Luyện tập 1 toán 11 – Hàm số lượng giác và phương trình lượng giác
Phần 1: tập xác định của hàm số:
2π
+ 2x ÷
a) y = tan
3
…………………………………………………
…………………………………………………
…………………………………………………
………………………………………
π
b) y = cot x − ÷
4
…………………………………………………
…………………………………………………
………………………………………………....
2x
c) y = cos
x −3
…………………………………………………
…………………………………………………
…………………………………………………
2 cos x
d) y =
3sin 2 x
…………………………………………………
…………………………………………………
………………………………………………...
sin x + 1
1 − sin x
…………………………………………………
…………………………………………………
…………………………………………………
2 + cot x
f) y =
cos2 x − sin 2 x
…………………………………………………
…………………………………………………
e) y =
…………………………………………………
………………………………………
1
g) y = 2 + sin x −
2
tan x − 1
…………………………………………………
…………………………………………………
…………………………………………………
………………………………………
tan x
h) y =
sin x − cos x
…………………………………………………
…………………………………………………
…………………………………………………
………………………………………
1− x
1+ x
…………………………………………………
…………………………………………………
………………………………………………...
k) y = sin x + cos x
…………………………………………………
…………………………………………………
…………………………………………………
………………………………………
i) y = sin
2 − cos x
tan x.cot x
............................................................................
..............................................................................
..............................................................................
..............................................................................
...................
l) y =
Phần 2: Giá trị lớn nhất – Giá trị nhỏ nhất của hàm lượng giác
π
a) y = 3sin x − ÷− 2
6
............................................................................
..............................................................................
..............................................................................
........................................................
2
b) y = 4sin x − cos2 x
............................................................................
..............................................................................
..............................................................................
........................................................
c) y = 3 cos2 x + 1
............................................................................
..............................................................................
..............................................................................
........................................................
d) y = 7 − 3 sin3 x
............................................................................
..............................................................................
..............................................................................
........................................................
Phần 3: Phương trình lượng giác cơ bản:
1
2
…………………………………………………
……………………………………………
a) sin3 x =
π
b) tan x − ÷ = 3
4
…………………………………………………
……………………………………………
2
2
…………………………………………………
……………………………………………
c) cos2 x = −
d) sin3 x − sin 3 x.cos x = 0
…………………………………………………
……………………………………………
e) tan 4 x.cot 2 x = 1
…………………………………………………
……………………………………………
f) sin3 x − cos2 x = 0
…………………………………………………
……………………………………………
π
g) tan 2 x + ÷+ tan 3 x = 0
3
…………………………………………………
……………………………………………..........
..............................................................................
2
2
…………………………………………………
…………………………………………… .........
..............................................................................
.....................................................................
h) cos4 x − sin 4 x =
π
i) 2 cos x − ÷+ 1 = 0
6
…………………………………………………
……………………………………………
x
=0
2
............................................................................
..............................................................................
..............................................................................
..............................................................................
..
k) cos x − 2sin 2
2
8
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.
l) sin3 x cos x − cos3 x sin x =
m) cos2 x + cos2 2 x + cos2 3 x = 1
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.
17π
2
2
+ 10 x ÷
n) sin 2 x − cos 8 x = sin
2
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.
o) cos4 x + sin 6 x = cos2 x
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
1 − cos 4 x
sin 4 x
−
=0
2sin 2 x 1 + cos 4 x
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.
p)
2 +1
2
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.
q) sin x cos x + cos2 x =
x π
2 − 3 ) cos x − 2sin − ÷
(
r)
2 4
2
=1
2 cos x − 1
.............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.
Phần 3: Các phương trình lượng giác đơn giản
1) Phương trình bậc hai đối với một hàm số lượng giác:
2
a) 4 cos x − 2
(
)
3 + 1 cos x + 3 = 0
b) 3cos2 x + 4sin x − 4 = 0
c) 2 cos2 x − 8cos x + 6 = 0
d) 2 cos x cos2 x = 1 + cos2 x + cos3 x
e)
3
= 3 + 2 tan 2 x
2
cos x
f) 6sin 2 3 x + cos12 x = 4
2
g) sin x +
1
1
− 2 sin x +
÷= 1
2
sin x
sin x
2) Phương trình bậc nhất theo sinx cosx (Phương trình cổ điển)
a)
3 cos x − sin x = 2
b) cos x + 3 sin x = −1
c) sin3 x + 3 cos3x = 2
d) cos6 x − sin 4 x = 3(cos 4 x − sin 6 x )
e)
3(1 − cos2 x )
= cos x
2sin x
f) 3sin 3 x − 3 cos9 x = 1 + 4sin 3 x
3) Phương trình thuần nhất bậc hai theo sinx và cosx:
(
)
2
2
a) 3sin x + 8sin x cos x + 8 3 − 9 cos x = 0
b) 4sin 2 x + 3sin 2 x − 2 cos2 x = 4
c) sin3 x + 2sin 2 x cos x − 3cos3 x = 0
d) 2 tan x + cot x = 3 +
2
sin 2 x
4) Phương trình đối xứng
a) 2(sin x + cos x ) + 3sin x cos x + 2 = 0
b) sin3 x + cos3 x = 1 − sin x cos x
c) cos x − sin x − 2sin 2 x − 1 = 0
d) sin x + cos x =
cos2 x
1 − sin 2 x