon production in a strain of Botryococcus braunii (chlorophyta) 1.
Journal of Phycology, 21(3), pp. 388-396.
[39]. Geoffrey Brooks (2010), Edible oil and processes for its production from
microalgae.


United States patent application publication, Publication number US20100303957 A1.
[40]. Gerhard Knothe, Jon Harlan Van Gerpen and Jurgen Krahl (2005), The biodiesel
handbook. Vol. 1, AOCS press Champaign, IL.
[41]. Geun Ho Gim, Jung Kon Kim, Hyeon Seok Kim, Mathur Nadarajan Kathiravan,
Hetong Yang, Sang-Hwa Jeong and Si Wouk Kim (2014), Comparison of biomass
production and total lipid content of freshwater green microalgae cultivated under various
culture conditions. Bioprocess and biosystems engineering, 37(2), pp. 99-106.
[42]. Gisela Monter and Margarita Stoytcheva (2011), Biodiesel – Quality, emissions and
by-products. Intech open Publisher.

[43]. Gisela Montero Margarita Stoytcheva (2011), Biodiesel - Feedstocks and Processing
Technologies. Janeza Trdine 9, 51000 Rijeka, Croatia.
[44]. GuanHua Huang, Feng Chen, Dong Wei, XueWu Zhang and Gu Chen (2010),
Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), pp. 38-46.
[45] H. Knozinger G. Ertl, J. Weitkamp (1997), Handbook of Heterogeneous Catalysis.
Vol. 5, Wiley-VCH, Weinheim.
[46] Hideshi Hattori (1995), Heterogeneous basic catalysis. Chemical Reviews, 95(3), pp.
537-558.
[47] Hu Qunju, Xiang Wenzhou, Dai Shikun, Li Tao, Yang Fangfang, Jia Qikun, Wang
Guanghua and Wu Hualian (2015), The influence of cultivation period on growth and
biodiesel properties of microalgae Nannochloropsis gaditana 1049. Bioresource
Technology.
[48] International Energy Agency (2004), World Energy Outlook. pp. 57.
[49] Izabela Krzemińska, Barbara Pawlik-Skowrońska, Magdalena Trzcińska and Jerzy
Tys
(2014), Influence of photoperiods on the growth rate and biomass productivity of green
microalgae. Bioprocess and biosystems engineering, 37(4), pp. 735-741.


[50] J.M. Pareta and J.C. Yori (1996), n - butane isomerization on metal promoted
sulfated
zirconia. Appl. Catal., A: General, 146, pp. 332.
111
[51] Jack A. Sacco and Fabian E. Dumont (2009), Biochemical Engineering. Nova
Science
Publisher.
[52] James R.Oyler (2008), Two stage process for producing oil from microalgae. United
States patent application publication.
[53] Jasvinder Singh and Sai Gu (2010), Commercialization potential of microalgae for
biofuels production. Renewable and Sustainable Energy Reviews, 14(9), pp. 2596-2610.

[54] Jie Sheng, Raveender Vannela and Bruce E Rittmann (2011), Evaluation of methods
to
extract and quantify lipids from Synechocystis PCC 6803. Bioresource technology,
102(2),
pp. 1697-1703.
[55] Jong Rack Sohn, Tae-Dong Kwon and Sang-Bock Kim (2001), Characterization of
zirconium sulfate supported on zirconia and activity for acid catalysis. BULLETINKOREAN CHEMICAL SOCIETY, 22(12), pp. 1309-1315.
[56] Juliana E Bohnenberger and Luciane O Crossetti (2014), Influence of temperature
and
nutrient content on lipid production in freshwater microalgae cultures. Anais da
Academia
Brasileira de Ciências, 86(3), pp. 1239-1248.
[57] K. Parkavi and B Mathumitha (2011), Review of key research efforts to make algae
fuels sustainable. ASTM Special Technical Publication, 1477, pp. 566-576.
[58]. K. Saravanan, Beena Tyagi, Ram S Shukla and HC Bajaj (2015), Esterification of
palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid
acid


catalyst. Applied Catalysis B: Environmental, 172, pp. 108-115.
[59]. K. Tanabe, Imelik B, Condurier G, BenTaarti Y, Vedrine J.C. (1985), Catalysis by
acids and bases. Elsevier Amsterdam, pp. 111-115.
[60]. Kazushi Arata (1996), Preparation of superacids by metal oxides for reaction of
butanes and pentanes. Applied Catalysis A: General, 146(1), pp. 3-32.
[61]. Kenichiro Tsukahara and Shigeki Sawayama (2005), Liquid fuel production using
microalgae. J Jpn Pet Inst, 48(5), pp. 251.
[62]. Kiyotaka Saga Sueko Atobe, Fumio Hasegawa , Akinari Magota, Kenichi
Furuhashi,
Shigeru Okada, Toru Suzuki and Kenji Imou (2014), The effect of the water-soluble
polymer released from Botryococcus braunii Showa strain on solvent extraction of

hydrocarbon. Journal of Applied Phycology, 27(2), pp. 755-761.
[63]. Kiyotaka Saga, Fumio Hasegawa, Syoko Miyagi, Sueko Atobe, Shigeru Okada,
Kenji
Imou, Noriko Osaka and Tetsu Yamagishi (2015), Comparative evaluation of wet and dry
processes for recovering hydrocarbon from Botryococcus Braunii. Applied Energy, 141,
pp. 90-95.
112
[64]. Kondo A Fukuda H, Noda H (2001), Biodiesel fuel production by transesterification
of oils. Journal of Bioscience and Bioengineering, 92, pp. 405-420.
[65], L. Zhu Y.Y. Sun, Feng-Shou Xiao (2005), Ordered Mesoporous Materials with
Improved Stability and Catalytic Activity. Topics in Catalysis, 35(1-2), pp 9-24.
[66]. Leonard Wagner (2007), Biodiesel from algae oil. Research report.
[67]. Liam Brennan and Philip Owende (2010), Biofuels from microalgae—a review of
technologies for production, processing, and extractions of biofuels and co-products.
Renewable and sustainable energy reviews, 14(2), pp. 557-577.
[68]. Lin Chen, Tianzhong Liu, Wei Zhang, Xiaolin Chen and Junfeng Wang (2012),


Biodiesel production from algae oil high in free fatty acids by two-step catalytic
conversion. Bioresource Technology, 111(0), pp. 208-214.
[69]. Lina Zhao (2010), Novel solid base catalysts for the production of biodiesel from
lipids. University of Kansas.
[70]. M Canakci and J Van Gerpen (2001), Biodiesel production from oils and fats with
high free fatty acids. Transactions-American Society of Agricultural Engineers, 44(6), pp.
1429-1436.
[71]. M.E. Leonowicz C.T. Kresge, J.C. Vartuli and J.S. Beck (1992), Ordered
mesoporous
molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, pp
710712.
[72]. M.Fatih Demirbas and Ayhan Demirbas (2010), Algae Energy. Algae as a New

Source
of Biodiesel. Springer Verlag London.
[73]. M.R.M. Adam P Harvey and Thomas Seliger (2003), Process Intensification Of
Biodiesel Production Using A Continuous Oscillatory Flow Reactor. Journal Of Chemical
Technology And Biotechnology, 78, pp. 338-341.
[74]. Marc Petit and Julien Monot (2015), Functionalization of Zirconium Oxide
Surfaces.
Chemistry of Organo-Hybrids: Synthesis and Characterization of Functional NanoObjects,
pp. 168-199.
[75]. María Jesús Ramos, Abraham Casas, Lourdes Rodríguez, Rubí Romero and Ángel
Pérez (2008), Transesterification of sunflower oil over zeolites using different metal
loading: a case of leaching and agglomeration studies. Applied Catalysis A: General,
346(1), pp. 79-85.
[76]. Masato Kouzu, Takekazu Kasuno, Masahiko Tajika, Yoshikazu Sugimoto, Shinya


Yamanaka and Jusuke Hidaka (2008), Calcium oxide as a solid base catalyst for
transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12),
113
pp. 2798-2806.
[77]. Minh Hien Hoang, Nguyen Cam Ha, Luu Thi Tam, Hoang Thi Lan Anh, Ngo Thi
Hoai Thu and Dang Diem Hong (2014), Extraction of squalene as value-added product
from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing
process. Journal of bioscience and bioengineering, 118(6), pp. 632-639.
[78]. Mônica CG Albuquerque, Inmaculada Jiménez-Urbistondo, José SantamaríaGonzález, Josefa M Mérida-Robles, Ramón Moreno-Tost, Enrique Rodríguez-Castellón,
Antonio Jiménez-López, Diana Azevedo, Célio L Cavalcante Jr and Pedro MairelesTorres
(2008), CaO supported on mesoporous silicas as basic catalysts for transesterification
reactions. Applied Catalysis A: General, 334(1), pp. 35-43.
[79]. Naeeda Tharakan, Jane Romero and David Morgado (2012), Biofuels in the Greater
Mekong Subregion: Energy sufficiency, food security, and environmental management.

[80]. Navid Moheimani (2014), Microalgae Culture (3). Algae R&D Center, Murdoch
University, Perth, Australia.
[81]. Nguyen Dang Toan, Nguyen Khanh Dieu Hong, Nguyen Trung Thanh and Nguyen
Thi Ha. Studying on the Relation Between Conversion and Product Viscosity in
Methanolysis from Various. ISEPD 2014, Hanoi, Vietnam, pp. 154-158.
[82]. Oilgae comprehensive report: Energy from algae: product, Market, processes and
strategies (2011). Oilgae magazine.
[83]. P Mongkolbovornkij, V Champreda, W Sutthisripok and N Laosiripojana (2010),
Esterification of industrial-grade palm fatty acid distillate over modified ZrO2 (with
WO3,
SO4


2and TiO2): Effects of co-solvent adding and water removal. Fuel Processing
Technology, 91(11), pp. 1510-1516.
[84]. Palligarnai T Vasudevan and Michael Briggs (2008), Biodiesel production—current
state of the art and challenges. Journal of Industrial Microbiology & Biotechnology,
35(5),
pp. 421-430.
[85]. Persistence Team (2008), Annual 100,000T Biodiesel Production Project College of
Materials Science and Chemical Engineering. Zhejiang University.
[86]. Piyushi Nautiyal, K. A. Subramanian and M. G. Dastidar (2014), Production and
characterization of biodiesel from algae. Fuel Processing Technology, 120(0), pp. 79-88.
[87]. Ramasamy Rengasamy, Veeramuthu Ashokkumar, S. Deepalakshmi, A. Sivalingam
and Pandian Sivakumar (2014), Mass cultivation of microalgae and extraction of total
hydrocarbons: A kinetic and thermodynamic study. Fuel, 119, pp. 308-312.
[88]. Rashmi Shakeel A. Khan and Z. Hussain (2009), Prospects of biodiesel production
from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), pp. 2361114
2372.
[89]. Raveender Vannela, Jie Sheng and Bruce E.Rittmann (2011), Evaluation of methods

to extract and quantify lipids from Synchocystis. Bioresource Technology, 102(2), pp.
16971703.
[90]. RN Patil and EC Subbarao (1970), Monoclinic–tetragonal phase transition in
zirconia: mechanism, pretransformation and coexistence. Acta Crystallographica Section
A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 26(5), pp. 535542.
[91]. Ronald Halim, Brendan Gladman, Michael K Danquah and Paul A Webley (2011),


Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1),
pp. 178-185.
[92]. Ronald Halim, Michael K. Danquah and Paul A. Webley (2012), Extraction of oil
from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), pp.
709-732.
[93]. S. Semwal, A. K. Arora, R. P. Badoni and D. K. Tuli (2011), Biodiesel production
using heterogeneous catalysts. Bioresource Technology, 102(3), pp. 2151-2161.
[94]. Satoshi Furuta, Hiromi Matsuhashi and Kazushi Arata (2004), Biodiesel fuel
production with solid superacid catalysis in fixed bed reactor under atmospheric pressure.
Catalysis communications, 5(12), pp. 721-723.
[95]. Shu-Hui Guan, Xiao-Jie Zhang and Zhi-Pan Liu (2015), Energy Landscape of
Zirconia Phase Transitions. Journal of the American Chemical Society, 137(25), pp.
80108013.
[96]. Siti Zullaikah, Chao-Chin Lai, Shaik Ramjan Vali and Yi-Hsu Ju (2005), A two-step
acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresource
Technology, 96(17), pp. 1889-1896.
[97]. T. Brigitte Voit (2006), Sequential One-Pot eactions Using the Concept of ―Site
Isolation‖. Angewandte Chemie International Edition, 45(26), pp. 4238-4240.
[98]. T. Groger H (2001), The development of new monometallic bifunctional catalysts
with
lewis acid and lewis base properties, and their application in asymmetric cyanation
reactions. Chemistry - A European Journal, 7(24), pp. 4238-4240.

[99]. TG Volova, GS Kalacheva and NO Zhila (2003), Specificity of lipid composition in
two Botryococcus strains, the producers of liquid hydrocarbons. Russian Journal of Plant
Physiology, 50(5), pp. 627-633.
[100]. Torri C Samorì C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R and


Tagliavini E. (2010), Extraction of hydrocarbons from microalga Botryococcus braunii
115
with switchable solvents. Bioresource Technology, 101(19), pp. 3274-3279.
[101]. V. Fornes A. Corma, M.I.Juan-Rajadell and J.M.Lopez Nieto (1994), "Influence of
preparation conditions on the structure and catalytic properties of ZrO2/SO42- superacid
catalysts. Applied Catalysis A: General, 116, pp. 151-156.
[102]. Veeramuthu Ashokkumar, Ramasamy Rengasamy, S Deepalakshmi, A Sivalingam
and Pandian Sivakumar (2014), Mass cultivation of microalgae and extraction of total
hydrocarbons: A kinetic and thermodynamic study. Fuel, 119, pp. 308-312.
[103]. Venu Babu Borugadda and Vaibhav V. Goud (2012), Biodiesel production from
renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy
Reviews, 16(7), pp. 4763-4784.
[104]. Waqas Khatri, Robert Hendrix, Tom Niehaus, Joe Chappell and Wayne R Curtis
(2014), Hydrocarbon production in high density Botryococcus braunii race B continuous
culture. Biotechnology and bioengineering, 111(3), pp. 493-503.
[105]. Wenlei Xie and Haitao Li (2006), Alumina-supported potassium iodide as a
heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular
Catalysis A: Chemical, 255(1-2), pp. 1-9.
[106]. Wenlei Xie and Xiaoming Huang (2006), Synthesis of biodiesel from soybean oil
using heterogeneous KF/ZnO catalyst. Catalysis Letters, 107(1-2), pp. 53-59.
[107]. Wenlei Xie and Zhenqiang Yang (2007), Ba–ZnO catalysts for soybean oil
transesterification. Catalysis Letters, 117(3-4), pp. 159-165.
[108]. Wenlei Xie, Hong Peng and Ligong Chen (2006), Transesterification of soybean
oil

catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A:
General, 300(1), pp. 67-74.
[109]. Xiaoming Huang, Wenlei Xie and Haitao Li (2007), Soybean oil methyl esters


preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst.
Bioresource
Technology, 98, pp. 936-939.
[110]. Xiufeng Li, Han Xu and Qingyu Wu (2007), Large‐scale biodiesel production from
microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors.
Biotechnology and Bioengineering, 98(4), pp. 764-771.
[111]. YA Yi, JS Ahn, YJ Park, SH Jun, IB Lee, BH Cho, HH Son and DG Seo (2015),
The
effect of sandblasting and different primers on shear bond strength between yttriatetragonal zirconia polycrystal ceramic and a self-adhesive resin cement. Operative
dentistry, 40(1), pp. 63-71.
[112]. Yahaya Muhammad Sani, Wan Mohd Ashri Wan Daud and A. R. Abdul Aziz
(2013), Solid acid-catalyzed biodiesel production from microalgal oil—The dual
116
advantage. Journal of Environmental Chemical Engineering, 1(3), pp. 113-121.
[113]. Yahaya Muhammad Sani, Wan Mohd, Ashri Wan Daud and A. R. Abdul Aziz
(2014), Activity of solid acid catalysts for biodiesel production: A critical review. Applied
Catalysis A: General, 470, pp. 140-161.
[114]. Yusuf Chisti (2007), Biodiesel from microalgae. Biotechnology Advances, 25(3),
pp.
294-306.
[115]. Zeidan R. K. T, Margelefsky E. L and Davis M. E (2008), Cooperative catalysis by
silica-supported organic functional groups. Chemical Society Reviews, 37(6), pp. 11181126.
[116]. Zhonglai Li, Yichen Liu, Witold Kwapinski and James J Leahy (2014), ZrO 2modified TiO 2 nanorod composite: Hydrothermal synthesis, characterization and
application in esterification of organic acid. Materials Chemistry and Physics, 145(1), pp.
82-89.



[117]. Z.W David Vaughan (1975), Crystalline silica compositions. United States patent
application publication, Publication number 3884835.
114
PHỤ LỤC
Phụ lục 1: Kết quả đo BET
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
Phụ lục 2. Kết quả GS-MS
133
134
135



136
137
PHỤ LỤC 3. Kết quả TPD-NH3
138
139
140
141
142
143
144
145
146
147
Phụ lục 4. Kết quả chụp XRD



×